1
|
Dutta S. Catalytic Transformation of Biomass into Sustainable Carbocycles: Recent Advances, Prospects, and Challenges. Chempluschem 2025; 90:e202400568. [PMID: 39392582 DOI: 10.1002/cplu.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
Organic compounds bearing one or more carbocycles in their molecular structure have a discernible presence in all major classes of organic products of industrial significance. However, sourcing carbocyclic compounds from exhaustible, anthropogenic carbon (e. g., petroleum) raises serious concerns about sustainability in the chemical industries. This review discusses recent advances in the renewable synthesis of carbocyclic compounds from biomass components following catalytic pathways. The mechanistic insights, process optimizations, green metrics, and alternative synthetic strategies of carbocyclic compounds have been detailed. Moreover, the renewable syntheses of carbocycles have been assessed against their existing synthetic routes from petroleum for better perspectives on their sustainability and technological preparedness. This work will assist the researchers in acquiring updated information on the sustainable synthesis of carbocyclic compounds from various biomass components, comprehending the research gaps, and developing superior synthetic processes for their commercial production.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-, 575025, Karnataka, India
| |
Collapse
|
2
|
Saladin L, Le Berruyer V, Bonnevial M, Didier P, Collot M. Targeted Photoactivatable Green-Emitting BODIPY Based on Directed Photooxidation-Induced Activation and its Application to Live Dynamic Super-Resolution Microscopy. Chemistry 2024; 30:e202403409. [PMID: 39363737 DOI: 10.1002/chem.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Photoactivatable fluorescent probes are valuable tools in bioimaging for tracking cells down to single molecules and for single molecule localization microscopy. For the latter application, green emitting dyes are in demand. We herein developed an efficient green-emitting photoactivatable furanyl-BODIPY (PFB) and we established a new mechanism of photoactivation called Directed Photooxidation Induced Activation (DPIA) where the furan is photo-oxidized in a directed manner by the singlet oxygen produced by the probe. The efficient photoconverter (93-fold fluorescence enhancement at 510 nm, 49 % yield conversion) is functionalizable and allowed targeting of several subcellular structures and organelles, which were photoactivated in live cells. Finally, we demonstrated the potential of PFB in super-resolution imaging by performing PhotoActivated Localization Microscopy (PALM) in live cells.
Collapse
Affiliation(s)
- Lazare Saladin
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Valentine Le Berruyer
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Maxence Bonnevial
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400, Illkirch, France
| |
Collapse
|
3
|
Hoffmann N, Gomez Fernandez MA, Desvals A, Lefebvre C, Michelin C, Latrache M. Photochemical reactions of biomass derived platform chemicals. Front Chem 2024; 12:1485354. [PMID: 39720554 PMCID: PMC11666374 DOI: 10.3389/fchem.2024.1485354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Platform chemicals obtained from biomass will play an important role in chemical industry. Already existing compounds or not yet established chemicals are produced from this renewable feedstock. Using photochemical reactions as sustainable method for the conversion of matter furthermore permits to develop processes that are interesting from the ecological and economical point of view. Furans or levoglucosenone are thus obtained from carbohydrate containing biomass. Photochemical rearrangements, photooxygenation reactions or photocatalytic radical reactions can be carried out with such compounds. Also, sugars such pentoses or hexoses can be more easily transformed into heterocyclic target compounds when such photochemical reactions are used. Lignin is an important source for aromatic compounds such as vanillin. Photocycloaddition of these compounds with alkenes or the use light supported multicomponent reactions yield interesting target molecules. Dyes, surfactants or compounds possessing a high degree of molecular diversity and complexity have been synthesized with photochemical key steps. Alkenes as platform chemicals are also produced by fermentation processes, for example, with cyanobacteria using biological photosynthesis. Such alkenes as well as terpenes may further be transformed in photochemical reactions yielding, for example, precursors of jet fuels.
Collapse
Affiliation(s)
- Norbert Hoffmann
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Mario Andrés Gomez Fernandez
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Arthur Desvals
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR 7504, Strasbourg, France
| | - Corentin Lefebvre
- Laboratoire de Glycochimie et des Agroressources d’Amiens (LG2A), Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Clément Michelin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, Clermont-Ferrand, France
| | - Mohammed Latrache
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), UMR CNRS 8076, Université Paris-Saclay, Orsay, France
| |
Collapse
|
4
|
Millimaci AM, Knirsch AC, Beeler AB. Regioselective Photoredox Catalyzed Cycloadditions of Acyclic Carbonyl Ylides. Org Lett 2024; 26:7484-7488. [PMID: 39231246 DOI: 10.1021/acs.orglett.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A photoredox catalyzed [3 + 2] dipolar cycloaddition between acyclic carbonyl ylides generated from α-cyano epoxides and dipolarophiles is described. This method, influenced by anionic charge localization and temperature control, enabled the synthesis of regioselective functionalized cyclic ethers. By leveraging different dipolarophiles, Lewis acid mediated activation afforded either furan or hydroxy-dihydronaphthalene scaffolds. A direct synthesis of lignan natural products isodiphyllin and diphyllin is achieved by exploiting the nitrile's reactivity as a directing handle for the desired regioisomer.
