1
|
Redjdal W, Benmahdjoub S, Luong TTH, Benmerad B, Le Bideau F, Vergnaud J, Messaoudi S. Pd-Catalyzed Coupling of Bromo-N- (β-glucopyranosyl)quinolin-2-ones with Amides: Synthesis of N-glucosyl-6BrCaQ Conjugates with Potent Anticancer Activity. ChemMedChem 2024; 19:e202400195. [PMID: 38687188 DOI: 10.1002/cmdc.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A series of N-glycosyl- 6BrCaQ conjugates was synthesized through a Pd-catalyzed cross-coupling reaction between brominated N-glycosyl quinolin-2-one derivatives and various nitrogen nucleophiles. Antiproliferative assays revealed that this new series of analogues represents a promising class of antitumor compounds as illustrated by the high biological activity observed for several derivatives towards different cancer cell lines compared to the non-glycosylated congeners.
Collapse
Affiliation(s)
- Wafa Redjdal
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
| | - Sara Benmahdjoub
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
- Département de Chimie, Université M'Hamed Bougara de Boumerdes, 35000, Boumerdes, Algeria
| | | | - Belkacem Benmerad
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
| | | | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien-Paris Saclay, 92290, Orsay, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
2
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581507. [PMID: 38464125 PMCID: PMC10925225 DOI: 10.1101/2024.02.22.581507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The stress-associated molecular chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing hundreds of oncoproteins and disturbing the stoichiometry of protein complexes. Most inhibitors target the key component heat-shock protein 90 (HSP90). However, although classical HSP90 inhibitors are highly tumor-selective, they fail in phase 3 clinical oncology trials. These failures are at least partly due to an interference with a negative feedback loop by HSP90 inhibition, known as heat-shock response (HSR): in response to HSP90 inhibition there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock factor 1 (HSF1). We recently identified that wildtype p53 (p53) actively reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here we test the hypothesis that in HSP90-based therapies simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. Indeed, we find that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids and patient-derived organoids (PDOs). Mechanistically, upon combination therapy human CRC cells strongly upregulate p53-associated pathways, apoptosis, and inflammatory immune pathways. Likewise, in the chemical AOM/DSS CRC model in mice, dual HSF1-HSP90 inhibition strongly represses tumor growth and remodels immune cell composition, yet displays only minor toxicities in mice and normal mucosa-derived organoids. Importantly, inhibition of the cyclin dependent kinases 4 and 6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Even more important, in p53-deficient (mutp53-harboring) CRC cells, an HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR system and reduces cancer growth. Likewise, p53-mutated PDOs strongly respond to dual HSF1-HSP90 pathway inhibition and thus, providing a strategy to target CRC independent of the p53 status. In sum, activating p53 (in p53-proficient cancer cells) or inhibiting CDK4/6 (independent of the p53 status) provide new options to improve the clinical outcome of HSP90-based therapies and to enhance colorectal cancer therapy.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- Charité – Universitätsmedizin Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | | |
Collapse
|
3
|
Vogt M, Dienstbier N, Schliehe-Diecks J, Scharov K, Tu JW, Gebing P, Hogenkamp J, Bilen BS, Furlan S, Picard D, Remke M, Yasin L, Bickel D, Kalia M, Iacoangeli A, Lenz T, Stühler K, Pandyra AA, Hauer J, Fischer U, Wagener R, Borkhardt A, Bhatia S. Co-targeting HSP90 alpha and CDK7 overcomes resistance against HSP90 inhibitors in BCR-ABL1+ leukemia cells. Cell Death Dis 2023; 14:799. [PMID: 38057328 PMCID: PMC10700369 DOI: 10.1038/s41419-023-06337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and β) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90β isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.
