• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (342)   Subscriber (50586)
For: Zeng JB, Fan SG, Zhao CY, Wang QR, Zhou TY, Chen X, Yan ZF, Li YP, Xing W, Wang XD. A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction. Chem Commun (Camb) 2015;50:8121-3. [PMID: 24846681 DOI: 10.1039/c4cc00914b] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Number Cited by Other Article(s)
1
Yang L, Huangfu C, Wang Y, Qin Y, Qin A, Feng L. Visual detection of aldehyde gases using a silver-loaded paper-based colorimetric sensor array. Talanta 2024;280:126716. [PMID: 39173250 DOI: 10.1016/j.talanta.2024.126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
2
Pang S, Zhong Q, Zhao Y, Xia N. A Novel Fluorescent and Colorimetric Method for the Determination of Formaldehyde Based on Albumin Nanoparticles-Polyethyleneimine-Ag+ Ion Nanohybrids. J Fluoresc 2023:10.1007/s10895-023-03486-8. [PMID: 37938478 DOI: 10.1007/s10895-023-03486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
3
Bokthier Rahman M, Hussain M, Probha Kabiraz M, Nordin N, Anusha Siddiqui S, Bhowmik S, Begum M. An update on formaldehyde adulteration in food: sources, detection, mechanisms, and risk assessment. Food Chem 2023;427:136761. [PMID: 37406446 DOI: 10.1016/j.foodchem.2023.136761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
4
Yi J, Wang Z, Hu J, Yu T, Wang Y, Ge P, Xianyu Y. Point-of-Care Detection of Antioxidant in Agarose-Based Test Strip through Antietching of Au@Ag Nanostars. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37328300 DOI: 10.1021/acsami.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
5
Lermusiaux L, Roach L, Lehtihet M, Plissonneau M, Bertry L, Buissette V, Le Mercier T, Duguet E, Drisko GL, Leng J, Tréguer-Delapierre M. Silver Nanoshells with Optimized Infrared Optical Response: Synthesis for Thin-Shell Formation, and Optical/Thermal Properties after Embedding in Polymeric Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:614. [PMID: 36770575 PMCID: PMC9919194 DOI: 10.3390/nano13030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
6
Borah N, Gogoi D, Ghosh NN, Tamuly C. GA-AuNP@Tollens’ complex as a highly sensitive plasmonic nanosensor for detection of formaldehyde and benzaldehyde in preserved food products. Food Chem 2023;399:133975. [DOI: 10.1016/j.foodchem.2022.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
7
Formaldehyde Electrochemical Sensor using Graphite Paste-modified Green Synthesized Zinc Oxide Nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
8
Fappiano L, Carriera F, Iannone A, Notardonato I, Avino P. A Review on Recent Sensing Methods for Determining Formaldehyde in Agri-Food Chain: A Comparison with the Conventional Analytical Approaches. Foods 2022;11:1351. [PMID: 35564074 PMCID: PMC9102064 DOI: 10.3390/foods11091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]  Open
9
Villarino N, Pena-Pereira F, Lavilla I, Bendicho C. Waterproof Cellulose-Based Substrates for In-Drop Plasmonic Colorimetric Sensing of Volatiles: Application to Acid-Labile Sulfide Determination in Waters. ACS Sens 2022;7:839-848. [PMID: 35285629 PMCID: PMC8961881 DOI: 10.1021/acssensors.1c02585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
10
Pongkitdachoti U, Unob F. Silver-doped hydroxyapatite for formaldehyde determination by digital-image colorimetry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022;14:926-934. [PMID: 35167629 DOI: 10.1039/d1ay02031e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
11
Naksen P, Jarujamrus P, Anutrasakda W, Promarak V, Zhang L, Shen W. Old silver mirror in qualitative analysis with new shoots in quantification: Nitrogen-doped carbon dots (N-CDs) as fluorescent probes for "off-on" sensing of formalin in food samples. Talanta 2022;236:122862. [PMID: 34635244 DOI: 10.1016/j.talanta.2021.122862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
12
Hallaj T, Azizi N, Amjadi M. A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
13
Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
14
Qin X, Yuan C, Shi R, Wang Y. A double signal optical probe composed of carbon quantum dots and Au@Ag nanoparticles grown in situ for the high sensitivity detection of ellagic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