Collapse
Affiliation(s)
- Alexandra M Millimaci
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Antonin C Knirsch
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Aaron B Beeler
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Caliskanyürek V, Riabchunova A, Kupfer S, Ma F, Wang JW, Karnahl M. Exploring the Potential of Al(III) Photosensitizers for Energy Transfer Reactions. Inorg Chem 2024; 63:15829-15840. [PMID: 39132844 DOI: 10.1021/acs.inorgchem.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Three homoleptic Al(III) complexes (Al1-Al3) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (1O2), and second, in the isomerization of (E)- to (Z)-stilbene. 1O2 was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.g. 2,5-diphenylfuran (DPF)] using in situ UV/vis spectroscopy. In a previous study, the presence of additional methyl groups was found to be beneficial for the photocatalytic reduction of CO2 to CO, but here Al1 without any methyl groups exhibits superior performance. To rationalize this behavior, a combination of photophysical experiments (absorption, emission and excited state lifetimes) together with photostability measurements and scalar-relativistic time-dependent density functional theory calculations was applied. As a result, Al1 exhibited the highest emission quantum yield (64%), the longest emission lifetime (8.7 ns) and the best photostability under the reaction conditions required for the energy transfer reactions (e.g. in aerated chloroform). Moreover, Al1 provided the highest rate constant (0.043 min-1) for the photocatalytic oxygenation of DPF, outperforming even noble metal-based competitors such as [Ru(bpy)3]2+. Finally, its superior photostability enabled a long-term test (7 h), in which Al1 was successfully recycled seven times, underlining the high potential of this new class of earth-abundant PSs.
Collapse
Affiliation(s)
- Volkan Caliskanyürek
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Anastasiia Riabchunova
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Riebe J, Bädorf B, Löffelsender S, Gutierrez Suburu ME, Rivas Aiello MB, Strassert CA, Grimme S, Niemeyer J. Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes. Commun Chem 2024; 7:171. [PMID: 39112693 PMCID: PMC11306352 DOI: 10.1038/s42004-024-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
Collapse
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sarah Löffelsender
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - María Belén Rivas Aiello
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.
| |
Collapse
|
7
|
Oyejobi AO, Huang J, Luo YX, Tang XY, Wang L. Photooxidative Reaction of β-Oxoamides with Amines for the Synthesis of Pyrrolin-4-ones under External Photocatalyst-Free Conditions. J Org Chem 2024; 89:9972-9978. [PMID: 38954774 DOI: 10.1021/acs.joc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from β-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.
Collapse
Affiliation(s)
- Aanuoluwapo O Oyejobi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun-Xuan Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
8
|
Kriechbaum R, Spadiut O, Kopp J. Bioconversion of Furanic Compounds by Chlorella vulgaris-Unveiling Biotechnological Potentials. Microorganisms 2024; 12:1222. [PMID: 38930604 PMCID: PMC11205514 DOI: 10.3390/microorganisms12061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.
Collapse
Affiliation(s)
| | | | - Julian Kopp
- Research Division: Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1a, 1060 Wien, Austria; (R.K.); (O.S.)
| |
Collapse
|
9
|
Luz Tibaldi-Bollati M, Nicotra V, Oksdath-Mansilla G, García ME. Expanding Diterpene Complexity and Diversity via Photoinduced Ring Distortions. Chempluschem 2024; 89:e202300537. [PMID: 38029375 DOI: 10.1002/cplu.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Natural products and their semi-synthetic derivatives undoubtedly constitute an important source of therapeutic agents. Their importance lies in their own origin and evolution, since they have great chemical diversity, biochemical specificity, and pharmacological properties. Currently, there is a renewed interest in the development of methodologies capable of efficiently modifying the chemical structure of these bioactive platforms. In this work, the photoderivatization of the diterpene solidagenone was performed using a complexity-to-diversity-oriented approach. By exploring [2+2]-photocycloaddition, photoinduced-hydrogen abstraction, and photoxygenation reactions, a set of solidagenone derivatives was obtained, showing different ring fusions, side chain rearrangements, and modifications of the original furan ring's substitution pattern. The derivatives obtained were characterised by NMR methodologies. To evaluate the structural diversity of the labdane-derived compounds, their physicochemical properties, structural similarity, and chemical space were analysed. These results suggest that photochemical reactions are a useful tool for performing ring distortion transformations, generating derivatives of natural compounds with wide diversity, structural complexity, and with potential biological properties.
Collapse
Affiliation(s)
- María Luz Tibaldi-Bollati
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Viviana Nicotra
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Manuela E García
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
Cheng G, Zhao P, Su H, Wahab A, Gao Z, Gou J, Yu B. Furan Dearomatization: A Route to Diverse Fluoroalkyl/Aryl Triazoles. J Org Chem 2024; 89:4349-4365. [PMID: 38497642 DOI: 10.1021/acs.joc.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The 5-fluoroalkyl-1,2,3-triazoles, serving as a pivotal element in medicinal chemistry, hold substantial research significance. In this work, we developed a furan dearomatization reaction for the synthesis of various 5-fluoroalkyl-1,2,3-triazoles, which contains -CF3, -CF2H, -CF2CF3, -CF2CF2CF3, -CF2CO2Et, and -C6F5. This methodology relies on the intermolecular [3 + 2] cycloaddition/furan ring-opening triggered by α-fluoroalkyl furfuryl cation with azides to stereoselectively synthesize a series of (E)-fluoroalkyl enone triazoles. The reaction proceeds without metal participation, exhibits excellent substrate tolerance, and has excellent synthetic utility.