Collapse
Affiliation(s)
- Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Berna-Selin Bilen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Furlan
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Munishikha Kalia
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Julia Hauer
- Department of Pediatrics and Children's Cancer Research Center, Children's Hospital Munich Schwabing, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Nirgude S, Ravindran F, Kumar S, Sharma S, Mahadeva R, Mhatre A, Karki SS, Choudhary B. A Coumarin-Imidazothiadiazole Derivative, SP11 Abrogates Tumor Growth by Targeting HSP90 and Its Client Proteins. Molecules 2023; 28:5226. [PMID: 37446888 DOI: 10.3390/molecules28135226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Despite several treatment options for blood cancer, mortality remains high due to relapse and the disease's aggressive nature. Elevated levels of HSP90, a molecular chaperone essential for protein folding, are associated with poor prognosis in leukemia and lymphoma. HSP90 as a target for chemotherapy has been met with limited success due to toxicity and induction of heat shock. This study tested the activity of an HSP90 inhibitor, SP11, against leukemic cells, mouse lymphoma allograft, and xenograft models. SP11 induced cytotoxicity in vitro in leukemic cell lines and induced cell death via apoptosis, with minimal effect on normal cells. SP11 induced cell death by altering the status of HSP90 client proteins both in vitro and in vivo. SP11 reduced the tumor burden in allograft and xenograft mouse models without apparent toxicity. The half-life of SP11 in the plasma was approximately 2 h. SP11 binding was observed at both the N-terminal and C-terminal domains of HSP90. C-terminal binding was more potent than N-terminal binding of HSP90 in silico and in vitro using isothermal calorimetry. SP11 bioavailability and minimal toxicity in vivo make it a potential candidate to be developed as a novel anticancer agent.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
| | - Sujeet Kumar
- Dr. Prabhakar B. Kore Basic Science Research Laboratory Center (Off-Campus), Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Rajajinagar, (A Constituent Unit of KLE Academy of Higher Education; Research, Belagavi), Bangalore 560010, Karnataka, India
| | - Shivangi Sharma
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
| | - Anisha Mhatre
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
| | - Subhas S Karki
- Dr. Prabhakar B. Kore Basic Science Research Laboratory Center (Off-Campus), Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Rajajinagar, (A Constituent Unit of KLE Academy of Higher Education; Research, Belagavi), Bangalore 560010, Karnataka, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, Karnataka, India
| |
Collapse
|
5
|
Li M, She X, Ou Y, Liu J, Yuan Z, Zhao QS. Design, synthesis and biological evaluation of a new class of Hsp90 inhibitors vibsanin C derivatives. Eur J Med Chem 2022; 244:114844. [DOI: 10.1016/j.ejmech.2022.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
6
|
Yang M, Li C, Li Y, Cheng C, Shi M, Yin L, Xue H, Liu Y. Design, synthesis, biological evaluation and molecular docking study of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as novel HSP90 N-terminal inhibitors. J Enzyme Inhib Med Chem 2022; 37:2551-2565. [PMID: 36120957 PMCID: PMC9518286 DOI: 10.1080/14756366.2022.2124407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular chaperone HSP90 plays an essential role in cancer occurrence and development. Therefore, it is an important target for the development of anticancer drugs. 1,3-Dibenzyl-2-aryl imidazolidine (8) is a previously reported inhibitor of HSP90; however, its anticancer activity is poor. In this work, chemical modification of 8 led to the discovery of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as two types of novel HSP90 N-terminal inhibitors. 16l and 22k exhibited antiproliferative activity against multiple breast cancer cell lines with IC50 values at the low micromolar level. 16l and 22k induced significant degradation of the client proteins AKT and ERK and a lower level of the heat shock response in comparison with tanespimycin (17-AAG). 22k exhibited a strong affinity for the HSP90α N-terminus with an IC50 value of 0.21 μM. A molecular docking study revealed that 16l and 22k successfully bind to the geldanamycin binding site at the N-terminus of HSP90α.
Collapse
Affiliation(s)
- Man Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yajing Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Chen Cheng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lei Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hongyu Xue
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yajun Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
7
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
8
|
Bhatia S, Spanier L, Bickel D, Dienstbier N, Woloschin V, Vogt M, Pols H, Lungerich B, Reiners J, Aghaallaei N, Diedrich D, Frieg B, Schliehe-Diecks J, Bopp B, Lang F, Gopalswamy M, Loschwitz J, Bajohgli B, Skokowa J, Borkhardt A, Hauer J, Hansen FK, Smits SHJ, Jose J, Gohlke H, Kurz T. Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization. ACS CENTRAL SCIENCE 2022; 8:636-655. [PMID: 35647282 PMCID: PMC9136973 DOI: 10.1021/acscentsci.2c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 05/04/2023]
Abstract
Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.