15
Shellaiah M, Thirumalaivasan N, Sun KW, Wu SP. A pH cooperative strategy for enhanced colorimetric sensing of Cr(III) ions using biocompatible L-glutamic acid stabilized gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
16
Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta 2020;220:121388. [DOI: 10.1016/j.talanta.2020.121388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
17
A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
18
Yuan W, zhong X, Han Q, Jiang Y, Shen J, Wang B. A novel formaldehyde fluorescent probe based on 1, 8-naphthalimide derivative and its application in living cell. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
19
Amjadi M, Hallaj T, Nasirloo E. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
20
Colorimetric Visualization Using Polymeric Core-Shell Nanoparticles: Enhanced Sensitivity for Formaldehyde Gas Sensors. Polymers (Basel) 2020;12:polym12050998. [PMID: 32344883 PMCID: PMC7285312 DOI: 10.3390/polym12050998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]  Open
21
Yang W, Zhang G, Ni J, Lin Z. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots. Mikrochim Acta 2020;187:137. [DOI: 10.1007/s00604-019-4105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
22
Li J, Wang Y, Zhang Q, Huo D, Hou C, Zhou J, Luo H, Yang M. New application of old methods: Development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent. Anal Chim Acta 2019;1096:138-147. [PMID: 31883580 DOI: 10.1016/j.aca.2019.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 11/18/2022]
23
Colorimetric Determination of the Activity of Starch-Debranching Enzyme via Modified Tollens' Reaction. NANOMATERIALS 2019;9:nano9091291. [PMID: 31509936 PMCID: PMC6781065 DOI: 10.3390/nano9091291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
24
Huang L, Jin J, Wang J, Jiang C, Xu M, Wen H, Liao T, Hu J. Homogeneous and high-density gold unit implanted optical labels for robust and sensitive point-of-care drug detection. NANOSCALE 2019;11:16026-16035. [PMID: 31432057 DOI: 10.1039/c9nr03740c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
25
Zhang Z, Zhao D, Pang Y, Hao J, Xiao X, Hu Y. Application of Silicon Quantum Dots in the Detection of Formaldehyde in Water and Organic Phases. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180320153226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
26
Hsiao PH, Chen CY. Insights for Realizing Ultrasensitive Colorimetric Detection of Glucose Based on Carbon/Silver Core/Shell Nanodots. ACS APPLIED BIO MATERIALS 2019;2:2528-2538. [DOI: 10.1021/acsabm.9b00228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
27
Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Mikrochim Acta 2019;186:348. [DOI: 10.1007/s00604-019-3478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
28
Duan H, Deng W, Gan Z, Li D, Li D. SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction. Mikrochim Acta 2019;186:175. [PMID: 30771097 DOI: 10.1007/s00604-019-3305-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/04/2019] [Indexed: 12/01/2022]
29
Rong M, Yang X, Huang L, Chi S, Zhou Y, Shen Y, Chen B, Deng X, Liu ZQ. Hydrogen Peroxide-Assisted Ultrasonic Synthesis of BCNO QDs for Anthrax Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2019;11:2336-2343. [PMID: 30576100 DOI: 10.1021/acsami.8b21786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
30
Hallaj T, Amjadi M. A sensitive plasmonic probe based on in situ growth of a Ag shell on a Au@N-CD nanocomposite for detection of isoniazid in environmental and biological samples. NEW J CHEM 2019. [DOI: 10.1039/c8nj06502k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Duan W, Liu A, Li Q, Li Z, Wen CY, Cai Z, Tang S, Li X, Zeng J. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as “chromophores”. Analyst 2019;144:4582-4588. [DOI: 10.1039/c9an00694j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
32
pH triggered green synthesized silver nanoparticles toward selective colorimetric detection of kanamycin and hazardous sulfide ions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
33
Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Talanta 2018;188:630-636. [DOI: 10.1016/j.talanta.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022]
34
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018;143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
35
Chaiendoo K, Sooksin S, Kulchat S, Promarak V, Tuntulani T, Ngeontae W. A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chem 2018;255:41-48. [DOI: 10.1016/j.foodchem.2018.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 11/28/2022]
36
Liu M, Zhang H, Song X, Wei C, Xiong Z, Yu F, Li C, Ai F, Guo G, Wang X. NaCl: for the safer in vivo use of antibacterial silver based nanoparticles. Int J Nanomedicine 2018;13:1737-1748. [PMID: 29606867 PMCID: PMC5868575 DOI: 10.2147/ijn.s153168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
37
Xue Z, Fu X, Rao H, Hassan Ibrahim M, Xiong L, Liu X, Lu X. A colorimetric indicator-displacement assay for cysteine sensing based on a molecule-exchange mechanism. Talanta 2017;174:667-672. [DOI: 10.1016/j.talanta.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 11/28/2022]
38
Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-Based Apolipoprotein E Immunosensor for Point-of-Care Testing. ACS Sens 2017;2:1267-1271. [PMID: 28884572 DOI: 10.1021/acssensors.7b00495] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
39
Sianglam P, Kulchat S, Tuntulani T, Ngeontae W. A circular dichroism sensor for selective detection of Cd2+ and S2- based on the in-situ generation of chiral CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017;183:408-416. [PMID: 28475982 DOI: 10.1016/j.saa.2017.04.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
40
Ji W, Zhang M, Wang T, Wang X, Zheng Z, Gong J. Molecularly imprinted solid-phase extraction method based on SH-Au modified silica gel for the detection of six Sudan dyes in chili powder samples. Talanta 2017;165:18-26. [DOI: 10.1016/j.talanta.2016.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
41
Zhang H, He H, Yu X, Xu Z, Zhang Z. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences. Mol Biotechnol 2017;58:729-737. [PMID: 27696215 DOI: 10.1007/s12033-016-9972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
42
Li M, Shi L, Xie T, Jing C, Xiu G, Long YT. An Ultrasensitive Plasmonic Nanosensor for Aldehydes. ACS Sens 2017;2:263-267. [PMID: 28723143 DOI: 10.1021/acssensors.6b00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
43
Bi A, Yang S, Liu M, Wang X, Liao W, Zeng W. Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05651f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]  Open
44
Wong KF, Deng JR, Wei XQ, Shao SP, Xiang DP, Wong MK. Visual detection of formaldehyde by highly selective fluorophore labeling via gold(III) complex-mediated three-component coupling reaction. Org Biomol Chem 2016;13:7408-11. [PMID: 26065841 DOI: 10.1039/c5ob00966a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
45
Akshath US, Bhatt P. Gold nanoparticle synthesis coupled to fluorescence turn-on for sensitive detection of formaldehyde using formaldehyde dehydrogenase. RSC Adv 2016. [DOI: 10.1039/c6ra12222a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
46
Li Z, Zheng X, Zheng J. A non-enzymatic sensor based on Au@Ag nanoparticles with good stability for sensitive detection of H2O2. NEW J CHEM 2016. [DOI: 10.1039/c5nj02582f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Zhang Y, Pang X, Wu D, Ma H, Yan Z, Zhang J, Du B, Wei Q. A robust electrochemiluminescence immunoassay for carcinoembryonic antigen detection based on a microtiter plate as a bridge and Au@Pd nanorods as a peroxidase mimic. Analyst 2016;141:337-45. [DOI: 10.1039/c5an02053k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
48
A colorimetric assay for measuring iodide using Au@Ag core–shell nanoparticles coupled with Cu2+. Anal Chim Acta 2015;891:269-76. [DOI: 10.1016/j.aca.2015.06.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/30/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
49
Zeng JB, Cao YY, Chen JJ, Wang XD, Yu JF, Yu BB, Yan ZF, Chen X. Au@Ag core/shell nanoparticles as colorimetric probes for cyanide sensing. NANOSCALE 2014;6:9939-43. [PMID: 25054637 DOI: 10.1039/c4nr02560a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA