1
|
Yang L, Huangfu C, Wang Y, Qin Y, Qin A, Feng L. Visual detection of aldehyde gases using a silver-loaded paper-based colorimetric sensor array. Talanta 2024; 280:126716. [PMID: 39173250 DOI: 10.1016/j.talanta.2024.126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The small molecule aldehydes are volatile organic compounds (VOCs), possessing cytotoxicity and carcinogenicity. Long-term exposure can pose a serious threat to human health. Based on an in-situ reduction colorimetric method to generate silver nanoparticles and induce colorimetric response, we proposed a silver-loaded paper-based colorimetric sensor array for visually detecting and differentiating five relatively common trace small molecule aldehyde gases. The silver ions are immobilized onto a porous filter paper and stabilized by complexing agents of branched polyethyleneimine, ethylenediamine, and 1,6-diaminohexane, respectively. The as-fabricated sensor array expresses remarkable stability and capacity to resist humidity. The qualitative analysis reveals that the sensor array has excellent selectivity for aldehyde gases and displays remarkable anti-interference ability. The quantitative analysis indicates that the sensor array exhibits superior sensitivity for five aldehyde gases, with limits of detection (LODs) of 9.0 ppb for formaldehyde (FA), 3.1 ppm for acetaldehyde (AA), 3.5 ppm for propionaldehyde (PA), 23.8 ppb for glutaric dialdehyde (GD), and 71.5 ppb for hydroxy formaldehyde (HF), respectively. Importantly, these LODs are all comfortably below their respective permissible exposure limits. A unique colorimetric response fingerprint is observed for each analyte. Standard chemometric methods illustrate that the sensor array has excellent clustering capability for these aldehyde gases. Additionally, the sensor array's response is irreversible and possesses outstanding performance for cumulative monitoring. This colorimetric sensor array based on silver ions reduced to silver nanoparticles offers a novel detection method for the continuous, ultrasensitive, and visual detection of trace airborne pollutants.
Collapse
Affiliation(s)
- Lihua Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Changxin Huangfu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yu Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yingxi Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Aimiao Qin
- School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China.
| | - Liang Feng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Pang S, Zhong Q, Zhao Y, Xia N. A Novel Fluorescent and Colorimetric Method for the Determination of Formaldehyde Based on Albumin Nanoparticles-Polyethyleneimine-Ag + Ion Nanohybrids. J Fluoresc 2023:10.1007/s10895-023-03486-8. [PMID: 37938478 DOI: 10.1007/s10895-023-03486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
As a carcinogenic substance, high dose of formaldehyde exposure may lead to poisoning and even death. Long-term exposure to low doses of formaldehyde can harm human skin, respiratory organs and immune system. Therefore, it is vital to detect formaldehyde content in real time. In this paper, a simple method for the determination of formaldehyde based on fluorometry and colorimetry was established in the range of 0-1.92 mg·mL-1. A fluorescence protein nanoparticles (BSA NPs) was prepared utlizing bovine serum albumin (BSA) as the raw material. Based on the silver mirror reaction, silver nanoparticles can be generated from the reaction between BSA NPs combined with polyethylenimide (PEI) and silver ion (Ag+) ions complex (BSA NPs-PEI-Ag) and formaldehyde. The fluorescent detection principle for formaldehyde was based on the fluorescence queching of BSA NPs-PEI-Ag system at 514 nm upon the reduction of Ag+ ions by formaldehyde. The colorimetric detection principle for formaldehyde was based on the enhancement of absorption band of BSA NPs-PEI-Ag system at 460 nm and color changes along with the generation of silver nanoparticles after the addition of formaldehyde. The proposed method was succesfully used for formaldehyde detection in real water sample with the recovery range of 106-110%.
Collapse
Affiliation(s)
- Shu Pang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Qinping Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Yan Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China
| | - Nengxing Xia
- Department of Gastrointestinal Oncology, East Hospital of Chenzhou First People's Hospital, Chenzhou, 423000, China.
| |
Collapse
|
3
|
Bokthier Rahman M, Hussain M, Probha Kabiraz M, Nordin N, Anusha Siddiqui S, Bhowmik S, Begum M. An update on formaldehyde adulteration in food: sources, detection, mechanisms, and risk assessment. Food Chem 2023; 427:136761. [PMID: 37406446 DOI: 10.1016/j.foodchem.2023.136761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Formaldehyde is added illegally to food to extend its shelf life due to its antiseptic and preservation properties. Several research has been conducted to examine the consequences of adulteration with formaldehyde in food items. These findings suggest that adding formaldehyde to food is considered harmful as it accumulates in the body with long-term consumption. In this review includes study findings on food adulteration with formaldehyde and their assessment of food safety based on the analytical method applied to various geographical regions, food matrix types, and their sources in food items. Additionally, this review sought to assess the risk of formaldehyde-tainted food and the understanding of its development in food and its impacts on food safety in light of the widespread formaldehyde adulteration. Finally, the study would be useful as a manual for implementing adequate and successful risk assessment to increase food safety.
