1
|
Mu X, Xie S, Ye X, Tao S, Li J, Jiang D. Ketazine-Linked Crystalline Porous Covalent Organic Frameworks. J Am Chem Soc 2024; 146:25118-25124. [PMID: 39213509 DOI: 10.1021/jacs.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous materials with well-defined π arrays and ordered channels, which can be predesigned with a topology diagram and prepared via a polycondensation reaction. Over the past decade, various types of π building units with different functional groups have been developed. Among them, aldehyde is one of the most widely used monomers that form COFs with azine, hydrazine, imine, squaranine, and C═C linkages. In contrast, its closest analogue, i.e., ketone, despite its broad structural diversity, has not yet been investigated for the design and synthesis of COFs. Herein we report the first examples of ketazine-linked COFs by developing ketones as monomers to enable polycondensation with hydrazine under solvothermal conditions. We observed that a careful screening of reaction conditions including solvent, catalyst, concentration, reaction temperature, and reaction time leads to the finding of optimal polymerization systems to produce highly crystalline and porous ketazine-linked COFs. Surprisingly, the ketazine linkage enables π conjugation between knot and linker sites and renders the resultant materials able to emit a strong blue fluorescence, highlighting the π electronic features of this new family of COFs. Our findings of ketones as monomers and ketazine as linkage bring unprecedented structures, functions, and applications to the field of COFs.
Collapse
Affiliation(s)
- Xinyu Mu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuailei Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xingyao Ye
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Donglin Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Bariki R, Joseph RG, El-Kadri OM, Al-Sayah MH. The Development of Metal-Free Porous Organic Polymers for Sustainable Carbon Dioxide Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1432. [PMID: 39269094 PMCID: PMC11397385 DOI: 10.3390/nano14171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
A viable tactic to effectively address the climate crisis is the production of renewable fuels via photocatalytic reactions using solar energy and available resources like carbon dioxide (CO2) and water. Organic polymer material-based photocatalytic materials are thought to be one way to convert solar energy into valuable chemicals and other solar fuels. The use of porous organic polymers (POPs) for CO2 fixation and capture and sequestration to produce beneficial compounds to reduce global warming is still receiving a lot of interest. Visible light-responsive organic photopolymers that are functionally designed and include a large number of heteroatoms and an extended π-conjugation allow for the generation of photogenerated charge carriers, improved absorption of visible light, increased charge separation, and decreased charge recombination during photocatalysis. Due to their rigid structure, high surface area, flexible pore size, permanent porosity, and adaptability of the backbone for the intended purpose, POPs have drawn more and more attention. These qualities have been shown to be highly advantageous for numerous sustainable applications. POPs may be broadly categorized as crystalline or amorphous according to how much long-range order they possess. In terms of performance, conducting POPs outperform inorganic semiconductors and typical organic dyes. They are light-harvesting materials with remarkable optical characteristics, photostability, cheap cost, and low cytotoxicity. Through cocatalyst loading and morphological tweaking, this review presents optimization options for POPs preparation techniques. We provide an analysis of the ways in which the preparative techniques will affect the materials' physicochemical characteristics and, consequently, their catalytic activity. An inventory of experimental methods is provided for characterizing POPs' optical, morphological, electrochemical, and catalytic characteristics. The focus of this review is to thoroughly investigate the photochemistry of these polymeric organic photocatalysts with an emphasis on understanding the processes of internal charge generation and transport within POPs. The review covers several types of amorphous POP materials, including those based on conjugated microporous polymers (CMPs), inherent microporosity polymers, hyper-crosslinked polymers, and porous aromatic frameworks. Additionally, common synthetic approaches for these materials are briefly discussed.
Collapse
Affiliation(s)
- Ranjit Bariki
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Reshma G Joseph
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Oussama M El-Kadri
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
3
|
Zhou Y, Xie Y, Liu X, Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Single-Molecule Traps in Covalent Organic Frameworks for Selective Capture of C 2H 2 from C 2H 4-Rich Gas Mixtures. RESEARCH (WASHINGTON, D.C.) 2024; 7:0458. [PMID: 39188360 PMCID: PMC11345538 DOI: 10.34133/research.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Removing trace amounts of acetylene (C2H2) from ethylene (C2H4)-rich gas mixtures is vital for the supply of high-purity C2H4 to the chemical industry and plastics sector. However, selective removal of C2H2 is challenging due to the similar physical and chemical properties of C2H2 and C2H4. Here, we report a "single-molecule trap" strategy that utilizes electrostatic interactions between the one-dimensional (1D) channel of a covalent organic framework (denoted as COF-1) and C2H2 molecules to massively enhance the adsorption selectivity toward C2H2 over C2H4. C2H2 molecules are immobilized via interactions with the O atom of C=O groups, the N atom of C≡N groups, and the H atom of phenyl groups in 1D channels of COF-1. Due to its exceptionally high affinity for C2H2, COF-1 delivered a remarkable C2H2 uptake of 7.97 cm3/g at 298 K and 0.01 bar, surpassing all reported COFs and many other state-of-the-art adsorbents under similar conditions. Further, COF-1 demonstrated outstanding performance for the separation of C2H2 and C2H4 in breakthrough experiments under dynamic conditions. COF-1 adsorbed C2H2 at a capacity of 0.17 cm3/g at 2,000 s/g when exposed to 0.5 ml/min C2H4-rich gas mixture (99% C2H4) at 298 K, directly producing high-purity C2H4 gas at a rate of 3.95 cm3/g. Computational simulations showed that the strong affinity between C2H2 and the single-molecule traps of COF-1 were responsible for the excellent separation performance. COF-1 is also robust, providing a promising new strategy for the efficient removal of trace amounts of C2H2 in practical C2H4 purification.
