1
|
Petrikat RI, Hornbogen J, Schmitt MJP, Resmann E, Wiedemann C, Dilmen NI, Schneider H, Pick AM, Riehn C, Diller R, Becker S. A Photoswitchable Metallocycle Based on Azobenzene: Synthesis, Characterization, and Ultrafast Dynamics. Chemistry 2024; 30:e202400205. [PMID: 38526989 DOI: 10.1002/chem.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.
Collapse
Affiliation(s)
- Raphael I Petrikat
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Justin Hornbogen
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Marcel J P Schmitt
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Emma Resmann
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Christina Wiedemann
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Nesrin I Dilmen
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Heinrich Schneider
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Annika M Pick
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
- Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Fachbereich Physik, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Sabine Becker
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52-54, 67663, Kaiserslautern, Germany
| |
Collapse
|
2
|
Bahrami F, Zhao Y. Tuning Active Site Electron Density for Enhanced Molecular Recognition and Catalysis. J Org Chem 2024; 89:5148-5152. [PMID: 38514256 DOI: 10.1021/acs.joc.3c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Enzymes have an extraordinary ability to utilize aromatic interactions for molecular recognition and catalysis. We here report molecularly imprinted nanoparticle receptors. The aromatic "wall" material in the imprinted binding site is used to enhance the molecular recognition of aromatic guests that have similar charges, shapes, and sizes but differ in π-electron density. Additionally, aromatic interactions are employed to activate an electron-rich aryl leaving group on a glycoside, mimicking the nucleoside hydrolase of the parasite Trypanosoma vivax.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
3
|
Zangiabadi M, Bahrami F, Ghosh A, Yu H, Agrahari AK, Chen X, Zhao Y. Synthetic Catalysts for Selective Glycan Cleavage from Glycoproteins and Cells. J Am Chem Soc 2024; 146:4346-4350. [PMID: 38346011 PMCID: PMC11103250 DOI: 10.1021/jacs.3c13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In situ modification of glycans requires extraordinary molecular recognition of highly complex and subtly different carbohydrates, followed by reactions at precise locations on the substrate. We here report synthetic catalysts that under physiological conditions cleave a predetermined oligosaccharide block such as a branched trimannose or the entire N-glycan of a glycoprotein, while nontargeted glycoproteins stay intact. The method also allows α2-6-sialylated galactosides to be removed preferentially over the α2-3-linked ones from cell surfaces, highlighting the potential of these synthetic glycosidases for glycan editing.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anand Kumar Agrahari
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Maity ML, Mahato S, Bandyopadhyay S. Visible-light-switchable Chalcone-Flavylium Photochromic Systems in Aqueous Media. Angew Chem Int Ed Engl 2023; 62:e202311551. [PMID: 37754675 DOI: 10.1002/anie.202311551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
The chalcone-flavylium photochromic system switches in aqueous media. However, the chalcone→flavylium conversion requires detrimental ultra-violet (UV) light for the switching which deters their applications in the biological domain. To address this issue, we have synthesized strategically modified chalcone scaffolds that can be reversibly switched to the flavylium forms with visible light ranging from 456 nm (blue) to 640 nm (red).
Collapse
Affiliation(s)
- Manik Lal Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
| | - Samyadeb Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB-741246, India
| |
Collapse
|
5
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
6
|
Marcon M, Crespi S, Pielmeier A, König B. A dinuclear copper(II) complex with photoswitchable catechol oxidation activity. Chem Commun (Camb) 2023; 59:948-951. [PMID: 36597959 DOI: 10.1039/d2cc06250j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we report the first example of a photoswitchable copper complex with catechol oxidase activity. The distance between the two copper centres is optimal for catalytic catechol oxidation in the Z-configuration. Thus, the activity of the catalyst is increased compared to its E-configuration.
Collapse
Affiliation(s)
- Michela Marcon
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany.
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Andreas Pielmeier
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany.