Collapse
Affiliation(s)
- Guanghai Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hang Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
11
|
Mhaske K, Gangai S, Fernandes R, Kamble A, Chowdhury A, Narayan R. Aerobic Catalytic Cross-Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry 2024; 30:e202302929. [PMID: 38175849 DOI: 10.1002/chem.202302929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 01/06/2024]
Abstract
Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Angulimal Kamble
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
12
|
Qi F, Feng HJ, Peng Y, Jiang LH, Zeng L, Huang L. New Type Annihilator of π-Expanded Diketopyrrolopyrrole for Robust Photostable NIR-Excitable Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7512-7521. [PMID: 38318769 DOI: 10.1021/acsami.3c17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching. In conjunction with the NIR photosensitizer PdTNP, the upconversion efficiency of π-DPP is as high as 8.9%, which is eight times of the previously reported PdPc/Furan-DPP. Importantly, after polystyrene film encapsulation, less than 10% photobleaching was observed for this PdTNP/π-DPP-based NIR TTA-UC material after four hours of intensive NIR light exposure. These findings provide a type of annihilator with extraordinary photostability, facilitating the development of NIR TTA-UC materials for practical photonics.
Collapse
Affiliation(s)
- Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Peng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Ejaz I, Ahsan F, Asif M, Ayub K. Polaronic state of conducting oligomer as a new approach to design non-lieaner optical materials: A case study of oligofurans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123288. [PMID: 37634328 DOI: 10.1016/j.saa.2023.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The geometric, electronic and nonlinear optical properties of neutral and polaron based oligofurans are studied comparatively. We have reported the role of polaron to trigger the nonlinear optical response of oligofurans (nFu). The polaron based oligomers show excellent opto-electronic properties. The effect of polaron on nFu* chains is measured by electronic properties i.e (ionization energy, electron affinity, band gap) and global reactivity descriptors like softness, hardness and chemical potential than their neutral counterpart. An interesting trends of reactivity descriptors have been observed. Lower band gaps (EH-L = 4.66 and 4.41 eV) are observed for polaronic systems as compared to their neutral counterpart. On the other hand, the TD-DFT study further demonstrated that, as the size of chain increases, the absorption maxima (λmax) also increases with significant reduction in excitation energies (ΔE). Furthermore, the nonlinear optical response is confirmed through the linear polarizability (αo), static first order hyperpolarizability (βo) and dynamic (frequency denepndent) hyperpolarizability. Electric filed induced second harmonic generation (EFISHG) and electro-optic pockle effect (EOPE) at 532 nm and 1064 nm, commonly used lasers frequencies have also been employed. Our results showed that the maximum hyperpolarizabilities are observed for polaron based 7Fu* and 9Fu* i.e 1.3 × 104, and 3.1 × 104 au. This study concluded that these polaron based organic polymers (nFu*) are useful as an efficient NLO material with vast applications in different fields.
Collapse
Affiliation(s)
- Iqra Ejaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Faiza Ahsan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Misbah Asif
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan.
| |
Collapse
|
14
|
Papidocha SM, Bulthaupt HH, Carreira EM. Synthesis of Neocaesalpin A, AA, and Nominal Neocaesalpin K. Angew Chem Int Ed Engl 2023; 62:e202310149. [PMID: 37681486 DOI: 10.1002/anie.202310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
The first total synthesis of heavily oxidized cassane-type diterpenoid neocaesalpin A (1) is disclosed. At the heart of the synthesis lies an intermolecular Diels-Alder reaction that rapidly assembles the target framework from commercial materials. A carefully orchestrated sequence of oxidations secured the desired oxygenation pattern. Late-stage release of the characteristic butenolide occurred through a novel mercury(II)-mediated furan oxidation. Successful extension of the route allowed preparation of neocaesalpin AA (2) as well as nominal neocaesalpin K (3) and suggested structural revision of neocaesalpin K, leading to the hypothesis that the two are likely the same natural product with correct assignment as 2.
Collapse
Affiliation(s)
- Sven M Papidocha
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Hendrik H Bulthaupt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
15
|
Che Y, Niazi MR, Chan Q, Ghamari P, Yu T, Ruchlin C, Yu H, Yan H, Ma D, Xiao SS, Izquierdo R, Perepichka DF. Design of Furan-Based Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202309003. [PMID: 37572307 DOI: 10.1002/anie.202309003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023]
Abstract
We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance. We found that the photodegradation of these acceptors originates from two distinct pathways: electrocyclic photoisomerization and Diels-Alder cycloaddition of singlet oxygen. These mechanisms are of general significance to most non-fullerene acceptors, and the photostability depends strongly on the molecular structure. Placement of furans next to the acceptor termini leads to better photostability, well-balanced hole/electron transport, and significantly improved device performance. Methylfuran as the linker offers the best photostability and power conversion efficiency (>14 %), outperforming all furan-based acceptors reported to date and all indacenodithiophene-based acceptors. Our findings show the possibility of photostable furan-based alternatives to the currently omnipresent thiophene-based photovoltaic materials.
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | | | - Quentin Chan
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Pegah Ghamari
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Ting Yu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | - Cory Ruchlin
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - He Yan
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dongling Ma
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, J3X 1P7, Canada
| | | | - Ricardo Izquierdo
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, Québec, H3C 1K3, Canada
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
16
|
Broumidis E, Thomson CG, Gallagher B, Sotorríos L, McKendrick KG, Macgregor SA, Paterson MJ, Lovett JE, Lloyd GO, Rosair GM, Kalogirou AS, Koutentis PA, Vilela F. The Photochemical Mediated Ring Contraction of 4 H-1,2,6-Thiadiazines To Afford 1,2,5-Thiadiazol-3(2 H)-one 1-Oxides. Org Lett 2023; 25:6907-6912. [PMID: 37695021 PMCID: PMC10521009 DOI: 10.1021/acs.orglett.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 09/12/2023]
Abstract
1,2,6-Thiadiazines treated with visible light and 3O2 under ambient conditions are converted into difficult-to-access 1,2,5-thiadiazole 1-oxides (35 examples, yields of 39-100%). Experimental and theoretical studies reveal that 1,2,6-thiadiazines act as triplet photosensitizers that produce 1O2 and then undergo a chemoselective [3 + 2] cycloaddition to give an endoperoxide that ring contracts with selective carbon atom excision and complete atom economy. The reaction was optimized under both batch and continuous-flow conditions and is also efficient in green solvents.