Collapse
Affiliation(s)
- Sanil Bhatia
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49) 211 81 04896.
| | - Lukas Spanier
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - David Bickel
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Niklas Dienstbier
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vitalij Woloschin
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Melina Vogt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Henrik Pols
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Beate Lungerich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jens Reiners
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Narges Aghaallaei
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniela Diedrich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Benedikt Frieg
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
| | - Julian Schliehe-Diecks
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Bertan Bopp
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Franziska Lang
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mohanraj Gopalswamy
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Baubak Bajohgli
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Julia Skokowa
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Arndt Borkhardt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Hauer
- Department
of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden 01307, Germany
- Partner
Site Dresden, National Center for Tumor
Diseases (NCT), Dresden 01307, Germany
| | - Finn K. Hansen
- Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical
Institute University of Bonn, Bonn 53121, Germany
| | - Sander H. J. Smits
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biochemistry, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Jose
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
- Phone: (+49)
211 81 13662.
| | - Thomas Kurz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49)
211 81 14984.
| |
Collapse
|
9
|
A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene 2022; 41:3289-3297. [PMID: 35501463 PMCID: PMC9166677 DOI: 10.1038/s41388-022-02269-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Despite recent advances, there remains a significant unmet need for the development of new targeted therapies for triple-negative breast cancer (TNBC). Although the heat shock protein HSP90 is a promising target, previous inhibitors have had issues during development including undesirable induction of the heat shock response (HSR) and off-target effects leading to toxicity. SL-145 is a novel, rationally-designed C-terminal HSP90 inhibitor that induces apoptosis in TNBC cells via the suppression of oncogenic AKT, MEK/ERK, and JAK2/STAT3 signaling and does not trigger the HSR, in contrast to other inhibitors. In an orthotopic allograft model incorporating breast cancer stem cell-enriched TNBC tumors, SL-145 potently suppressed tumor growth, angiogenesis, and metastases concomitant with dysregulation of the JAK2/STAT3 signaling pathway. Our findings highlight the potential of SL-145 in suppressing metastatic TNBC independent of the HSR.
Collapse
|
10
|
Han Z, McAlpine SR, Chapman R. Delivering hydrophilic peptide inhibitors of heat shock protein 70 into cancer cells. Bioorg Chem 2022; 122:105713. [DOI: 10.1016/j.bioorg.2022.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022]
|
11
|
Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM, Morin G, Martina JA, Sirois I, Aguilar-Mahecha A, Gruosso T, McGuirk S, Rose AAN, Tokat UM, Johnson RM, Sahin O, Bareke E, St-Pierre J, Park M, Basik M, Majewski J, Puertollano R, Pause A, Huang S, Keler T, Siegel PM. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022; 41:1701-1717. [PMID: 35110681 DOI: 10.1038/s41388-022-02206-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alex Kiepas
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian E Hsu
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Geneviève Morin
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Isabelle Sirois
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Tina Gruosso
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - April A N Rose
- Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Unal M Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Bareke
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.,Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Synthesis and antiproliferative activity of 6BrCaQ-TPP conjugates for targeting the mitochondrial heat shock protein TRAP1. Eur J Med Chem 2021; 229:114052. [PMID: 34952432 DOI: 10.1016/j.ejmech.2021.114052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/23/2022]
Abstract
A series of 6BrCaQ-Cn-TPP conjugates 3a-f and 5 was designed and synthesized as a novel class of TRAP1 inhibitors. Compound 3a displayed an excellent anti-proliferative activity with mean GI50 values at a nanomolar level in a diverse set of human cancer cells (GI50 = 0.008-0.30 μM) including MDA-MB231, HT-29, HCT-116, K562, and PC-3 cancer cell lines. Moreover, the best lead compound 6BrCaQ-C10-TPP induces a significant mitochondrial membrane disturbance combined to a regulation of HSP and partner protein levels as a first evidence that his mechanism of action involves the TRAP-1 mitochondrial Hsp90 machinery.
Collapse
|
13
|
The C-terminal HSP90 inhibitor NCT-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Dis 2021; 7:354. [PMID: 34775489 PMCID: PMC8590693 DOI: 10.1038/s41420-021-00743-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive cancers.