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany.
| |
Collapse
|
7
|
Wang Y, Ji H, Ma J, Luo H, He Y, Tang X, Wu L. Reversible On-Off Photoswitching of DNA Replication Using a Dumbbell Oligodeoxynucleotide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248992. [PMID: 36558127 PMCID: PMC9785685 DOI: 10.3390/molecules27248992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
In most organisms, DNA extension is highly regulated; however, most studies have focused on controlling the initiation of replication, and few have been done to control the regulation of DNA extension. In this study, we adopted a new strategy for azODNs to regulate DNA extension, which is based on azobenzene oligonucleotide chimeras regulated by substrate binding affinity, and the conformation of the chimera can be regulated by a light source with a light wavelength of 365 nm. The results showed that the primer was extended with Taq DNA polymerase after visible light treatment, and DNA extension could be effectively hindered with UV light treatment. We also verify the reversibility of the photoregulation of primer extension through photoswitching of dumbbell asODNs by alternate irradiation with UV and visible light. Our method has the advantages of fast and simple, green response and reversible operations, providing a new strategy for regulating gene replication.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heming Ji
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
| | - Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (X.T.); (L.W.)
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
- Correspondence: (X.T.); (L.W.)
| |
Collapse
|
8
|
Adak S, Maity ML, Bandyopadhyay S. Photoresponsive Small Molecule Enzyme Mimics. ACS OMEGA 2022; 7:35361-35370. [PMID: 36249396 PMCID: PMC9558609 DOI: 10.1021/acsomega.2c05210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Enzyme mimics emulate the catalytic activities of their natural counterparts. Light-responsive enzyme mimics are an emerging branch of biomimetic chemistry where the catalytic activities can be controlled reversibly by light. These light-responsive systems are constructed by incorporating a suitable photoswitchable unit around the active-site mimic. As these systems are addressable by light, they do not leave back any undesired side products, and their activation-deactivation can be easily controlled. Naturally, these systems have enormous potential in the field of on-demand catalysis. The synthetic light-responsive enzyme mimics are robust and stable under harsh conditions. They do not require special handling protocols like those for real enzymes and can be tailor-made for improved solubility in a variety of solvents. How the introduction of the light-responsive systems has offered a new-edge to the field of small-molecule enzyme mimic has been elaborated in this Mini-review. Recent breakthroughs in light-responsive enzyme-like systems have been highlighted. Finally, the current obstacles and future prospects of this field have been discussed.
Collapse
Affiliation(s)
- Soumen Adak
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Manik Lal Maity
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhajit Bandyopadhyay
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
9
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Zangiabadi M, Zhao Y. Synergistic Hydrolysis of Cellulose by a Blend of Cellulase-Mimicking Polymeric Nanoparticle Catalysts. J Am Chem Soc 2022; 144:17110-17119. [PMID: 36069714 PMCID: PMC10183977 DOI: 10.1021/jacs.2c06848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-like catalysts by design have been a long sought-after goal of chemists but difficult to realize due to the challenges in the construction of multifunctionalized active sites with accurately positioned catalytic groups for complex substrates. Hydrolysis of cellulose is a key step in biomass utilization and requires multiple enzymes to work in concert to overcome the difficulty associated with hydrolyzing the recalcitrant substrate. We here report methods to construct synthetic versions of these enzymes through covalent molecular imprinting and strategic postmodification of the imprinted sites. The synthetic catalysts cleave a cellulose chain endolytically at multiple positions or exolytically from the nonreducing end by one or three glucose units at a time, all using the dicarboxylic acid motif found in natural cellulases. By mimicking the endocellulase, exocellulase, and β-glucosidase, the synthetic catalysts hydrolyze cellulose in a synergistic manner, with an activity at 90 °C in pH 6.5 buffer more than doubled that of Aspergillus niger cellulase at pH 5 and 37 °C and 44% of that of a commercial cellulase blend (from Novozyme). As robust cross-linked polymeric nanoparticles, the synthetic catalysts showed little changes in activity after preheating at 90 °C for 3 days and could be reused, maintaining 76% of activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
11
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
12
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Kravets M, Misztalewska-Turkowicz I, Sashuk V. Probing E/Z Isomerism Using Pillar[4]pyridinium/Gold Nanoparticle Ensembles and Their Photoresponsive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4942-4947. [PMID: 35426683 PMCID: PMC9047399 DOI: 10.1021/acs.langmuir.2c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Despite the fundamental importance and broad applicability of E/Z dicarboxylic acids, their discrimination remains challenging and greatly unexplored. Herein, we present a general approach for the recognition of E/Z diacids using supramolecular interactions coupled with plasmonic response. The method allows detecting both single isomers and their light-induced interconversion, which ultimately entails multiple reversible nanoparticle aggregations. Such a molecular recognition-coupled responsive nanoscale self-assembly resembles natural mechanisms and can be a versatile means of building artificial complexity.