Collapse
Affiliation(s)
- Emmanouil Broumidis
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Christopher G. Thomson
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Brendan Gallagher
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Lia Sotorríos
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Kenneth G. McKendrick
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Martin J. Paterson
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Janet E. Lovett
- SUPA
School of Physics and Astronomy and BSRC, University of St Andrews, St.
Andrews, KY16 9SS, United Kingdom
| | - Gareth O. Lloyd
- Joseph
Banks Laboratories, School of Chemistry, University of Lincoln, Brayford
Pool, Lincoln LN6 7TS, United Kingdom
| | - Georgina M. Rosair
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Andreas S. Kalogirou
- Department
of Life Sciences, School of Sciences, European
University Cyprus, 6 Diogenes Str., Engomi, P.O. Box 22006, 1516 Nicosia, Cyprus
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia Cyprus
| | | | - Filipe Vilela
- Institute
of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
- Continuum
Flow Lab, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
17
|
Doussot A, Bakaï MF, Fouquet E, Hermange P. Ex Situ Generation of 18O 2 and 17O 2 from Endoperoxides for *O-Labeling and Mechanistic Studies of Oxidations by Dioxygen. Org Lett 2023. [PMID: 37276381 DOI: 10.1021/acs.orglett.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Near-stoichiometric amounts of 18O2 and 17O2 were generated ex situ from endoperoxides in a two-chamber glassware to oxidize various substrates. This strategy gave [*O2]endoperoxides, [*O1]quinones, [*O1]phenols, and [*Ox]artemisin in moderate to good yields and high isotopic enrichments (up to 84%) at affordable costs. Moreover, mass spectrometry and 17O NMR of the [*O]products provided valuable information about the chemical mechanisms involved.
Collapse
Affiliation(s)
- Alexandra Doussot
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Marie-France Bakaï
- Laboratoire Chimie Organique et Sciences de l'Environnement (LaCOSE), Faculté des Sciences et Techniques - Université de Kara, BP 404 Kara, Togo
| | - Eric Fouquet
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Philippe Hermange
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
18
|
Saladin L, Breton V, Dal Pra O, Klymchenko AS, Danglot L, Didier P, Collot M. Dual-Color Photoconvertible Fluorescent Probes Based on Directed Photooxidation Induced Conversion for Bioimaging. Angew Chem Int Ed Engl 2023; 62:e202215085. [PMID: 36420823 PMCID: PMC10107923 DOI: 10.1002/anie.202215085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
We herein present a new concept to produce dual-color photoconvertible probes based on a mechanism called Directed Photooxidation Induced Conversion (DPIC). As a support of this mechanism, styryl-coumarins (SCs) bearing Aromatic Singlet Oxygen Reactive Moieties (ASORMs) like furan and pyrrole have been synthesized. SCs are bright fluorophores, which undergo a hypsochromic conversion upon visible light irradiation due to directed photooxidation of the ASORM that leads to the disruption of conjugation. SC-P, a yellow emitting probe bearing a pyrrole moiety, converts to a stable blue emitting coumarin with a 68 nm shift allowing the photoconversion and tracking of lipid droplet in live cells. This new approach might pave the way to a new generation of photoconvertible dyes for advanced bioimaging applications.
Collapse
Affiliation(s)
- Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Victor Breton
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, 102 rue de la santé, 75014, Paris, France
| | - Ophélie Dal Pra
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, 102 rue de la santé, 75014, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Sientific director of NeurImag facility, Université Paris Cité, 102 rue de la santé, 75014, Paris, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| |
Collapse
|
19
|
Lim SH, Kim MJ, Wee KR, Lim DH, Kim YI, Cho DW. Silyl Tether-Assisted Photooxygenation of Electron-Deficient Enaminoesters: Direct Access to Oxamate Formation. J Org Chem 2023; 88:172-188. [PMID: 36516444 DOI: 10.1021/acs.joc.2c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photooxygenation reactions of electron-deficient enaminoesters bearing an oxophilic silyl tether at the α-position of the nitrogen atom using methylene blue (MB) were explored to develop a mild and efficient photochemical strategy for oxidative C-C double bond cleavage reactions via singlet oxygen (1O2). Photochemically generated 1O2, through energy transfer from the triplet excited state of MB (3MB*) to molecular oxygen (3O2), was added across a C-C double bond moiety of enaminoesters to form perepoxides, which rearranged to form dioxetane intermediates. The cycloreversion of the formed dioxetane via both C-C and O-O bond cleavage processes led to the formation of oxamates. Importantly, contrary to alkyl group tether-substituted electron-deficient enaminoesters that typically disfavor photooxygenation, the silyl tether-substituted analogues undergo this photochemical transformation efficiently with the assistance of a silyl tether, which facilitates formation of the perepoxide. The observations in this study provide useful information about photosensitized oxygenation reactions of unsaturated C-C bonds, and, moreover, this photochemical strategy can be utilized as a mild and feasible method for the preparation of diversely functionalized carbonyl compounds including oxamates.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Min-Ji Kim
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Dong Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Young-Il Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|
20
|
Apostolina LP, Bosveli A, Profyllidou A, Montagnon T, Tsopanakis V, Kaloumenou M, Kalaitzakis D, Vassilikogiannakis G. Multiphotocatalyst Cascades: From Furans to Fused Butyrolactones and Substituted Cyclopentanones. Org Lett 2022; 24:8786-8790. [PMID: 36417313 DOI: 10.1021/acs.orglett.2c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High value oxygenated polycycles have been rapidly and efficiently accessed from simple precursors in one pot processes. The reported methodology relies on a new and mild method for butenolide synthesis mediated by thiols. The initial photooxygenation and butenolide synthesis have been merged with subsequent photoredox reactions to achieve rare dual-photocatalyst cascades affording various fused butyrolactones. Ground state Lewis acid activity for methylene blue has been unveiled and then exploited in the synthesis of substituted cyclopentanones.