Collapse
Affiliation(s)
- Md Bokthier Rahman
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand; Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh.
| | - Mohajira Begum
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi-6204, Bangladesh
| |
Collapse
|
4
|
Yi J, Wang Z, Hu J, Yu T, Wang Y, Ge P, Xianyu Y. Point-of-Care Detection of Antioxidant in Agarose-Based Test Strip through Antietching of Au@Ag Nanostars. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37328300 DOI: 10.1021/acsami.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antioxidants are crucial for human health, and the detection of antioxidants can provide valuable information for disease diagnosis and health management. In this work, we report a plasmonic sensing approach for the determination of antioxidants based on their antietching capacity toward plasmonic nanoparticles. The Ag shell of core-shell Au@Ag nanostars can be etched by chloroauric acid (HAuCl4), whereas antioxidants can interact with HAuCl4, which prevents the surface etching of Au@Ag nanostars. We modulate the thickness of the Ag shell and morphology of the nanostructures, showing that the core-shell nanostars with the smallest thickness of Ag shell have the best etching sensitivity. Owing to the extraordinary surface plasmon resonance (SPR) property of Au@Ag nanostars, the antietching effect of antioxidants can induce a significant change in both the SPR spectrum and the color of solution, facilitating both the quantitative detection and naked-eye readout. This antietching strategy enables the determination of antioxidants such as cystine and gallic acid with a linear range of 0.1-10 μM. The core-shell Au@Ag nanostars are further immobilized in agarose gels to fabricate test strips, which can display different color changes in the presence of HAuCl4 from 0 to 1000 μM. The agarose-based test strip is also capable of detecting antioxidants in real samples, which allows naked-eye readout and quantitative detection by a smartphone.
Collapse
Affiliation(s)
- Jiuhong Yi
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Zexiang Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Jing Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Ting Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Yidan Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Pengfei Ge
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
- Ningbo Research Institute, Zhejiang University, 315100 Ningbo, China
| |
Collapse
|
5
|
Lermusiaux L, Roach L, Lehtihet M, Plissonneau M, Bertry L, Buissette V, Le Mercier T, Duguet E, Drisko GL, Leng J, Tréguer-Delapierre M. Silver Nanoshells with Optimized Infrared Optical Response: Synthesis for Thin-Shell Formation, and Optical/Thermal Properties after Embedding in Polymeric Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:614. [PMID: 36770575 PMCID: PMC9919194 DOI: 10.3390/nano13030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.
Collapse
Affiliation(s)
- Laurent Lermusiaux
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Lucien Roach
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Moncef Lehtihet
- University Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France
| | | | - Laure Bertry
- Solvay R&I, 52 rue de la Haie Coq, 93306 Aubervilliers, France
| | | | | | - Etienne Duguet
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Glenna L. Drisko
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Jacques Leng
- University Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France
| | | |
Collapse
|
6
|
Borah N, Gogoi D, Ghosh NN, Tamuly C. GA-AuNP@Tollens’ complex as a highly sensitive plasmonic nanosensor for detection of formaldehyde and benzaldehyde in preserved food products. Food Chem 2023; 399:133975. [DOI: 10.1016/j.foodchem.2022.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
|
7
|
Formaldehyde Electrochemical Sensor using Graphite Paste-modified Green Synthesized Zinc Oxide Nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Fappiano L, Carriera F, Iannone A, Notardonato I, Avino P. A Review on Recent Sensing Methods for Determining Formaldehyde in Agri-Food Chain: A Comparison with the Conventional Analytical Approaches. Foods 2022; 11:1351. [PMID: 35564074 PMCID: PMC9102064 DOI: 10.3390/foods11091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 μg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy; (L.F.); (F.C.); (A.I.); (I.N.)
| |
Collapse
|
9
|
Villarino N, Pena-Pereira F, Lavilla I, Bendicho C. Waterproof Cellulose-Based Substrates for In-Drop Plasmonic Colorimetric Sensing of Volatiles: Application to Acid-Labile Sulfide Determination in Waters. ACS Sens 2022; 7:839-848. [PMID: 35285629 PMCID: PMC8961881 DOI: 10.1021/acssensors.1c02585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
The present work reports on the assessment of widely available waterproof cellulose-based substrates for the development of sensitive in-drop plasmonic sensing approaches. The applicability of three inexpensive substrates, namely, Whatman 1PS, polyethylene-coated filter paper, and tracing paper, as holders for microvolumes of colloidal solutions was evaluated. Waterproof cellulose-based substrates demonstrated to be highly convenient platforms for analytical purposes, as they enabled in situ generation of volatiles and syringeless drop exposure unlike conventional single-drop microextraction approaches and can behave as sample compartments for smartphone-based colorimetric sensing in an integrated way. Remarkably, large drop volumes (≥20 μL) of colloidal solutions can be employed for enrichment processes when using Whatman 1PS as holder. In addition, the stability and potential applicability of spherical, rod-shaped, and core-shell metallic NPs onto waterproof cellulose-based substrates was evaluated. In particular, Au@AgNPs showed potential for the colorimetric detection of in situ generated H2S, I2, and Br2, whereas AuNRs hold promise for I2, Br2, and Hg0 colorimetric sensing. As a proof of concept, a smartphone-based colorimetric assay for determination of acid-labile sulfide in environmental water samples was developed with the proposed approach taking advantage of the ability of Au@AgNPs for H2S sensing. The assay showed a limit of detection of 0.46 μM and a repeatability of 4.4% (N = 8), yielding satisfactory recoveries (91-107%) when applied to the analysis of environmental waters.