Collapse
Affiliation(s)
- Yilun Zhou
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Geoffrey I. N. Waterhouse
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences,
The University of Auckland, Auckland 1142, New Zealand
| | - Shengqian Ma
- Department of Chemistry,
University of North Texas, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
4
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
5
|
Lee W, Li H, Du Z, Feng D. Ion transport mechanisms in covalent organic frameworks: implications for technology. Chem Soc Rev 2024; 53:8182-8201. [PMID: 39021129 DOI: 10.1039/d4cs00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising materials for ion conduction due to their highly tunable structures and excellent electrochemical stability. This review paper explores the mechanisms of ion conduction in COFs, focusing on how these materials facilitate ion transport across their ordered structures, which is crucial for applications such as solid electrolytes in batteries and fuel cells. We discuss the design strategies employed to enhance ion conductivity, including pore size optimization, functionalization with ionic groups, and the incorporation of solvent molecules and salts. Additionally, we examine the various applications of ion-conductive COFs, particularly in energy storage and conversion technologies, highlighting recent advancements and future directions in this field. This review paper aims to provide a comprehensive overview of the current state of research on ion-conductive COFs, offering insights into their potential to design highly ion-conductive COFs considering not only fundamental studies but also practical perspectives for advanced electrochemical devices.
Collapse
Affiliation(s)
- Wonmi Lee
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Haochen Li
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Zhilin Du
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Dawei Feng
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Tao S, Jiang D. Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:18151-18160. [PMID: 38907725 DOI: 10.1021/jacs.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Covalent organic frameworks (COFs) offer an irreplaceable platform for mass transport, as they provide aligned one-dimensional channels as pathways. Especially, proton conduction is of great scientific interest and technological importance. However, unlike proton conduction under humidity, anhydrous proton conduction remains a challenge, as it requires robust materials and proceeds under harsh conditions. Here, we report exceptional anhydrous proton conduction in stable crystalline porous COFs by integrating neat phosphoric acid into the channels to form extended hydrogen-bonding networks. The phosphoric acid networks in the pores are stabilized by hierarchical multipoint and multichain hydrogen-bonding interactions with the 3D channel walls. We synthesized five hexagonal COFs that possess different pore sizes, which are gradually tuned from micropores to mesopores. Remarkably, mesoporous COFs with a high pore volume exhibit an exceptional anhydrous proton conductivity of 0.31 S cm-1, which marks the highest conductivity among all examples reported for COFs. We observed that the proton conductivity is dependent on the pore volume, pore size, and content of phosphoric acid. Increasing the pore volume improves the proton conductivity in an exponential fashion. Remarkably, changing the pore volume from 0.41 to 1.60 cm3 g-1 increases the proton conductivity by 1150-fold. Interestingly, as the pore size increases, the activation energy barrier of proton conduction decreases in linear mode. The mesopores enable fast proton hopping across the channels, while the micropores follow sluggish vehicle conduction. Experiments on tuning phosphoric acid loading contents revealed that a well-developed hydrogen-bonding phosphoric acid network in the pores is critical for proton conduction.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
7
|
Guntermann R, Frey L, Biewald A, Hartschuh A, Clark T, Bein T, Medina DD. Regioisomerism in Thienothiophene-Based Covalent Organic Frameworks─A Tool for Band-Gap Engineering. J Am Chem Soc 2024; 146:15869-15878. [PMID: 38830115 DOI: 10.1021/jacs.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The craft of tuning optical properties is well-established for crystalline inorganic and hybrid solids. However, a far greater challenge is to tune the optical properties of organic materials systematically by design. We now introduce a synthesis concept that enables us to alter the optical properties of crystalline covalent organic frameworks (COFs) systematically using isomeric structures of thienothiophene-based building blocks (T23/32T) combined with a variety of tetratopic aromatic amines, e.g., the Wurster moiety (W-NH2). This concept is demonstrated for the synthesis of COFs in bulk and film forms and provides highly crystalline and porous isomeric COFs featuring predesigned photophysical properties. The band gap of the framework can be tuned continuously and precisely by chemically doping the pristine W23TT COF with its related constitutional isomer building block. Density-functional theory investigations of COF model compounds indicate that the extent of π-conjugation is among the key characteristics enabling the band-gap engineering.