Collapse
Affiliation(s)
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Antonia Profyllidou
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Vasileios Tsopanakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Maria Kaloumenou
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
21
|
Hermens JGH, Lepage ML, Kloekhorst A, Keller E, Bloem R, Meijer M, Feringa BL. Development of a modular photoreactor for the upscaling of continuous flow photochemistry. REACT CHEM ENG 2022; 7:2280-2284. [PMID: 36352841 PMCID: PMC9594834 DOI: 10.1039/d2re00310d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The upscaling of biphasic photochemical reactions is challenging because of the inherent constraints of liquid-gas mixing and light penetration. Using semi-permeable coaxial flow chemistry within a modular photoreactor, the photooxidation of the platform chemical furfural was scaled up to produce routinely 29 gram per day of biobased building block hydroxybutenolide, a precursor to acrylate alternatives.
Collapse
Affiliation(s)
- Johannes G H Hermens
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mathieu L Lepage
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Arjan Kloekhorst
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Erik Keller
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Robin Bloem
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Maurice Meijer
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
22
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
23
|
Hao Z, Zhao P, Xing Q, Wahab A, Gao Z, Gou J, Yu B. Dual Roles of Azide: Dearomative Dimerization of Furfuryl Azides. J Org Chem 2022; 87:10185-10198. [PMID: 35864566 DOI: 10.1021/acs.joc.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A dearomative dimerization of furfuryl azides for the construction of furfuryl triazoles is developed. As a rare leaving group, azide is capable of initiating the generation of a furfuryl cation under the Lewis acid-catalyzed conditions, followed by reacting with the other azide to realize an intermolecular [3 + 2] cycloaddition/furan ring-opening cascade. By extending the reaction time, a fragmentation reaction of resulting furfuryl triazoles occurs to afford 1H-triazoles in high yield. Control studies demonstrated that key furfuryl cations also can be obtained from furfuryl triazoles. Furthermore, a chemoselective cross-cycloaddition can be achieved between furfuryl azides and a benzyl azide.
Collapse
Affiliation(s)
- Zhe Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qingzhao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
24
|
Weathering of Furan and 2,2’-Bifuran Polyester and Copolyester Films. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Kalaitzakis D, Bosveli A, Montagnon T, Vassilikogiannakis G. Sequential Visible Light‐Induced Reactions Using Different Photocatalysts: Transformation of Furans into 2‐Pyridones via γ‐Lactams Using a New Ring Expansion Reaction. Chemistry 2022; 28:e202200322. [DOI: 10.1002/chem.202200322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | - Artemis Bosveli
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | - Tamsyn Montagnon
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion, Crete Greece
| | | |
Collapse
|
26
|
Jamshaid S, Lee YR. Lewis-Acid-Catalyzed Regioselective Construction of Diversely Functionalized Polycyclic Fused Furans. Org Lett 2022; 24:1351-1356. [PMID: 35118858 DOI: 10.1021/acs.orglett.2c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel, facile, and efficient Lewis-acid-catalyzed [4 + 1] annulation protocol for the construction of functionalized polycyclic-fused furans is developed. This methodology is free of transition metals and ligands and provides a rapid synthetic route to divergently orientated polycyclic furans in good yields. In addition, this protocol can also be used to synthesize multisubstituted furans.
Collapse
Affiliation(s)
- Sana Jamshaid
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
27
|
Aerssens D, Cadoni E, Tack L, Madder A. A Photosensitized Singlet Oxygen ( 1O 2) Toolbox for Bio-Organic Applications: Tailoring 1O 2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022; 27:778. [PMID: 35164045 PMCID: PMC8838016 DOI: 10.3390/molecules27030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.
Collapse
Affiliation(s)
| | | | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium; (D.A.); (E.C.); (L.T.)