Collapse
Affiliation(s)
- Nerea Villarino
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Francisco Pena-Pereira
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Isela Lavilla
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Carlos Bendicho
- Centro de Investigación Mariña,
Universidade de Vigo, Departamento de
Química Analítica e alimentaria, Grupo QA2, Edificio CC Experimentais, Campus
de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| |
Collapse
|
10
|
Pongkitdachoti U, Unob F. Silver-doped hydroxyapatite for formaldehyde determination by digital-image colorimetry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:926-934. [PMID: 35167629 DOI: 10.1039/d1ay02031e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver-hydroxyapatite material (Ag-HAP) was first proposed as material for trace-level formaldehyde detection based on Tollens' reaction on the material surface. By using this Ag-HAP material, the chemical reduction caused by formaldehyde occurred directly on the solid surface. The material color changed from off-white to the yellow or brown of silver nanoparticles depending on the formaldehyde concentration. The color intensity of the materials was measured from their smartphone digital images using Image-J software. The effect of silver ion concentration, sodium hydroxide concentration, contact time, and sample volume on formaldehyde detection were investigated. Under optimized conditions, the working range for formaldehyde detection was determined to be 15 to 200 μg L-1. The method was successfully applied to detect trace formaldehyde in water samples and a recovery of 86 to 111%, with an RSD of 3 to 8%, was observed. With a lowest concentration for the detection of 15 μg L-1 and good accuracy and precision, the method showed promise for formaldehyde determination.
Collapse
Affiliation(s)
- Uma Pongkitdachoti
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Fuangfa Unob
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Naksen P, Jarujamrus P, Anutrasakda W, Promarak V, Zhang L, Shen W. Old silver mirror in qualitative analysis with new shoots in quantification: Nitrogen-doped carbon dots (N-CDs) as fluorescent probes for "off-on" sensing of formalin in food samples. Talanta 2022; 236:122862. [PMID: 34635244 DOI: 10.1016/j.talanta.2021.122862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.
Collapse
Affiliation(s)
- Puttaraksa Naksen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Wipark Anutrasakda
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| |
Collapse
|
12
|
Hallaj T, Azizi N, Amjadi M. A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Qin X, Yuan C, Shi R, Wang Y. A double signal optical probe composed of carbon quantum dots and Au@Ag nanoparticles grown in situ for the high sensitivity detection of ellagic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Shellaiah M, Thirumalaivasan N, Sun KW, Wu SP. A pH cooperative strategy for enhanced colorimetric sensing of Cr(III) ions using biocompatible L-glutamic acid stabilized gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta 2020; 220:121388. [DOI: 10.1016/j.talanta.2020.121388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
|
17
|
A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Yuan W, zhong X, Han Q, Jiang Y, Shen J, Wang B. A novel formaldehyde fluorescent probe based on 1, 8-naphthalimide derivative and its application in living cell. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Amjadi M, Hallaj T, Nasirloo E. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Colorimetric Visualization Using Polymeric Core-Shell Nanoparticles: Enhanced Sensitivity for Formaldehyde Gas Sensors. Polymers (Basel) 2020; 12:polym12050998. [PMID: 32344883 PMCID: PMC7285312 DOI: 10.3390/polym12050998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Although equipment-based gas sensor systems (e.g., high-performance liquid chromatography) have been widely applied for formaldehyde gas detection, pre-treatment and expensive instrumentation are required. To overcome these disadvantages, we developed a colorimetric sensor based on polymer-based core–shell nanoparticles (PCSNPs), which are inexpensive, stable, and exhibit enhanced selectivity. Spherical and uniform poly(styrene-co-maleic anhydride) (PSMA)/polyethyleneimine (PEI) core–shell nanoparticles were prepared and then impregnated with Methyl Red (MR), Bromocresol Purple (BCP), or 4-nitrophenol (4-NP) to construct colorimetric sensors for formaldehyde gas. The intrinsic properties of these dyes were maintained when introduced into the PCSNPs. In the presence of formaldehyde, the MR, BCP, and 4-NP colorimetric sensors changed to yellow, red, and gray, respectively. The colorimetric response was maximized at a PEI/PSMA ratio of four, likely owing to the high content of amine groups. Effective formaldehyde gas detection was achieved at a relative humidity of 30% using the MR colorimetric sensor, which exhibited a large color change (92%) in 1 min. Advantageously, this stable sensor allowed sensitive and rapid naked-eye detection of low formaldehyde concentrations (0.5 ppm). Hence, this approach is promising for real-time formaldehyde gas visualization and can also be adapted to other colorimetric gas sensor systems to improve sensitivity and simplicity.