Collapse
Affiliation(s)
- Mykola Kravets
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Volodymyr Sashuk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Chen K, Zhao Y. Dynamic Tuning in Synthetic Glycosidase for Selective Hydrolysis of Alkyl and Aryl Glycosides. J Org Chem 2022; 87:4195-4203. [PMID: 35254827 PMCID: PMC9089355 DOI: 10.1021/acs.joc.1c03029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes use sophisticated conformational control to optimize the dynamics of their protein framework for efficient catalysis. Although it is difficult to employ a similar strategy to improve catalysis in a synthetic enzyme, we here report that modulation of the dynamics of the substrate in the active site is readily achievable in a complex between a molecularly imprinted nanoparticle and its acid cofactor, through tuning of the size and shape of the imprinted site. As the alkyl glucoside substrate is bound with increasing strength and held in a more tightly fitted pocket, the acid-catalyzed glycan hydrolysis becomes more difficult. A larger, wider active site, although less able to bind the substrate, affords a higher catalytic activity, likely due to easier alignment of the substrate and the acid cofactor for a general acid catalysis. The substrate selectivity is controlled by both the tightness of the aglycon-binding site and the orientation of the glycan-binding boroxole group.
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
15
|
Wilm LFB, Das M, Janssen‐Müller D, Mück‐Lichtenfeld C, Glorius F, Dielmann F. Photoschaltbare Stickstoff‐Superbasen: Mit Licht Kohlenstoffdioxid reversibel fixieren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas F. B. Wilm
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Deutschland
| | - Mowpriya Das
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Daniel Janssen‐Müller
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Frank Glorius
- Institut für Organische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 36 48149 Münster Deutschland
| | - Fabian Dielmann
- Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 28–30 48149 Münster Deutschland
- Institut für Allgemeine Anorganische und Theoretische Chemie Leopold-Franzens-Universität Innsbruck Innrain 80–82 6020 Innsbruck Österreich
| |
Collapse
|
16
|
Wilm LFB, Das M, Janssen‐Müller D, Mück‐Lichtenfeld C, Glorius F, Dielmann F. Photoswitchable Nitrogen Superbases: Using Light for Reversible Carbon Dioxide Capture. Angew Chem Int Ed Engl 2022; 61:e202112344. [PMID: 34694044 PMCID: PMC9299603 DOI: 10.1002/anie.202112344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Using light as an external stimulus to alter the reactivity of Lewis bases is an intriguing tool for controlling chemical reactions. Reversible photoreactions associated with pronounced reactivity changes are particularly valuable in this regard. We herein report the first photoswitchable nitrogen superbases based on guanidines equipped with a photochromic dithienylethene unit. The resulting N-heterocyclic imines (NHIs) undergo reversible, near quantitative electrocyclic isomerization upon successive exposure to UV and visible irradiation, as demonstrated over multiple cycles. Switching between the ring-opened and ring-closed states is accompanied by substantial pKa shifts of the NHIs by up to 8.7 units. Since only the ring-closed isomers are sufficiently basic to activate CO2 via the formation of zwitterionic Lewis base adducts, cycling between the two isomeric states enables the light-controlled capture and release of CO2 .