| |
Collapse
|
28
|
Olivier WJ, Smith JA, Bissember AC. Synthesis of Pyrrolidine- and γ-Lactam-Containing Natural Products and Related Compounds from Pyrrole Scaffolds. CHEM REC 2021; 22:e202100277. [PMID: 34862727 DOI: 10.1002/tcr.202100277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Indexed: 11/11/2022]
Abstract
Polycyclic alkaloid natural products featuring pyrrolidine and pyrrolidinone motifs remain enduring targets of total synthesis endeavors. Pyrrole and its derivatives have been exploited to access many such frameworks, including alkaloids belonging to the Aspidosperma, Stemona, and batzelladine families. In this article, a selection of exemplars that highlight the utility of pyrrole-based approaches to facilitate total syntheses of pyrrolidine- and pyrrolidinone-containing alkaloids and related molecules are showcased.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania Hobart, Tasmania, Australia
| |
Collapse
|
29
|
Ung SP, Perepichka I, Li C. Visible‐Light Mediated Photooxidative Phosphorylation of Benzylamines: A Novel and Mild Pathway Towards α‐Aminophosphorus Compounds. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sosthène P.‐M. Ung
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| | - Inna Perepichka
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| |
Collapse
|
30
|
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller LM, Muggli KIM, Haase F, Ochsenfeld C, Lotsch BV. A flavin-inspired covalent organic framework for photocatalytic alcohol oxidation. Chem Sci 2021; 12:15143-15150. [PMID: 34909156 PMCID: PMC8612393 DOI: 10.1039/d1sc04143f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Covalent organic frameworks (COFs) offer a number of key properties that predestine them to be used as heterogeneous photocatalysts, including intrinsic porosity, long-range order, and light absorption. Since COFs can be constructed from a practically unlimited library of organic building blocks, these properties can be precisely tuned by choosing suitable linkers. Herein, we report the construction and use of a novel COF (FEAx-COF) photocatalyst, inspired by natural flavin cofactors. We show that the functionality of the alloxazine chromophore incorporated into the COF backbone is retained and study the effects of this heterogenization approach by comparison with similar molecular photocatalysts. We find that the integration of alloxazine chromophores into the framework significantly extends the absorption spectrum into the visible range, allowing for photocatalytic oxidation of benzylic alcohols to aldehydes even with low-energy visible light. In addition, the activity of the heterogeneous COF photocatalyst is less dependent on the chosen solvent, making it more versatile compared to molecular alloxazines. Finally, the use of oxygen as the terminal oxidant renders FEAx-COF a promising and “green” heterogeneous photocatalyst. In this manuscript, we report the development of a novel alloxazine COF inspired by naturally occurring flavin cofactors for photoredox catalysis.![]()
Collapse
Affiliation(s)
- Stefan Trenker
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Tanmay Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Laura M Poller
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Katharina I M Muggli
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Haase
- Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| |
Collapse
|
31
|
Orfanopoulos M. Singlet Oxygen: Discovery, Chemistry, C 60 -Sensitization †. Photochem Photobiol 2021; 97:1182-1218. [PMID: 34240450 DOI: 10.1111/php.13486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023]
Abstract
This review article refers to the discovery of excited molecular oxygen, in particular on its lower singlet excited state (1 Δg , 1 O2 ). After a short report on singlet oxygen generation, the review is focused on the chemistry of this reactive species. Specifically, the three major reactions of 1 O2 with unsaturated organic substrates, namely the [4 + 2] and [2 +2] cycloadditions as well as the ene reaction, are reviewed. The proposed mechanisms of these reactions, through the years, based on experimental and computational work, have been presented. Selected examples of singlet oxygen-synthetic applications are also mentioned. The [60]fullerene and fullereno-materials photosensitized oxidations in homogeneous, as well as in heterogeneous conditions, are also comprehensively discussed. Finally, the self-sensitized photooxidation of open cage fullerenes as well as fullerenes bearing oxidizable groups is reported.
Collapse
|
32
|
Hoxha S, Kalaitzakis D, Bosveli A, Montagnon T, Vassilikogiannakis G. One-Pot Transformation of Furans into 1-Azaspirocyclic Alkaloid Frameworks Induced by Visible Light. Org Lett 2021; 23:5354-5358. [PMID: 34180682 DOI: 10.1021/acs.orglett.1c01661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-value 1-azaspirocyclic scaffolds have been made from simple and readily accessible furan precursors in a single operation. The protocol is a one-pot sequence using highly sustainable conditions (oxygen, visible light, and a favored green solvent) that leads to a dramatic increase in molecular complexity. The initial substrates can include functionalities that are suitable for further elaboration; in this way, the pruned polycyclic skeletons of the stemonamine, cylindricine, and lepadiformine natural products were rapidly accessed.
Collapse
Affiliation(s)
- Stela Hoxha
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
33
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
34
|
George JH. Biomimetic Dearomatization Strategies in the Total Synthesis of Meroterpenoid Natural Products. Acc Chem Res 2021; 54:1843-1855. [PMID: 33793197 DOI: 10.1021/acs.accounts.1c00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products are biosynthesized from a limited pool of starting materials via pathways that obey the same chemical logic as textbook organic reactions. Given the structure of a natural product, it is therefore often possible to predict its likely biosynthesis. Although biosynthesis mainly occurs in the highly specific chemical environments of enzymes, the field of biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents.We have followed several guidelines in our biomimetic approach to total synthesis. The overarching aim is to construct the same skeletal C-C and C-heteroatom bonds and in the same order as our biosynthetic hypothesis. In order to explore the innate reactivity of (bio)synthetic intermediates, the use of protecting groups is avoided or at least minimized. The key step, which is usually a cascade reaction, should be predisposed to selectively generate molecular complexity under substrate control (e.g., cycloadditions, radical cyclizations, carbocation rearrangements). In general, simple reagents and mild conditions are used; many of the total syntheses presented in this Account could be achieved using pre-1980s methodology. We have focused almost exclusively on the synthesis of meroterpenoids, that is, natural products of mixed terpene and aromatic polyketide origin, using commercially available terpenes and electron-rich aromatic compounds as starting materials. Finally, all of the syntheses in this Account involve a dearomatization step as a means to trigger a cascade reaction or to construct stereochemical complexity from a planar, aromatic intermediate.A biomimetic strategy can offer several advantages to a total synthesis project. Most obviously, successful biomimetic syntheses are usually concise and efficient, naturally adhering to the atom, step, and redox economies of synthesis. For example, in this Account, we describe a four-step synthesis of garcibracteatone and a three-step synthesis of nyingchinoid A. It is difficult to imagine shorter, non-biomimetic syntheses of these intricate molecules. Furthermore, biomimetic synthesis gives insight into biosynthesis by revealing the chemical relationships between biosynthetic intermediates. Access to these natural substrates allows collaboration with biochemists to help uncover the function of newly discovered enzymes and elucidate biosynthetic pathways, as demonstrated in our work on the napyradiomycin family. Third, by making biosynthetic connections between natural products, we can sometimes highlight incorrect structural assignments, and herein we discuss structure revisions of siphonodictyal B, rasumatranin D, and furoerioaustralasine. Last, biomimetic synthesis motivates the prediction of "undiscovered natural products" (i.e., missing links in biosynthesis), which inspired the isolation of prenylbruceol A and isobruceol.