Collapse
|
21
|
Yang W, Zhang G, Ni J, Lin Z. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots. Mikrochim Acta 2020; 187:137. [DOI: 10.1007/s00604-019-4105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
|
22
|
Li J, Wang Y, Zhang Q, Huo D, Hou C, Zhou J, Luo H, Yang M. New application of old methods: Development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent. Anal Chim Acta 2019; 1096:138-147. [PMID: 31883580 DOI: 10.1016/j.aca.2019.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 11/18/2022]
Abstract
Qualitative and quantitative testing of aldehydes is meaningful for chemical toxin detection, food inspection, and disease monitoring. Herein, we reported a simple, accurate, and selective Tollen's reagent-based colorimetric sensor array for determination and detection of aldehydes. Three kinds of negatively charged gold nanoparticles (Au NPs) with different sizes (13, 22, and 40 nm) were synthesized and characterized by transmission electron microscopy and zeta potential measurement. In the presence of aldehydes, Ag+ from Tollen's reagent was attracted by the negative charge on the surface of Au NPs. Ag+ was reduced into Ag0 in situ, forming Au@Ag core-shell nanostructure and resulting in a significant color change. Detailed morphological and dimensional changes were observed by transmission electron microscopy. ΔRGB values (the value changes in the red, green, and blue color model) of Au NPs were captured as the optical signal for further data processing. Results of pattern recognition indicated the outstanding discrimination performance of the system for identification of aldehydes. Moreover, the array possessed quantitative detection capability for formaldehyde, selectivity, and reproducibility and thus has great potential in practical detection.
Collapse
Affiliation(s)
- Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - You Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Qinghai Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Jun Zhou
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, PR China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
23
|
Colorimetric Determination of the Activity of Starch-Debranching Enzyme via Modified Tollens' Reaction. NANOMATERIALS 2019; 9:nano9091291. [PMID: 31509936 PMCID: PMC6781065 DOI: 10.3390/nano9091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
Nelson–Somogyi and 3,5-dinitrosalicylic acid (DNS) assays are the classical analytical methods for the determination of activity of starch-debranching enzymes, however, they have a narrow detection range and do not adapt to the quantitative measurement of linear polysaccharides. Herein, we developed a simple and accurate colorimetric assay for determining the activity of starch-debranching pullulanase through the modified Tollens’ reaction in combination with UV irradiation. Silver nanoparticles (AgNPs) were formed by reducing aldehyde groups in short-chain glucans (SCGs) generated by debranching of waxy maize starch using pullulanase through the modified Tollens’ reaction. In addition to providing a reducing moiety to the Tollens’ reaction, the debranching product, SCGs, also enhanced the colloidal stability of synthesized AgNPs, of which the amplitude of its surface plasmon resonance (SPR) absorbance peak was proportional to the concentration of SCGs ranging from 0.01–10 mg/mL. The detection limit of this system was 0.01 mg/mL, which was found to be 100 times higher than that of the conventional DNS assay. The purification of SCGs by recrystallization and gelatinization improved the selectivity of this colorimetric assay for debranching products, which provides a simple and accurate means of monitoring the debranching process and characterizing the activity of starch-debranching enzymes.
Collapse
|
24
|
Huang L, Jin J, Wang J, Jiang C, Xu M, Wen H, Liao T, Hu J. Homogeneous and high-density gold unit implanted optical labels for robust and sensitive point-of-care drug detection. NANOSCALE 2019; 11:16026-16035. [PMID: 31432057 DOI: 10.1039/c9nr03740c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Controllable integration of gold building blocks into mesoscopic architecture produces improved optical signals with preferable stability for biological sensing. Here, we developed novel optical labels with homogeneous and high-density implanted hydrophobic gold nanoparticles (AuNPs) throughout three-dimensional silica scaffolds. The dendritic silica supports with an extra-large pore size and highly accessible central-radial channels were employed as metal-affinity templates, for anchoring with AuNPs directly from the organic phase. The nano-assemblies exhibited a high unit loading capacity while maintaining the intrinsic optical characteristics of AuNPs. After phase transfer by the alkylsilane intermediate layer and exterior silica shell encapsulation, the nanocomposites revealed an amplified plasmonic absorption signal, excellent colloidal/optical stability and convenient surface functionalization. By integrating the silica labels into the lateral flow immunoassay strip for signal enhancement, the sensitive point-of-care detection of methamphetamine in urine was established. The limit of detection achieved 0.026 ng mL-1, with a detection range from 0.023 to 375 ng mL-1 in a 10 min assay, allows both visual and on-site quantitative analysis. Encouragingly, the potential interfering drugs in the sample matrix showed a negligible influence on the results, validating the superior specificity of the current immunoassay. The newly developed gold-implanted optical labels show prospects for point-of-care testing in a complex biological matrix with the desirable stability and signal amplification.