Collapse
Affiliation(s)
- Lukas F. B. Wilm
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
| | - Mowpriya Das
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Daniel Janssen‐Müller
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Frank Glorius
- Institute of Organic ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Fabian Dielmann
- Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 28–3048149MünsterGermany
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-Universität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
17
|
Saha M, Hossain MS, Bandyopadhyay S. A Photoregulated Racemase Mimic. Angew Chem Int Ed Engl 2021; 60:5220-5224. [PMID: 33180335 DOI: 10.1002/anie.202012124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The racemase enzymes convert L-amino acids to their D-isomer. The reaction proceeds through a stepwise deprotonation-reprotonation mechanism that is assisted by a pyridoxal phosphate (PLP) coenzyme. This work reports a PLP-photoswitch-imidazole triad where the racemization reaction can be controlled by light by tweaking the distance between the basic residue and the reaction centre.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
18
|
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
19
|
Goswami A, Gaikwad S, Schmittel M. A Switchable Catalyst Duo for Acyl Transfer Proximity Catalysis and Regulation of Substrate Selectivity. Chemistry 2021; 27:2997-3001. [PMID: 33022776 PMCID: PMC7898682 DOI: 10.1002/chem.202004416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Enzymes are encoded with a gamut of information to catalyze a highly selective transformation by selecting the proper reactants from an intricate mixture of constituents. Mimicking biological machinery, two switchable catalysts with differently sized cavities and allosteric control are conceived that allow complementary size-selective acyl transfer in an on/off manner by modulating the effective local concentration of the substrates. Selective activation of one of two catalysts in a mixture of reactants of similar reactivity enabled upregulation of the desired product.
Collapse
Affiliation(s)
- Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sudhakar Gaikwad
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
20
|
Kaler S, McKeown P, Ward BD, Jones MD. Aluminium( iii) and zinc( ii) complexes of azobenzene-containing ligands for ring-opening polymerisation of ε-caprolactone and rac-lactide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01303j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to control the outcome of polymerisations using an external stimulus remains a formidable challenge.
Collapse
|
21
|
Li X, Zhao Y. Synthetic Glycosidase Distinguishing Glycan and Glycosidic Linkage in Its Catalytic Hydrolysis. ACS Catal 2020; 10:13800-13808. [PMID: 34123483 DOI: 10.1021/acscatal.0c04038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective hydrolysis of carbohydrates is vital to the processing of these molecules in biology but has rarely been achieved with synthetic catalysts. The challenge is especially difficult because the catalyst needs to distinguish the inversion of a single hydroxyl and the α or β glycosidic bonds that join monosaccharide building blocks. Here we report synthetic glycosidase prepared through molecular imprinting within a cross-linked micelle. The nanoparticle catalyst resembles natural enzymes in dimension, water-solubility, and a hydrophilic/hydrophobic surface-core topology. Its boronic acid-functionalized active site binds its targeted glycoside substrate and an acid cofactor simultaneously, with the acidic group in close proximity to the exocyclic glycosidic oxygen. The hydrophobically anchored acid cofactor is tunable in acidity and causes selective cleavage of the targeted glycoside in mildly acidic water. Selectivity for both the glycan and the α/β glycosidic bond can be rationally designed through the molecular imprinting process.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
22
|
Li X, Zhao Y. Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides. Chem Sci 2020; 12:374-383. [PMID: 34163603 PMCID: PMC8178952 DOI: 10.1039/d0sc05338d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| |
Collapse
|
23
|
Niedek D, Erb FR, Topp C, Seitz A, Wende RC, Eckhardt AK, Kind J, Herold D, Thiele CM, Schreiner PR. In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. J Org Chem 2020; 85:1835-1846. [PMID: 31763833 DOI: 10.1021/acs.joc.9b01913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.