Collapse
Affiliation(s)
- Roman Guntermann
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Laura Frey
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Alexander Biewald
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Achim Hartschuh
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry & Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Naegelsbachstraße 25, Erlangen 91052, Germany
| | - Thomas Bein
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| | - Dana D Medina
- Department of Chemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Butenandtstraße 11 (E), Munich 81377, Germany
| |
Collapse
|
8
|
Aliyev E, Emmler T, Lillepaerg J, Shishatskiy S, Dizge N, Filiz V. Two-Dimensional Nanoporous Cross-linked Polymer Networks as Emerging Candidates for Gas Adsorption. ACS OMEGA 2024; 9:15282-15293. [PMID: 38585124 PMCID: PMC10993420 DOI: 10.1021/acsomega.3c09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
This paper illustrates the gas adsorption properties of newly synthesized nanoporous cross-linked polymer networks (CPNs). All synthesized CPNs possess N-rich functional groups and are used for the utilization of carbon dioxide and methane. Good gas adsorption and selectivities are obtained for all of the samples. Among the materials, HEREON2 outperforms better selectivity for methane separation from nitrogen rather than zeolites, activated carbons, molecular sieves, covalent organic frameworks, and metal-organic frameworks (MOFs). The accessibility of the N-rich functionalities makes these materials potential candidates for the separation of hydrocarbons via increased polarizabilities. High-pressure adsorption experiments showed that the synthesized two-dimensional nanoporous materials also have a high affinity toward carbon dioxide. HEREON2 powders showed an increased experimental CO2/N2 selectivity of ∼25,000 at 50 bar due to the presence of nitrogen groups in the structure. Fourier-transform infrared spectroscopy (FTIR), solid-state NMR, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were applied for the characterization of the synthesized nanoporous CPNs. The results show a potential new pathway for future CPN membrane development.
Collapse
Affiliation(s)
- Elvin Aliyev
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck Str.
1, 21502 Geesthacht, Germany
| | - Thomas Emmler
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck Str.
1, 21502 Geesthacht, Germany
| | - Jelena Lillepaerg
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck Str.
1, 21502 Geesthacht, Germany
| | - Sergey Shishatskiy
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck Str.
1, 21502 Geesthacht, Germany
| | - Nadir Dizge
- Department
of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Volkan Filiz
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck Str.
1, 21502 Geesthacht, Germany
| |
Collapse
|
9
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
10
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
11
|
Xia X, Huang Y, Peng B, Wang T, Yi R, Zhao Y, Jiang J, Dai F, Fan Y, Li P, Tu Y, Zhang L, Fang H, Chen L. High-Yield Synthesis of Sodium Chlorides of Unconventional Stoichiometries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303072. [PMID: 37436786 DOI: 10.1002/adma.202303072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Abnormal salt crystals with unconventional stoichiometries, such as Na2 Cl, Na3 Cl, K2 Cl, and CaCl crystals that have been explored in reduced graphene oxide membranes (rGOMs) or diamond anvil cells, hold great promise in applications due to their unique electronic, magnetic, and optical properties predicted in theory. However, the low content of these crystals, only <1% in rGOM, limits their research interest and utility in applications. Here, a high-yield synthesis of 2D abnormal crystals with unconventional stoichiometries is reported, which is achieved by applying negative potential on rGOM. A more than tenfold increase in the abnormal Na2 Cl crystals is obtained using a potential of -0.6 V, resulting in an atomic content of 13.4 ± 4.7% for Na on rGOM. Direct observations by transmission electron microscopy and piezoresponse force microscopy demonstrates a unique piezoelectric behavior arising from 2D Na2 Cl crystals with square structure. The output voltage increases from 0 to ≈180 mV in the broad 0-150° bending angle regime, which meets the voltage requirement of most nanodevices in realistic applications. Density functional theory calculations reveal that the applied negative potential of the graphene surface can strengthen the effect of the Na+ -π interaction and reduce the electrostatic repulsion between cations, making more Na2 Cl crystals formed.
Collapse
Affiliation(s)
- Xinming Xia
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- School of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Huang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingquan Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Tao Wang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- Department of Optical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruobing Yi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Fangfang Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yan Fan
- Department of Optical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pei Li
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yusong Tu
- School of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225009, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
12
|
Choi J, Kim T, Li H, Jung HT, Zhao D. Gas Sensors with Two-Dimensional rGO@COF Composite Materials for Fast NO 2 Detection under Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44119-44126. [PMID: 37690035 DOI: 10.1021/acsami.3c10304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Covalent organic frameworks (COFs) are attracting increasing interest in various applications due to their ability to capture molecules originating from their highly crystallized porous structures. However, most types of COFs are non-conductive and cannot be directly applied to electronic devices. Herein, we utilize non-conductive COFs in chemiresistor sensors by forming composite structures with conductive reduced graphene oxide (rGO). The composites rGO@COF exhibit low-enough resistance to be measured as chemiresistors, demonstrating enhanced gas sensing performance than pristine rGO. In particular, rGO@COF sensors achieve 2.7 times higher sensitivity toward NO2 and a dramatically reduced response time from 234 to 32 s compared to rGO, which can be attributed to increased surface area and NO2 adsorption energy. Our strategy provides new perspectives for utilizing non-conductive COFs in various electronic applications.