Collapse
Affiliation(s)
- Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Z, Zhao D, Pang Y, Hao J, Xiao X, Hu Y. Application of Silicon Quantum Dots in the Detection of Formaldehyde in Water and Organic Phases. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180320153226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Formaldehyde is widely acknowledged as a carcinogen, but as an important
organic reagent, it has also been widely employed in the fields of chemical synthesis, industrial production
and biomedicine. It is therefore of great practical significance for the detection of formaldehyde in
food, clothing, daily necessities, construction materials and environments.
Methods:
The two silicon QDs, that are, DAMO-Si-QDs (with N-[3-(Trimethoxysilyl) propyl]
ethylenediamine as silicon source) and APTMS-Si-QDs (with (3-Aminopropyl) trimethoxysilane as
silicon source) as the fluorescence probe to detect formaldehyde in both water and organic phases.
Results:
Silicon QDs prepared by different silicon sources exhibit an obvious difference in their tolerances
to the environment and the responses to formaldehyde. However, APTMS-Si-QDs show better
selectivity in both water and organic phases. In Tris-HCl solution (20.00mmol•L-1, pH=5), the formaldehyde
concentration maintains an excellent linear relationship with the fluorescence intensity of
APTMS-Si-QDs in the range of 3.125×10-7-3.125×10-5 mol•L-1, with correlation coefficient R2=
0.9998. In methanol, the formaldehyde concentration maintains an excellent linear relationship with the
fluorescence intensity of APTMS-Si-QDs in the range of 1.563×10-7-3.125×10-5 mol•L-1, with correlation
coefficient R2= 0.9992.
Conclusion:
It is found that DAMO-Si-QDs show poor response to the presence of formaldehyde,
while APTMS-Si-QDs got a strong, sensitive and selective response to that in both aqueous and organic
phases. In the Tris-HCl buffer (20 mmol•L-1, pH=5), the linear range for formaldehyde detection reaches
3.125×10-7-3.125×10-5 mol•L-1, and for the detection in the organic phase, the linear range reaches
1.563×10-7-3.125×10-5 mol•L-1, in methanol solution. The paper provides a sensitive, selective and simple
means for formaldehyde detection in both aqueous and organic phase
Collapse
Affiliation(s)
- Zhixia Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yonghao Pang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jian Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Hu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
26
|
Hsiao PH, Chen CY. Insights for Realizing Ultrasensitive Colorimetric Detection of Glucose Based on Carbon/Silver Core/Shell Nanodots. ACS APPLIED BIO MATERIALS 2019; 2:2528-2538. [DOI: 10.1021/acsabm.9b00228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Po-Hsuan Hsiao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
27
|
Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Mikrochim Acta 2019; 186:348. [DOI: 10.1007/s00604-019-3478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
|
28
|
Duan H, Deng W, Gan Z, Li D, Li D. SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction. Mikrochim Acta 2019; 186:175. [PMID: 30771097 DOI: 10.1007/s00604-019-3305-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/04/2019] [Indexed: 12/01/2022]
Abstract
A method is described for surface-enhanced Raman scattering (SERS) discrimination of formaldehyde (FA) and acetaldehyde (AA) in aqueous sample solutions. It is based on the use of a paper strip containing 4-aminothiophenol (Atp)-modified reduced graphene oxide (rGO)/[Ag(NH3)2]+ (rGO/[Ag(NH3)2]+/Atp). The addition of FA or AA induces the conversion of [Ag(NH3)2]+ complex to silver nanoparticles (AgNPs) because of aldehyde-induced silver reduction reaction. The AgNPs possess strong SERS activity. The average interparticle gaps between the AgNPs can be fine-tuned by controlling the experimental conditions, this leading to the formation of optimized SERS hot spots. It is also found that the changes in the spectral shapes and the relative intensity ratio of the bands at 1143 and 1072 cm-1 result from the difference in the pH value of the surrounding solution. This effect enables the selective discrimination of FA and AA. The paper strip can be used as a SERS dipstick and swab for on-site determination of FA or AA in wine and human urine via the differences in the intensity of the SERS peaks. The assay works over a wide range of concentrations (0.45 ng·L-1 to 480 μg·L-1) for FA and AA, and the respective detection limits are 0.15 and 1.3 ng·L-1. Graphical abstract Schematic presentation of the preparation procedure of 4-aminothiophenol (Atp)-modified reduced graphene oxide (rGO)/[Ag(NH3)2]+ hybrid paper and its surface-enhanced Raman scattering discrimination of formaldehyde and acetaldehyde based on silver reduction.