Collapse
Affiliation(s)
- Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
35
|
A versatile heterogeneous photocatalyst: nanoporous gold powder modified with a zinc(II) phthalocyanine derivative for singlet oxygen [4 + 2] cycloadditions. Photochem Photobiol Sci 2021; 20:547-558. [PMID: 33876418 DOI: 10.1007/s43630-021-00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Nanoporous gold was functionalized with a photosensitizer, a zinc(II) phthalocyanine derivative. Such systems are active for the generation of reactive singlet oxygen which can be used for photocatalytic oxidation reactions. This study aims to demonstrate the versatility of such an approach, in terms of substrates and the employed solvent, only possible for a truly heterogeneous catalytic system. The activity of the hybrid system was studied for [4 + 2] cycloadditions of three different types of dienes and a total of eight substrates in two organic solvents and once in water. The highest activity was measured for 1,3-diphenylisobenzofuran, which is also highest in terms of sensitivity for the reaction with 1O2. Trends in conversion could be anticipated based on reported values for the rate constant for the reaction of 1O2. In almost all cases, an amplification of the conversion by immobilization of the sensitizer onto nanoporous gold was observed. The limiting case was ergosterol, which was the largest of all substrates with a van-der-Waals radius of about 2.1 nm. Additional factors such as the limited lifetime of 1O2 in different solvents as well as the hampered diffusion of the substrates were identified.
Collapse
|
36
|
|
37
|
Wau JS, Robertson MJ, Oelgemöller M. Solar Photooxygenations for the Manufacturing of Fine Chemicals-Technologies and Applications. Molecules 2021; 26:1685. [PMID: 33802876 PMCID: PMC8002662 DOI: 10.3390/molecules26061685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/05/2022] Open
Abstract
Photooxygenation reactions involving singlet oxygen (1O2) are utilized industrially as a mild and sustainable access to oxygenated products. Due to the usage of organic dyes as photosensitizers, these transformations can be successfully conducted using natural sunlight. Modern solar chemical reactors enable outdoor operations on the demonstration (multigram) to technical (multikilogram) scales and have subsequently been employed for the manufacturing of fine chemicals such as fragrances or biologically active compounds. This review will highlight examples of solar photooxygenations for the manufacturing of industrially relevant target compounds and will discuss current challenges and opportunities of this sustainable methodology.
Collapse
Affiliation(s)
- Jayson S. Wau
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Mark J. Robertson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Michael Oelgemöller
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium
| |
Collapse
|
38
|
New Approach in the Application of Conjugated Polymers: The Light-Activated Source of Versatile Singlet Oxygen Molecule. MATERIALS 2021; 14:ma14051098. [PMID: 33652904 PMCID: PMC7956640 DOI: 10.3390/ma14051098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
For many years, the research on conjugated polymers (CPs) has been mainly focused on their application in organic electronics. Recent works, however, show that due to the unique optical and photophysical properties of CPs, such as high absorption in UV–Vis or even near-infrared (NIR) region and efficient intra-/intermolecular energy transfer, which can be relatively easily optimized, CPs can be considered as an effective light-activated source of versatile and highly reactive singlet oxygen for medical or catalytic use. The aim of this short review is to present the novel possibilities that lie dormant in those exceptional polymers with the extended system of π-conjugated bonds.
Collapse
|
39
|
Merkushev AA, Makarov AS, Shpuntov PM, Abaev VT, Trushkov IV, Uchuskin MG. Oxidative Rearrangement of 2‐(2‐Aminobenzyl)furans: Synthesis of Functionalized Indoles and Carbazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Anton S. Makarov
- Perm State University Bukireva St. 15 Perm 614990 Russian Federation
| | - Pavel M. Shpuntov
- Kuban State Technological University Moskovskaya St. 2 Krasnodar 350072 Russian Federation
| | - Vladimir T. Abaev
- North-Ossetian State University Vatutina St. 46 Vladikavkaz 362025 Russian Federation
- North Caucasus Federal University Pushkin St. 1a Stavropol 355009 Russian Federation
| | - Igor V. Trushkov
- D. Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Samory Mashela St. 1 Moscow 117997 Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russian Federation
| | - Maxim G. Uchuskin
- Perm State University Bukireva St. 15 Perm 614990 Russian Federation
| |
Collapse
|
40
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi-Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021; 60:4335-4341. [PMID: 33119205 DOI: 10.1002/anie.202012379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The development of photocascades that rapidly transform simple and readily accessible furan substrates into polycyclic alkaloid frameworks or erythrina natural products is described. Each of the sequences developed makes use of photocatalyzed energy transfer processes, which generate singlet oxygen, to set up the substrates for the second photocatalyzed reaction, wherein electron transfer generates carbon-centered radicals for the cyclizations that give the final complex frameworks. A chemical switch has been developed that can "switch off" one photocatalyst; thus, allowing a second photocatalyst to take over control of the sequence. As a corollary, this strategy represents the first time it has been possible to use multiple photocatalysts in photocascades, and, as such, it expands significantly the reactions that can be included in such cascades and the order in which they can be initiated.