Collapse
Affiliation(s)
- Junghoon Choi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Taewoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
13
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
14
|
Frey L, Oliveira O, Sharma A, Guntermann R, Fernandes SPS, Cid‐Seara KM, Abbay H, Thornes H, Rocha J, Döblinger M, Kowalczyk T, Rao A, Salonen LM, Medina DD. Building Blocks and COFs Formed in Concert-Three-Component Synthesis of Pyrene-Fused Azaacene Covalent Organic Framework in the Bulk and as Films. Angew Chem Int Ed Engl 2023; 62:e202302872. [PMID: 37141015 PMCID: PMC10952658 DOI: 10.1002/anie.202302872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/05/2023]
Abstract
A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.e., Aza-COF series with full conversion of the dione moiety, long-range order, and high surface area. In addition, the novel three-component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza-COFs with nanostructured surfaces on various substrates. The Aza-COFs exhibit light absorption maxima in the blue spectral region, and each Aza-COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza-Ph- and Aza-Naph-COFs suggest ultrafast relaxation dynamics of excited-states within these COFs.
Collapse
Affiliation(s)
- Laura Frey
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Orlando Oliveira
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- CICECO—Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Ashish Sharma
- Cavendish LaboratoryUniversity of Cambridge19 JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Roman Guntermann
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Soraia P. S. Fernandes
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE)University of AveiroCampus Universitário de Santiago3810-193AveiroPortugal
| | - Krystal M. Cid‐Seara
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- Department of Inorganic ChemistryUniversity of VigoCampus Universitário, As Lagoas-Marcosende36310VigoSpain
| | - Hosanna Abbay
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - Henry Thornes
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - João Rocha
- CICECO—Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Markus Döblinger
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Tim Kowalczyk
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - Akshay Rao
- Cavendish LaboratoryUniversity of Cambridge19 JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Laura M. Salonen
- CINBIOUniversidade de VigoDepartment of Organic Chemistry36310VigoSpain
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
| | - Dana D. Medina
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| |
Collapse
|
15
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
16
|
Li X, Tang C, Zhang L, Song M, Zhang Y, Wang S. Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics (Basel) 2023; 8:biomimetics8020171. [PMID: 37092423 PMCID: PMC10123739 DOI: 10.3390/biomimetics8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Photosynthesis occurs in high plants, and certain organisms show brilliant technology in converting solar light to chemical energy and producing carbohydrates from carbon dioxide (CO2). Mimicking the mechanism of natural photosynthesis is receiving wide-ranging attention for the development of novel materials capable of photo-to-electric, photo-to-chemical, and photocatalytic transformations. Porphyrin, possessing a similar highly conjugated core ring structure to chlorophyll and flexible physical and chemical properties, has become one of the most investigated photosensitizers. Chemical modification and self-assembly of molecules as well as constructing porphyrin-based metal (covalent) organic frameworks are often used to improve its solar light utilization and electron transfer rate. Especially porphyrin-based covalent organic frameworks (COFs) in which porphyrin molecules are connected by covalent bonds combine the structural advantages of organic frameworks with light-capturing properties of porphyrins and exhibit great potential in light-responsive materials. Porphyrin-based COFs are expected to have high solar light utilization, fast charge separation/transfer performance, excellent structural stability, and novel steric selectivity by special molecular design. In this paper, we reviewed the research progress of porphyrin-based COFs in the design, synthesis, properties, and applications. We focused on the intrinsic relationship between the structure and properties, especially the photoelectric conversion properties and charge transfer mechanism of porphyrin-based COFs, and tried to provide more valuable information for the design of advanced photosensitizers. The applications of porphyrin-based COFs in photocatalysis and phototherapy were emphasized based on their special structure design and light-to-electric (or light-to-heat) conversion control.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chuanyin Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Mingyang Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yujie Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
17
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
18
|
Li J, Cheng Z, Wang Z, Dong J, Jiang H, Wang W, Zou X, Zhu G. Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for Membrane C 2 H 2 /C 2 H 4 Separation. Angew Chem Int Ed Engl 2023; 62:e202216675. [PMID: 36624052 DOI: 10.1002/anie.202216675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5 Å and a surface area of 289 m2 g-1 . This COF possesses N-O paired groups which cooperatively interact with C2 H2 instead of C2 H4 . TP-IQD nanosheets of ≈10 μm in width and ≈4 nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2 H2 permeability and C2 H2 /C2 H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.