Collapse
Affiliation(s)
- Dominik Niedek
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Frederik R Erb
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Christopher Topp
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Alexander Seitz
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Raffael C Wende
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André K Eckhardt
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie , Technische Universität Darmstadt , Alarich-Weiss-Str. 16 , 64287 Darmstadt , Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
24
|
Saha M, Chatterjee S, Hossain MS, Ghude A, Bandyopadhyay S. Modulation of Electronic Mobility of a One-Dimensional Coordination Polymeric Molecular Wire with Light. Chem Asian J 2019; 14:4659-4664. [PMID: 31392843 DOI: 10.1002/asia.201900956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/04/2019] [Indexed: 11/09/2022]
Abstract
Metal ions often influence the photoswitching efficiency of a photochromic system. This article reports a one-dimensional polymer having cyclic azobenzenes coordinated to silver ions that are bridged by nitrates. The coordination polymer (CP-2) displays a photoresponsive behavior. The switching ability in the polymer form was faster compared to the parent azobenzene ligand without the metal ions. Azobenzenes are reported to be poorly conducting. Here, although the azobenzene ligand does not show significant electronic mobility, the coordination polymer (CP-2) displays a modest conductivity. The conductance in the cis form of the polymer is significantly higher compared to the trans form. Upon exposure to visible light, the cis form undergoes photoisomerization to the trans form with a drastic drop in the electronic mobility. The trans form can be reverted to the cis form thermally or by using UV light. Thus, this system offers a reversible control of the conductivity using light.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Arijeet Ghude
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
25
|
Ren CZJ, Solís Muñana P, Dupont J, Zhou SS, Chen JLY. Reversible Formation of a Light-Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019; 58:15254-15258. [PMID: 31414710 DOI: 10.1002/anie.201907078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Indexed: 12/20/2022]
Abstract
A photoresponsive system where structure formation is coupled to catalytic activity is presented. The observed catalytic activity is reliant on intermolecular cooperative effects that are present when amphiphiles assemble into vesicular structures. Photoresponsive units within the amphiphilic pre-catalysts allow for switching between assembled and disassembled states, thereby modulating the catalytic activity. The ability to reversibly form cooperative catalysts within a dynamic self-assembled system represents a conceptually new tool for the design of complex artificial systems in water.
Collapse
Affiliation(s)
- Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jack L-Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, 34 St Paul St, Auckland, 1010, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
26
|
Ren CZ, Solís Muñana P, Dupont J, Zhou SS, Chen JL. Reversible Formation of a Light‐Responsive Catalyst by Utilizing Intermolecular Cooperative Effects. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloe Z.‐J. Ren
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Pablo Solís Muñana
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Julien Dupont
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Silvia Siru Zhou
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| | - Jack L.‐Y. Chen
- Centre for Biomedical and Chemical Sciences School of Science Auckland University of Technology 34 St Paul St Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
27
|
Saha M, Bandyopadhyay S. Reversible photoresponsive activity of a carbonic anhydrase mimic. Chem Commun (Camb) 2019; 55:3294-3297. [PMID: 30810568 DOI: 10.1039/c9cc00018f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbonic anhydrase (CA) enzyme reversibly transforms carbon dioxide and water to a carbonate ion and a proton. Photoresponsive enzyme mimics, where the CA-activity can be turned on and off reversibly with light, have not been reported so far. We have designed an active site mimic that offers reversible control of the catalytic activity using light. Moreover, in the presence of a cationic polymer, we have demonstrated that the CA-activity was further enhanced by stabilizing the transition state with the cis-form of the enzyme mimic which can catalyze the hydration of gaseous CO2.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| | | |
Collapse
|
28
|
Dorel R, Feringa BL. Photoswitchable catalysis based on the isomerisation of double bonds. Chem Commun (Camb) 2019; 55:6477-6486. [DOI: 10.1039/c9cc01891c] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoswitchable catalysis is a young but rapidly evolving field that offers great potential for non-invasive dynamic control of both activity and selectivity in catalysis. This Feature Article summarises the key developments accomplished over the past years through the incorporation of photoswitchable double bonds into the structure of catalytically competent molecules.