Collapse
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete, Greece
| | | |
Collapse
|
41
|
Kalaitzakis D, Bosveli A, Sfakianaki K, Montagnon T, Vassilikogiannakis G. Multi‐Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Artemis Bosveli
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Tamsyn Montagnon
- Department of Chemistry University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | | |
Collapse
|
42
|
Wang M, He YQ, Zhu Y, Song ZB, Wang XY, Huang HY, Cao BP, Tian WF, Xiao Q. The wavelength-regulated stereodivergent synthesis of ( Z)- and ( E)-1,4-enediones from phosphonium ylides. Org Chem Front 2021. [DOI: 10.1039/d1qo01085a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The wavelength-regulated, photoredox-catalyzed stereodivergent synthesis of (Z)- and (E)-1,4-enediones from phosphonium ylides is reported.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, P.R. China
| | - Yao Zhu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Zhi-Bin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Hai-Yang Huang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Ban-Peng Cao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| |
Collapse
|
43
|
Turque O, Greer A, Wauchope OR. Synthetic feasibility of oxygen-driven photoisomerizations of alkenes and polyenes. Org Biomol Chem 2020; 18:9181-9190. [PMID: 33155598 DOI: 10.1039/d0ob01993c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review describes O2-dependent photoreactions for possible routes to double-bond isomerizations. E,Z-isomerizations triggered by O2 and visible light are a new area of potential synthetic interest. The reaction involves the reversible addition of O2 to form a peroxy intermediate with oxygen evolution and partial regeneration of the compound as its isomer. Targeting of O2-dependent photoisomerizations also relates to a practical use of visible light, for example the improved light penetration depth for visible as opposed to UV photons in batch sensitized reactions. This review is intended to draw a link between visible-light formation of a peroxy intermediate and its dark degradation with O2 release for unsaturated compound isomerization. This review should be of interest both to photochemists and synthetic organic chemists, as it ties together mechanistic and synthetic work, drawing attention to an overlooked subject.
Collapse
Affiliation(s)
- Oliver Turque
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, USA.
| | | | | |
Collapse
|
44
|
Manicardi A, Cadoni E, Madder A. Visible-light triggered templated ligation on surface using furan-modified PNAs. Chem Sci 2020; 11:11729-11739. [PMID: 34094412 PMCID: PMC8162948 DOI: 10.1039/d0sc04875e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022] Open
Abstract
Oligonucleotide-templated reactions are frequently exploited for target detection in biosensors and for the construction of DNA-based materials and probes in nanotechnology. However, the translation of the specifically used template chemistry from solution to surfaces, with the final aim of achieving highly selective high-throughput systems, has been difficult to reach and therefore, poorly explored. Here, we show the first example of a visible light-triggered templated ligation on a surface, employing furan-modified peptide nucleic acids (PNAs). Tailored photo-oxidation of the pro-reactive furan moiety is ensured by the simultaneous introduction of a weak photosensitizer as well as a nucleophilic moiety in the reacting PNA strand. This allows one to ensure a localized production of singlet oxygen for furan activation, which is not affected by probe dilution or reducing conditions. Simple white light irradiation in combination with target-induced proximity between reactive functionalities upon recognition of a short 22mer DNA or RNA sequence that functions as a template, allows sensitive detection of nucleic acid targets in a 96 well plate format.
Collapse
Affiliation(s)
- Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| |
Collapse
|
45
|
A photochemical study of the triplet excited state of pyrene-4,5-dione and pyrene-4,5,9,10-tetrone derivatives. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Vassilikogiannakis G. Singlet Oxygen and Dyes: Synthesis with Visible Light is Where the Future Lies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Kalaitzakis D, Sofiadis M, Tsopanakis V, Montagnon T, Vassilikogiannakis G. Merging singlet-oxygen induced furan oxidations with organocatalysis: synthesis of enantiopure cyclopentanones and hydrindanes. Org Biomol Chem 2020; 18:2817-2822. [DOI: 10.1039/d0ob00468e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A general, flexible and highly effective method for the regio-, diastereo- & enantioselective one-pot synthesis of important carbocycles, namely, enantiopure cyclopentanones and their hydrindane congeners is presented.
Collapse
|
48
|
Montagnon T, Kalaitzakis D, Sofiadis M, Vassilikogiannakis G. The reticent tautomer: exploiting the interesting multisite and multitype reactivity of 4-pyrrolin-2-ones. Org Biomol Chem 2020; 18:180-190. [DOI: 10.1039/c9ob02471a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multisite and multitype reactivities of the highly versatile and valuable synthetic building block 4-pyrrolin-2-one are covered in this review.
Collapse
|
49
|
Liu L, Zhang Z, Zhao Q, Chen X, Deng L, Chen W, Jin Y. Detection of singlet oxygen by chemical trap in ionic liquids. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Seah KY, Robertson J. Investigations of an annulation-fragmentation-spirocyclisation approach to fawcettimine-type Lycopodium alkaloids. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|