Collapse
Affiliation(s)
- Jialu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
19
|
Han XH, Liang RR, Zhou ZB, Qi QY, Zhao X. Converting an amorphous covalent organic polymer to a crystalline covalent organic framework mediated by a repairing agent. Chem Commun (Camb) 2023; 59:2461-2464. [PMID: 36752113 DOI: 10.1039/d2cc05800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We herein report a new approach to converting an amorphous covalent organic polymer to a crystalline heteropore covalent organic framework (COF), which is promoted by using an additive for structure repair. This provides a new method for the construction of COFs from cross-linked polymers.
Collapse
Affiliation(s)
- Xiang-Hao Han
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Rong-Ran Liang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Zhi-Bei Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
20
|
Ding J, Guan X, Lv J, Chen X, Zhang Y, Li H, Zhang D, Qiu S, Jiang HL, Fang Q. Three-Dimensional Covalent Organic Frameworks with Ultra-Large Pores for Highly Efficient Photocatalysis. J Am Chem Soc 2023; 145:3248-3254. [PMID: 36718987 DOI: 10.1021/jacs.2c13817] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Benefiting from their unique structural merits, three-dimensional (3D) large-pore COF materials demonstrate high surface areas and interconnected large channels, which makes these materials promising in practical applications. Unfortunately, functionalization strategies and application research are still absent in these structures. To this end, a series of functional 3D stp-topologized COFs are designed based on porphyrin or metalloporphyrin moieties, named JUC-640-M (M = Co, Ni, or H). Interestingly, JUC-640-H exhibits a record-breaking low crystal density (0.106 cm3 g-1) among all crystalline materials, along with the largest interconnected pore size (4.6 nm) in 3D COFs, high surface area (2204 m2 g-1), and abundant exposed porphyrin moieties (0.845 mmol g-1). Inspired by the unique structural characteristics and photoelectrical performance, JUC-640-Co is utilized for the photoreduction of CO2 to CO and demonstrates a high CO production rate (15.1 mmol g-1 h-1), selectivity (94.4%), and stability. It should be noted that the CO production rate of JUC-640-Co has exceeded those of all reported COF-based materials. This work not only produces a series of novel 3D COFs with large channels but also provides a new guidance for the functionalization and applications of COFs.
Collapse
Affiliation(s)
- Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyu Guan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jia Lv
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
21
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
22
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
23
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
24
|
Kaur G, Kumar D, Sundarrajan S, Ramakrishna S, Kumar P. Recent Trends in the Design, Synthesis and Biomedical Applications of Covalent Organic Frameworks. Polymers (Basel) 2022; 15:polym15010139. [PMID: 36616488 PMCID: PMC9824193 DOI: 10.3390/polym15010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The most recent and advanced class of crystalline and permeable compounds are covalent organic frameworks (COFs). Due to their exceptional qualities, such as their porous structure, high surface area, strong chemical and thermal stabilities, low density, good water stability, luminescent nature, and so on, COFs have seen remarkable growth over the past ten years. COFs have been successfully researched for a number of applications based on these characteristics. The current state of COFs has been reported in this study, with particular attention paid to their design, topology, synthesis, and a variety of biological applications, including drug delivery systems, photodynamic and photothermal therapy, biosensing, bioimaging, etc. Moreover, several miscellaneous applications, such as catalysis, gas storage and separation, photocatalysis, sensors, solar cells, supercapacitors, and 3D printers, have also been explored. It is significant that we have examined current research on COFs with a focus on the biological applications, which are infrequently covered in the literature. Descriptions of the difficulties and prospective outcomes have also been given.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Materials Application Research Laboratory (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Rahya Suchani, Jammu 181143, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, Lower Kent Ridge, National University of Singapore, Singapore 117581, Singapore
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: (S.S.); or (P.K.)
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, Lower Kent Ridge, National University of Singapore, Singapore 117581, Singapore
| | - Pawan Kumar
- Materials Application Research Laboratory (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Rahya Suchani, Jammu 181143, India
- Correspondence: (S.S.); or (P.K.)