Collapse
Affiliation(s)
- Huazhen Duan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Zhenfei Gan
- Shanghai Key Laboratory of Functional & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Dawei Li
- Shanghai Key Laboratory of Functional & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
29
|
Rong M, Yang X, Huang L, Chi S, Zhou Y, Shen Y, Chen B, Deng X, Liu ZQ. Hydrogen Peroxide-Assisted Ultrasonic Synthesis of BCNO QDs for Anthrax Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2336-2343. [PMID: 30576100 DOI: 10.1021/acsami.8b21786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile 3% hydrogen peroxide-assisted ultrasonic synthetic strategy is demonstrated to successfully synthesize fluorescent boron carbon oxynitride quantum dots (BCNO QDs). The obtained BCNO QDs exhibit intense blue fluorescence and favorable biocompatibility and water solubility. The quantum yield of the BCNO QDs is 19.9%. Owing to the absorbance energy-transfer emission effect, an efficient ratiometric fluorescence biosensor is developed for anthrax biomarker detection based on the BCNO QD-ethylenediaminetetraacetic acid disodium salt-Eu3+ complex. Under optimal conditions, the detection limit of the anthrax biomarker is 0.5 nM. Furthermore, the sensitivity of the system was evaluated by Bacillus subtilis spores and with the detection limit as low as 1.95 × 106 spores. On combining a smartphone with the home-made BCNO QD test paper, the lowest recorded visual detection limit of 1.0 μM anthrax biomarker was achieved using a portable UV lamp. The fast response speed, excellent sensitivity, and selectivity of the approach show potential applications in clinical analysis.
Collapse
Affiliation(s)
- Mingcong Rong
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Xiaohua Yang
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Longzhen Huang
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Siting Chi
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Youbin Zhou
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Yune Shen
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Buyun Chen
- GuangDong Women and Children Hospital , Guangzhou 510010 , China
| | - Xiangzhou Deng
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
30
|
Hallaj T, Amjadi M. A sensitive plasmonic probe based on in situ growth of a Ag shell on a Au@N-CD nanocomposite for detection of isoniazid in environmental and biological samples. NEW J CHEM 2019. [DOI: 10.1039/c8nj06502k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new plasmonic probe based on the wavelength shift of the surface plasmon resonance band of a Au@N-CD nanocomposite was introduced for the determination of isoniazid.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|
31
|
Duan W, Liu A, Li Q, Li Z, Wen CY, Cai Z, Tang S, Li X, Zeng J. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as “chromophores”. Analyst 2019; 144:4582-4588. [DOI: 10.1039/c9an00694j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A colorimetric method for detecting formaldehyde was developed by coupling bone-shaped gold nanorods (AuNRs) with silver mirror reaction, which enables low detection limit, wide linear range and high visual resolution.
Collapse
Affiliation(s)
- Wei Duan
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Ao Liu
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Qing Li
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhiwei Li
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Cong-ying Wen
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhixiong Cai
- School of Chemistry and Environmental
- Fujian Province University Key Laboratory of Analytical Science
- Minnan Normal University
- Zhangzhou 363000
- China
| | - Shiming Tang
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Xiyou Li
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jingbin Zeng
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
32
|
pH triggered green synthesized silver nanoparticles toward selective colorimetric detection of kanamycin and hazardous sulfide ions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Talanta 2018; 188:630-636. [DOI: 10.1016/j.talanta.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022]
|
34
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Chaiendoo K, Sooksin S, Kulchat S, Promarak V, Tuntulani T, Ngeontae W. A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chem 2018; 255:41-48. [DOI: 10.1016/j.foodchem.2018.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
|
36
|
Liu M, Zhang H, Song X, Wei C, Xiong Z, Yu F, Li C, Ai F, Guo G, Wang X. NaCl: for the safer in vivo use of antibacterial silver based nanoparticles. Int J Nanomedicine 2018; 13:1737-1748. [PMID: 29606867 PMCID: PMC5868575 DOI: 10.2147/ijn.s153168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background As antibiotics progressively cease to be effective, silver based nanoparticles (SBNs), with broad antibacterial spectrum, might be the last line of defense against malicious bacteria. Unfortunately, there are still no proper SBNs-based strategies for in vivo antibacterial therapies. In this article, new carbon membrane packaged Ag nanoparticles (Ag-C) were synthesized. We assessed the effect of Ag-C with NaCl on size, cytotoxicity, antibacterial properties, metabolism and sepsis models. Methods The size of Ag-C with NaCl was accessed with UV-vis, TEM and SEM. Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were used to illustrate the antibacterial properties of SBNs affected by NaCl. L929 and 3T3 cell lines were cultured in vitro; CCK-8 assay was used to test cytotoxicity. Then, we explored the metabolism of Ag-C with NaCl in vivo. Finally, the effect of Ag-C with 4× NaCl on sepsis was observed. Results NaCl could regulate the size of Ag-C. Ag-C exhibited superior antibacterial properties compared to similar sized pure Ag nanoparticles. Furthermore, the addition of NaCl could not only reduce the cytotoxicity of Ag-C, but could also continue to discharge Ag-C from major organs. Based on these factors, this method was used to treat a sepsis model (induced via cecal ligation and puncture), and it achieved satisfactory survival results. Conclusion This discovery, though still in its infancy, could significantly improve the safety and feasibility of SBNs and could potentially play an important role in modern in vivo antibacterial applications. Thus, a new method to combating the growing threat from drug-resistant bacteria could be possible. NaCl is the key to excretion of SBNs after in vivo antibacterial use.