Collapse
Affiliation(s)
- Ruth Dorel
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
29
|
van Dijk L, Tilby MJ, Szpera R, Smith OA, Bunce HAP, Fletcher SP. Molecular machines for catalysis. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0117] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Saha M, Ghosh S, Bandyopadhyay S. Strain, switching and fluorescence behavior of a nine-membered cyclic azobenzene. NEW J CHEM 2018. [DOI: 10.1039/c8nj01643g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work defines the smallest ring size for obtaining the trans form of cyclic azobenzene as the thermally stable form.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| | - Sanjib Ghosh
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur
- India
| |
Collapse
|
31
|
Li Z, Yuan X, Feng Y, Chen Y, Zhao Y, Wang H, Xu Q, Wang J. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light. Phys Chem Chem Phys 2018; 20:12808-12816. [DOI: 10.1039/c8cp01617h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conductivity of azobenzene-based ionic liquids in water can be reversibly and efficiently modulated using UV/vis light irradiation.
Collapse
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xiaoqing Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Ying Feng
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yongkui Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Qingli Xu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
32
|
Mazur T, Lach S, Grzybowski BA. Heterogeneous Catalysis "On Demand": Mechanically Controlled Catalytic Activity of a Metal Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44264-44269. [PMID: 29178783 DOI: 10.1021/acsami.7b15253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A metal surface passivated with a tightly packed self-assembled monolayer (SAM) can be made catalytically active upon the metal's mechanical deformation. This deformation renders the SAM sparser and exposes additional catalytic sites on the metal's surface. If the deformation is elastic, return of the metal to the original shape "heals" the SAM and nearly extinguishes the catalytic activity. Kelvin probe force microscopy and theoretical considerations both indicate that the catalytic domains "opening up" in the deformed SAM are of nanoscopic dimensions.
Collapse
Affiliation(s)
- Tomasz Mazur
- IBS Center for Soft and Living Matter and the Department of Chemistry, Ulsan National Institute of Science and Technology , Ulsan, South Korea
| | - Slawomir Lach
- IBS Center for Soft and Living Matter and the Department of Chemistry, Ulsan National Institute of Science and Technology , Ulsan, South Korea
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter and the Department of Chemistry, Ulsan National Institute of Science and Technology , Ulsan, South Korea
| |
Collapse
|
33
|
Micheau JC, Coudret C. Enhanced photo-responsiveness in a photoswitchable system model: emergent hormetic catalysis. Phys Chem Chem Phys 2017; 19:12890-12897. [PMID: 28474024 DOI: 10.1039/c7cp01470h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Michaelis Menten catalysis by a T-photochromic system has been analyzed numerically. Using an appropriate set of rate constants and quantum yields, we have evidenced an enhanced photo-responsiveness at a medium light intensity: the plot of the initial rate vs. light intensity is bell-shaped. This emergent phenomenon can be qualified as hormetic catalysis. The analysis of the chemical flows shows that a directional rotation occurs within the cyclic scheme. Non equilibrium conditions are provided by two independent sources: the chemical energy dissipation from the irreversible exergonic reaction and the steady transformation of light into heat by T-photochromism. A literature survey, showing that most of the required kinetic features are not so rare, let us anticipate its practical feasibility.
Collapse
Affiliation(s)
- J-C Micheau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | |
Collapse
|
34
|
Pizzolato SF, Collins BSL, van Leeuwen T, Feringa BL. Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions. Chemistry 2017; 23:6174-6184. [PMID: 27880015 DOI: 10.1002/chem.201604966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 12/21/2022]
Abstract
The emerging field of artificial photoswitchable catalysis has recently shown striking examples of functional light-responsive systems allowing for dynamic control of activity and selectivity in organocatalysis and metal-catalysed transformations. While our group has already disclosed systems featuring first generation molecular motors as the switchable central core, a design based on second generation molecular motors is lacking. Here, the syntheses of two bifunctionalised molecular switches based on a photoresponsive tetrasubstituted alkene core are reported. They feature a thiourea substituent as hydrogen-donor moiety in the upper half and a basic dimethylamine group in the lower half. This combination of functional groups offers the possibility for application of these molecules in photoswitchable catalytic processes. The light-responsive central cores were synthesized by a Barton-Kellogg coupling of the prefunctionalized upper and lower halves. Derivatization using Buchwald-Hartwig amination and subsequent introduction of the thiourea substituent afforded the target compounds. Control of catalytic activity in the Michael addition reaction between (E)-3-bromo-β-nitrostyrene and 2,4-pentanedione is achieved upon irradiation of stable-(E) and stable-(Z) isomers of the bifunctional catalyst 1. Both isomers display a decrease in catalytic activity upon irradiation to the metastable state, providing systems with the potential to be applied as ON/OFF catalytic photoswitches.
Collapse
Affiliation(s)
- Stefano F Pizzolato
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Beatrice S L Collins
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Thomas van Leeuwen
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
35
|
Vlatković M, Collins BSL, Feringa BL. Dynamic Responsive Systems for Catalytic Function. Chemistry 2016; 22:17080-17111. [DOI: 10.1002/chem.201602453] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Matea Vlatković
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| | - Beatrice S. L. Collins
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; Synthetic Organic Chemistry Unit; Faculty of Mathematics and Natural Sciences; University of Groningen; Nijenborg 4 9747 Groningen The Netherlands
| |
Collapse
|
36
|
Dąbrowa K, Niedbała P, Jurczak J. Engineering Light-Mediated Bistable Azobenzene Switches Bearing Urea d-Aminoglucose Units for Chiral Discrimination of Carboxylates. J Org Chem 2016; 81:3576-84. [DOI: 10.1021/acs.joc.6b00200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kajetan Dąbrowa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Patryk Niedbała
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
37
|
Weston CE, Richardson RD, Fuchter MJ. Photoswitchable basicity through the use of azoheteroarenes. Chem Commun (Camb) 2016; 52:4521-4. [DOI: 10.1039/c5cc10380k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an azoheteroarene photoswitchable base, where proton stabilisation in Z isomer is facilitated by neighbouring imidazole rings. A 1.3 unit difference in pKa is observed between the E and Z isomers, which leads to the ability to reversibly control solution pH.
Collapse
|
38
|
Dai Z, Cui Y, Chen C, Wu J. Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea. Chem Commun (Camb) 2016; 52:8826-9. [DOI: 10.1039/c6cc04090j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An azobenzene-based thiourea compound 1 as a catalyst was successfully used in the ring-opening polymerization of rac-lactide. The reactivity of a catalytic polymerization system using photoresponsive azobenzene-based thiourea/PMDETA as a catalyst could be switched between slow and fast states by alternating exposure to UV and ambient light.
Collapse
Affiliation(s)
- Zhongran Dai
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Yaqin Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Changjuan Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
39
|
Abstract
Catalysis is key to the effective and efficient transformation of readily available building blocks into high value functional molecules and materials. For many years research in this field has largely focussed on the invention of new catalysts and the optimization of their performance to achieve high conversions and/or selectivities. However, inspired by Nature, chemists are beginning to turn their attention to the development of catalysts whose activity in different chemical processes can be switched by an external stimulus. Potential applications include using the states of multiple switchable catalysts to control sequences of transformations, producing different products from a pool of building blocks according to the order and type of stimuli applied. Here we outline the state-of-art in artificial switchable catalysis, classifying systems according to the trigger used to achieve control over the catalytic activity and stereochemical or other structural outcomes of the reaction.
Collapse
Affiliation(s)
- Victor Blanco
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | |
Collapse
|