| |
Collapse
|
25
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
26
|
Jin F, Lin E, Wang T, Geng S, Hao L, Zhu Q, Wang Z, Chen Y, Cheng P, Zhang Z. Rationally Fabricating Three-Dimensional Covalent Organic Frameworks for Propyne/Propylene Separation. J Am Chem Soc 2022; 144:23081-23088. [DOI: 10.1021/jacs.2c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fazheng Jin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qianqian Zhu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Rational regulating pore structures of covalent organic frameworks for sulfur hexafluoride capture and separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Functionalized 3D Covalent Organic Frameworks for High‐Performance CO
2
Capture and Separation over N
2. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Yan Y, Cai X, Cheng S, Xie X, Lan Y, Wu J, Fan J, Zheng S, Cai S, Zhang W. Beta‐cyclodextrin covalent organic framework coated silica composite as chiral stationary phase for high‐performance liquid chromatographic separation. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yilun Yan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
| | - Xinting Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Siyuan Cheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Xuexian Xie
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Yixin Lan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry South China Normal University Guangzhou P. R. China
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine School of Chemistry South China Normal University Guangzhou P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Ltd Qingyuan P. R. China
| |
Collapse
|
30
|
Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, Li N, Zhang Z, Chen Y. Green and Scalable Fabrication of High‐Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew Chem Int Ed Engl 2022; 61:e202208744. [DOI: 10.1002/anie.202208744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Yunlong Zheng
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Sainan Zhang
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ruixuan Shi
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Jiangyue Yu
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Kaipeng Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
- Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology College of Pharmacy National institute for advanced materials Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Mow R, Metzroth LJT, Dzara MJ, Russell-Parks GA, Johnson JC, Vardon DR, Pylypenko S, Vyas S, Gennett T, Braunecker WA. Phototriggered Desorption of Hydrogen, Ethylene, and Carbon Monoxide from a Cu(I)-Modified Covalent Organic Framework. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14801-14812. [PMID: 36110496 PMCID: PMC9465684 DOI: 10.1021/acs.jpcc.2c03194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Materials that are capable of adsorbing and desorbing gases near ambient conditions are highly sought after for many applications in gas storage and separations. While the physisorption of typical gases to high surface area covalent organic frameworks (COFs) occurs through relatively weak intermolecular forces, the tunability of framework materials makes them promising candidates for tailoring gas sorption enthalpies. The incorporation of open Cu(I) sites into framework materials is a proven strategy to increase gas uptake closer to ambient conditions for gases that are capable of π-back-bonding with Cu. Here, we report the synthesis of a Cu(I)-loaded COF with subnanometer pores and a three-dimensional network morphology, namely Cu(I)-COF-301. This study focused on the sorption mechanisms of hydrogen, ethylene, and carbon monoxide with this material under ultrahigh vacuum using temperature-programmed desorption and Kissinger analyses of variable ramp rate measurements. All three gases desorb near or above room temperature under these conditions, with activation energies of desorption (E des) calculated as approximately 29, 57, and 68 kJ/mol, for hydrogen, ethylene, and carbon monoxide, respectively. Despite these strong Cu(I)-gas interactions, this work demonstrated the ability to desorb each gas on-demand below its normal desorption temperature upon irradiation with ultraviolet (UV) light. While thermal imaging experiments indicate that bulk photothermal heating of the COF accounts for some of the photodriven desorption, density functional theory calculations reveal that binding enthalpies are systematically lowered in the COF-hydrogen matrix excited state initiated by UV irradiation, further contributing to gas desorption. This work represents a step toward the development of more practical ambient temperature storage and efficient regeneration of sorbents for applications with hydrogen and π-accepting gases through the use of external photostimuli.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Lucy J. T. Metzroth
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael J. Dzara
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek R. Vardon
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Svitlana Pylypenko
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
32
|
Rational design of Cu(I)-anchored porous covalent triazine framework (CTF) for simultaneous capture and conversion of CO2 at ambient conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, Li N, Zhang Z, Chen Y. Green and Scalable Fabrication of High‐Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | - Kaipeng Li
- Nankai University College of Pharmacy CHINA
| | - Ning Li
- Nankai University College of Pharmacy CHINA
| | - Zhenjie Zhang
- Nankai University College of Chemistry Weijin Road 94# 300071 Tianjin CHINA
| | - Yao Chen
- Nankai University State Key Laboratory of Medicinal Chemical Biology, Nankai University Weijin Road 94# Tianjin CHINA
| |
Collapse
|
34
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
35
|
Sun L, Yang M, Guo H, Zhang T, Wu N, Wang M, Yang F, Zhang J, Yang W. COOH-MWCNT connected COF and chemical activated CTF as a novel electrochemical sensing platform for simultaneous detection of acetaminophen and p-aminophenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
37
|
Nguyen HL, Gropp C, Hanikel N, Möckel A, Lund A, Yaghi OM. Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS CENTRAL SCIENCE 2022; 8:926-932. [PMID: 35912353 PMCID: PMC9336147 DOI: 10.1021/acscentsci.2c00398] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report a postsynthetic strategy and its implementation to make covalent organic frameworks (COFs) with irreversible hydrazide linkages. This involved the synthesis of three 2D and 3D hydrazine-linked frameworks and their partial oxidation. The linkage synthesis and functional group transformation-hydrazine and hydrazide-were evidenced by 15N multi-CP-MAS NMR. In addition, the isothermal water uptake profiles of these frameworks were studied, leading to the discovery of one hydrazine-hydrazide-linked COF suitable for water harvesting from air in arid conditions. This COF displayed characteristic S-shaped water sorption profiles, a steep pore-filling step below 18% relative humidity at 25 °C, and a total uptake capacity of 0.45 g g-1. We found that even small changes made on the molecular level can lead to major differences in the water isotherm profiles, therefore pointing to the utility of water sorption analysis as a complementary analytical tool to study linkage transformations.