Collapse
Affiliation(s)
- Mingzhuo Liu
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Huiqing Zhang
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangwei Song
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Chaochao Wei
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fen Yu
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fanrong Ai
- School of Mechanical & Electronic Engineering, Nanchang University, Nanchang, Jiangxi, China
| | - Guanghua Guo
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaolei Wang
- Department of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Xue Z, Fu X, Rao H, Hassan Ibrahim M, Xiong L, Liu X, Lu X. A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta 2017; 174:667-672. [DOI: 10.1016/j.talanta.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022]
|
38
|
Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-Based Apolipoprotein E Immunosensor for Point-of-Care Testing. ACS Sens 2017; 2:1267-1271. [PMID: 28884572 DOI: 10.1021/acssensors.7b00495] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) biomarkers can reflect the neurochemical indicators used to estimate the risk in clinical nephrology. Apolipoprotein E (ApoE) is an early biomarker for AD in clinical diagnosis. In this research, through bactrian camel immunization, lymphocyte isolation, RNA extraction, and library construction, ApoE-specific Nbs with high affinity were successfully separated from an immune phage display nanobody library. Herein, a colorimetric immunosensor was developed for the point-of-care testing of ApoE by layer-by-layer nanoassembly techniques and novel nanobodies (Nbs). Using highly oriented Nbs as the capture and detection antibodies, an on-site immunosensor was developed by detecting the mean gray value of fade color due to the glutaraldehyde@3-aminopropyltrimethoxysilane oxidation by H2O2. The detection limit of AopE is 0.42 pg/mL, and the clinical analysis achieves a good performance. The novel easily operated immunosensor may have potential application in the clinical diagnosis and real-time monitoring for AD.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Junrong Yan
- Institute
of Life Sciences, Southeast University, Nanjing 210000, P.R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yakun Wan
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| |
Collapse
|
39
|
Sianglam P, Kulchat S, Tuntulani T, Ngeontae W. A circular dichroism sensor for selective detection of Cd 2+ and S 2- based on the in-situ generation of chiral CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:408-416. [PMID: 28475982 DOI: 10.1016/j.saa.2017.04.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate an advance in the fabrication of circular dichroism (CD) sensors for detection of Cd2+ and S2- based on chiral CdS quantum dots (QDs) generated by a facile in-situ reaction. The chiral quantum dots are generated in solutions composed of Cd2+, S2-, cysteamine (CA) and L-penicillamine (L-PA), with the number of the generated particles limited by either the Cd2+ or S2- concentration. We show that the magnitude of the CD signal produced by the QDs is linearly related to the initial concentration of Cd2+ and S2-, with excellent selectivity over other ions. Our sensor functions over concentration ranges of 65-200μM and 7-125μM with detection limits of 59.7 and 1.6μM for Cd2+ and S2-, respectively. The sensor is applied in real water samples with results comparing favorably with those obtained from ICP-OES (for Cd2+) and HPLC (for S2-).
Collapse
Affiliation(s)
- Pradthana Sianglam
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wittaya Ngeontae
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
40
|
Ji W, Zhang M, Wang T, Wang X, Zheng Z, Gong J. Molecularly imprinted solid-phase extraction method based on SH-Au modified silica gel for the detection of six Sudan dyes in chili powder samples. Talanta 2017; 165:18-26. [DOI: 10.1016/j.talanta.2016.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
|
41
|
Zhang H, He H, Yu X, Xu Z, Zhang Z. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences. Mol Biotechnol 2017; 58:729-737. [PMID: 27696215 DOI: 10.1007/s12033-016-9972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.
Collapse
Affiliation(s)
- Huimin Zhang
- School of Chemical Engineering & Technology, Marine Antifouling Engineering Technology Center of Shandong Province, Harbin Institute of Technology, Harbin, 150006, China.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403-0208, USA
| | - Hongkui He
- The GuJing Group, Bozhou, 236800, Anhui, China
| | - Xiujuan Yu
- The GuJing Group, Bozhou, 236800, Anhui, China
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403-0208, USA.
| | - Zhizhou Zhang
- School of Chemical Engineering & Technology, Marine Antifouling Engineering Technology Center of Shandong Province, Harbin Institute of Technology, Harbin, 150006, China. .,Shandong Gredmedic Co., Ltd., Weihai, China.
| |
Collapse
|
42
|
Abstract
Glucose is the most common but important aldehyde, and it is necessary to create biosensors with high sensitivity and anti-interference to detect it. Under the existence of silver ions and aldehyde compounds, single gold nanoparticles and freshly formed silver atoms could respectively act as core and shell, which finally form a core-shell structure. By observing the reaction between glucose and Tollens' reagent, metallic silver was found to be reduced on the surface of gold nanoparticles and formed Au@Ag nanoparticles that lead to a direct wavelength shift. Based on this principle and combined with in situ plasmon resonance scattering spectra, a plasmonic nanosensor was successfully applied in identifying aldehyde compounds with excellent sensitivity and specificity. This ultrasensitive sensor was successfully further utilized to detect blood glucose in mice serum samples, exhibiting good anti-interference ability and great promise for future clinical application.