Collapse
Affiliation(s)
- Ha L. Nguyen
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
- Joint
UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Cornelius Gropp
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Nikita Hanikel
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Anna Möckel
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Alicia Lund
- Department
of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
| | - Omar M. Yaghi
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
- Joint
UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
38
|
Gayathri S, Viswanathamurthi P, Naveen K, Murugan K. Convenient synthesis of symmetrical azines from alcohols and hydrazine catalyzed by ruthenium(II) hydrazone complex in air. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. J Chromatogr A 2022; 1675:463155. [DOI: 10.1016/j.chroma.2022.463155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
|
40
|
He N, Li Z, Hu C, Chen Z. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal 2022; 12:610-616. [PMID: 36105161 PMCID: PMC9463497 DOI: 10.1016/j.jpha.2022.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Covalent organic frameworks (COFs) are a novel type of crystalline porous organic polymer materials recently developed. It has several advantages in chromatographic separation field, such as high thermal stability, porosity, structural regularity, and large specific surface area. Here, a novel spherical COF 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) was developed as an electrochromatographic stationary phase for capillary electrochromatography separation. The COF TAPB-BPTA modified capillary column was fabricated via a facile in situ growth method at room temperature. The characterization results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) confirmed that COF TAPB-BPTA were successfully modified onto the capillary inner surface. The electrochromatography separation performance of the COF TAPB-BPTA modified capillary was investigated. The prepared column demonstrated outstanding separation performance toward alkylbenzenes, phenols, and chlorobenzenes compounds. Furthermore, the baseline separations of non-steroidal anti-inflammatory drugs (NSAIDs) and parabens with good efficiency and high resolution were achieved. Also, the prepared column possessed satisfactory precision of the intra-day runs (n = 5), inter-day runs (n = 3), and parallel columns (n = 3), and the relative standard deviations (RSDs) of the retention times of tested alkylbenzenes were all less than 2.58%. Thus, this new COF-based stationary phase shows tremendous application potential in chromatographic separation field. COF TAPB–BPTA was studied as OT-CEC stationary phase. In situ, room-temperature growth method was quite facile and efficient. Excellent separation performances toward various hydrophobic compounds. The maximum column efficiency was 1.78 × 105 plates/m. Reproducibility and stability were found to be satisfactory.
Collapse
|
41
|
Rasheed T, Khan S, Ahmad T, Ullah N. Covalent Organic Frameworks-Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. CHEM REC 2022; 22:e202200062. [PMID: 35641392 DOI: 10.1002/tcr.202200062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are a promising class of porous crystalline materials made up of covalently connected and periodically protracted network topologies through organic linkers. The tailorability of organic linker and intrinsic structures endow COFs with a tunable porosity and structure, low density, facilely-tailored functionality, and large surface area, attracting increasing amount of interests in variety of research areas of membrane separations. COF-based membranes have spawned a slew of new research projects, ranging from fabrication methodologies to separation applications. Herein, we tried to emphasis the major developments in the synthetic approaches of COFs based membranes for a variety of separation applications such as, separation of gaseous mixtures, water treatment as well as separation of isomeric and chiral organic compounds. The proposed methods for fabricating COF-based continuous membranes and columns for real world applications are also thoroughly explored. Finally, a viewpoint on the future directions and remaining challenges for COF research in the area of separation is provided.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
42
|
Dutta S, Pati SK. Anchoring boron on a covalent organic framework as an efficient single atom metal-free photo-electrocatalyst for nitrogen fixation: a first-principles analysis. Phys Chem Chem Phys 2022; 24:10765-10774. [PMID: 35467673 DOI: 10.1039/d1cp05699a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of ammonia in a sustainable cost-effective manner and ambient conditions is a very challenging task. Photo-/electrocatalytic nitrogen reduction (NRR) is a convenient way to produce NH3 for industrial applications. In this work, anchoring B atoms in Tp-bpy-COF is shown to effectively reduce N2 to NH3. By employing density functional theory, we demonstrated that N2 can be efficiently activated on the B center due to the synergistic effect of B-N. Meanwhile, we found that the NRR happens predominantly by the alternating path with a small limiting potential of 0.13 V. Moreover, the suitable band edge positions and broad visible light absorption zone result in B@Tp-bpy-COF acting as a promising photocatalyst. Our proposed catalytic system exhibits favorable formation energy and excellent structural stability during AIMD simulations, which suggest the feasibility of experimental synthesis. The system turns out to be highly selective toward the NRR compared to other competitive reactions. These findings may pave a new way for designing SACs on COFs for N2 fixation with high activity, which may also apply to other reactions.