Collapse
Affiliation(s)
| | - Lei Shi
- Shanghai Qingpu Water Authority, 35 Xidayingangyi Road, Shanghai, 201799, P. R. China
| | | | - Chao Jing
- Physik-Department
E20, Technische Universität München, James-Franck-Strasse 1 D-85748 Garching, Germany
| | | | | |
Collapse
|
43
|
Bi A, Yang S, Liu M, Wang X, Liao W, Zeng W. Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05651f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formaldehyde (FA), as a vital industrial chemical, is widely used in building materials and numerous living products.
Collapse
Affiliation(s)
- Anyao Bi
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Shuqi Yang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Min Liu
- Department of Pharmacy
- Xiangya Hospital
- Central South University
- Changsha 410008
- China
| | - Xiaobo Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Weihua Liao
- Molecular Imaging Research Center
- Central South University
- Changsha
- China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| |
Collapse
|
44
|
Wong KF, Deng JR, Wei XQ, Shao SP, Xiang DP, Wong MK. Visual detection of formaldehyde by highly selective fluorophore labeling via gold(III) complex-mediated three-component coupling reaction. Org Biomol Chem 2016; 13:7408-11. [PMID: 26065841 DOI: 10.1039/c5ob00966a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel method for visual detection of formaldehyde with excellent selectivity via a gold(iii) complex-mediated three-component coupling reaction of resin-linked sterically bulky amines and fluorescent alkynes has been developed.
Collapse
Affiliation(s)
- Kong-Fan Wong
- Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
45
|
Akshath US, Bhatt P. Gold nanoparticle synthesis coupled to fluorescence turn-on for sensitive detection of formaldehyde using formaldehyde dehydrogenase. RSC Adv 2016. [DOI: 10.1039/c6ra12222a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrasensitive detection of formaldehyde by coupling enzyme activity with GNP synthesis.
Collapse
Affiliation(s)
- Uchangi Satyaprasad Akshath
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Central Food Technological Research Institute (CFTRI)
- Mysore-570020
- India
- Microbiology & Fermentation Technology Department
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-Central Food Technological Research Institute (CFTRI)
- Mysore-570020
- India
- Microbiology & Fermentation Technology Department
| |
Collapse
|
46
|
Li Z, Zheng X, Zheng J. A non-enzymatic sensor based on Au@Ag nanoparticles with good stability for sensitive detection of H2O2. NEW J CHEM 2016. [DOI: 10.1039/c5nj02582f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of Au@Ag NPs by a seed-mediated growth procedure and fabrication of a non-enzymatic H2O2 sensor.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- China
| | - Xiaohui Zheng
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- China
| | - Jianbin Zheng
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- China
| |
Collapse
|
47
|
Zhang Y, Pang X, Wu D, Ma H, Yan Z, Zhang J, Du B, Wei Q. A robust electrochemiluminescence immunoassay for carcinoembryonic antigen detection based on a microtiter plate as a bridge and Au@Pd nanorods as a peroxidase mimic. Analyst 2016; 141:337-45. [DOI: 10.1039/c5an02053k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The common drawbacks of most traditional electrochemiluminescence (ECL) immunoassays are the strict storage conditions for the ECL electrode and the steric hindrance caused by bovine serum albumin and antigen.
Collapse
Affiliation(s)
- Yong Zhang
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
- School of Chemistry and Chemical Engineering
| | - Xuehui Pang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| | - Dan Wu
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Zhaoqing Yan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| | - Jiatao Zhang
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Bin Du
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong
- Jinan 250022
- PR China
| | - Qin Wei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- PR China
| |
Collapse
|
48
|
A colorimetric assay for measuring iodide using Au@Ag core–shell nanoparticles coupled with Cu2+. Anal Chim Acta 2015; 891:269-76. [DOI: 10.1016/j.aca.2015.06.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/30/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
|
49
|
Zeng JB, Cao YY, Chen JJ, Wang XD, Yu JF, Yu BB, Yan ZF, Chen X. Au@Ag core/shell nanoparticles as colorimetric probes for cyanide sensing. NANOSCALE 2014; 6:9939-43. [PMID: 25054637 DOI: 10.1039/c4nr02560a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We synthesize Au@Ag core/shell nanoparticles (NPs) using a Au NP assisted Tollens reaction. The as-synthesized NPs are used for the colorimetric cyanide sensing with a detection limit of 0.4 μM. The bimetallic NPs are immobilized into agarose gels as portable "test strips".
Collapse
Affiliation(s)
- Jing-bin Zeng
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum (East China), Qingdao, 266555, China.
| | | | | | | | | | | | | | | |
Collapse
|