Collapse
Affiliation(s)
- Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| |
Collapse
|
43
|
Geng TM, Fang XC, Wang FQ, Zhu F. Azine- and azo-based flexible covalent organic frameworks for fluorescence sensing nitro-aromatic compounds and iodine and adsorbing iodine. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Bügel S, Hähnel M, Kunde T, de Sousa Amadeu N, Sun Y, Spieß A, Beglau THY, Schmidt BM, Janiak C. Synthesis and Characterization of a Crystalline Imine-Based Covalent Organic Framework with Triazine Node and Biphenyl Linker and Its Fluorinated Derivate for CO 2/CH 4 Separation. MATERIALS 2022; 15:ma15082807. [PMID: 35454500 PMCID: PMC9031922 DOI: 10.3390/ma15082807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
Abstract
A catalyst-free Schiff base reaction was applied to synthesize two imine-linked covalent organic frameworks (COFs). The condensation reaction of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) with 4,4'-biphenyldicarboxaldehyde led to the structure of HHU-COF-1 (HHU = Heinrich-Heine University). The fluorinated analog HHU-COF-2 was obtained with 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldicarboxaldehyde. Solid-state NMR, infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis confirmed the successful formation of the two network structures. The crystalline materials are characterized by high Brunauer-Emmett-Teller surface areas of 2352 m2/g for HHU-COF-1 and 1356 m2/g for HHU-COF-2. The products of a larger-scale synthesis were applied to prepare mixed-matrix membranes (MMMs) with the polymer Matrimid. CO2/CH4 permeation tests revealed a moderate increase in CO2 permeability at constant selectivity for HHU-COF-1 as a dispersed phase, whereas application of the fluorinated COF led to a CO2/CH4 selectivity increase from 42 for the pure Matrimid membrane to 51 for 8 wt% of HHU-COF-2 and a permeability increase from 6.8 to 13.0 Barrer for the 24 wt% MMM.
Collapse
Affiliation(s)
- Stefanie Bügel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
| | - Malte Hähnel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
| | - Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
| | - Nader de Sousa Amadeu
- Bundesanstalt für Materialforschung und -Prüfung, Fachbereich 6.3 (Strukturanalytik), 12489 Berlin, Germany;
| | - Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
| | - Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany;
- Correspondence: (B.M.S.); (C.J.)
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; (S.B.); (M.H.); (Y.S.); (A.S.); (T.H.Y.B.)
- Correspondence: (B.M.S.); (C.J.)
| |
Collapse
|
45
|
Liu D, Tian C, Shan M, Zhu J, Zhang Y. Interface synthesis of flexible benzimidazole-linked polymer molecular-sieving membranes with superior antimicrobial activity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
|
47
|
Tetrazine Based Covalent Organic Framework as a Promising Metal-Free Photo and Electro-Catalyst for HER. Catal Letters 2022. [DOI: 10.1007/s10562-022-03926-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Miller KA, Alemany LB, Roy S, Yan Q, Demingos PG, Singh CV, Alahakoon S, Egap E, Thomas EL, Ajayan PM. High-Strength, Microporous, Two-Dimensional Polymer Thin Films with Rigid Benzoxazole Linkage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1861-1873. [PMID: 34978172 DOI: 10.1021/acsami.1c17501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) rigid polymers provide an opportunity to translate the high-strength, high-modulus mechanical performance of classic rigid-rod 1D polymers across a plane by extending covalent bonding into two dimensions while simultaneously reducing density due to microporosity by structural design. Thus far, this potential has remained elusive because of the challenge of producing high-quality 2D polymer thin films, particularly those with irreversible, rigid benzazole linkages. Here, we present a facile two-step process that allows the deposition of a uniform intermediate film network via reversible, non-covalent interactions, followed by a subsequent solid-state annealing step that facilitates the irreversible conversion to a 2D covalently bonded polymer product with benzoxazole linkages. We demonstrate the versatility of this synthesis method by producing films with four different aromatic core units. The resulting films show microporosity and anisotropy with a 2D layered structure that can be exfoliated into few-layer nanosheets using a freeze-thaw method. These films have promising mechanical properties with an in-plane ultimate tensile strength of nearly 40 MPa and axial tensile and transverse compressive elastic moduli on the scale of several GPa, rivaling the performance of solution-cast films of 1D polybenzoxazole, as well as several other 1D high-strength polymer films.
Collapse
Affiliation(s)
- Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Lawrence B Alemany
- Department of Chemistry and Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pedro Guerra Demingos
- Department wof Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Chandra Veer Singh
- Department wof Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Sampath Alahakoon
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Eilaf Egap
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Edwin L Thomas
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
49
|
Zhang Y, Chen Z, Liu Q, Wan J. Effective carbon dioxide uptake in a tailored covalent organic framework with pore size and active atom regulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel tailored covalent organic framework (T-COF) with microporous structure has been designed and constructed for effective CO2 uptake.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Zhangfu Chen
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Qianyu Liu
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Jieqiong Wan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
50
|
Hu G, Cui G, Zhao J, Han M, Zou R. Pyrazine-cored covalent organic frameworks for efficient CO2 adsorption and removal of organic dyes. Polym Chem 2022. [DOI: 10.1039/d2py00329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational introduction of nitrogen heterocycles to a linker of covalent organic frameworks (COFs) can effectively capture CO2 and remove dyes in sewage. Here we report the designed synthesis of...
Collapse
|