Collapse
|
14
|
Mak OW, Sharma N, Reynisson J, Leung IKH. Discovery of novel Hsp90 C-terminal domain inhibitors that disrupt co-chaperone binding. Bioorg Med Chem Lett 2021; 38:127857. [PMID: 33609661 DOI: 10.1016/j.bmcl.2021.127857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
Heat shock protein 90 (Hsp90) is an essential molecular chaperone that performs vital stress-related and housekeeping functions in cells and is a current therapeutic target for diseases such as cancers. Particularly, the development of Hsp90 C-terminal domain (CTD) inhibitors is highly desirable as inhibitors that target the N-terminal nucleotide-binding domain may cause unwanted biological effects. Herein, we report on the discovery of two drug-like novel Hsp90 CTD inhibitors by using virtual screening and intrinsic protein fluorescence quenching binding assays, paving the way for future development of new therapies that employ molecular chaperone inhibitors.
Collapse
Affiliation(s)
- Oi Wei Mak
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom.
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
15
|
McConnell JR, Dyson HJ, McAlpine SR. Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. RSC Med Chem 2021; 12:410-415. [PMID: 33898992 PMCID: PMC8044635 DOI: 10.1039/d0md00387e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
We present the first NMR study of the interaction between heat shock protein 90 (Hsp90) and amino (N)-terminal inhibitors 17-AAG, and AUY922, and carboxy (C)-terminal modulators SM253, and LB51. We show that the two ATP mimics, 17-AAG and AUY922, bind deeply within the ATP binding pocket of the N-terminal domain, consistent with the crystal structures. In contrast, SM253, a C-terminal Hsp90 modulator, binds to the linker region between the N and middle domains. We also show that C-terminal inhibitor LB51 binds to the C-terminus with a more significant spectroscopic change than previously reported using NMR binding studies of C-terminal inhibitors novobiocin and silybin. These data provide key insights into how the allosteric inhibitor SM253 controls the C-terminal co-chaperones and confirms the binding domain of LB51.
Collapse
Affiliation(s)
- Jeanette R McConnell
- Work performed at School of Chemistry , University of New South Wales , Sydney , Australia .
| | - H Jane Dyson
- Work also performed at Scripps Research , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA .
| | - Shelli R McAlpine
- Work performed at School of Chemistry , University of New South Wales , Sydney , Australia .
| |
Collapse
|
16
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
17
|
Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation. Food Chem Toxicol 2019; 132:110645. [DOI: 10.1016/j.fct.2019.110645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/27/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
|
18
|
Huo Y, Buckton LK, Bennett JL, Smith EC, Byrne FL, Hoehn KL, Rahimi MN, McAlpine SR. Delivering bioactive cyclic peptides that target Hsp90 as prodrugs. J Enzyme Inhib Med Chem 2019; 34:728-739. [PMID: 30822267 PMCID: PMC6407599 DOI: 10.1080/14756366.2019.1580276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The most challenging issue facing peptide drug development is producing a molecule with optimal physical properties while maintaining target binding affinity. Masking peptides with protecting groups that can be removed inside the cell, produces a cell-permeable peptide, which theoretically can maintain its biological activity. Described are series of prodrugs masked using: (a) O-alkyl, (b) N-alkyl, and (c) acetyl groups, and their binding affinity for Hsp90. Alkyl moieties increased compound permeability, Papp, from 3.3 to 5.6, however alkyls could not be removed by liver microsomes or in-vivo and their presence decreased target binding affinity (IC50 of ≥10 µM). Thus, unlike small molecules, peptide masking groups cannot be predictably removed; their removal is related to the 3-D conformation. O-acetyl groups were cleaved but are labile, increasing challenges during synthesis. Utilising acetyl groups coupled with mono-methylated amines may decrease the polarity of a peptide, while maintaining binding affinity.
Collapse
Affiliation(s)
- Yuantao Huo
- a School of Chemistry, University of New South Wales , Sydney , Australia
| | - Laura K Buckton
- a School of Chemistry, University of New South Wales , Sydney , Australia
| | - Jack L Bennett
- a School of Chemistry, University of New South Wales , Sydney , Australia
| | - Eloise C Smith
- a School of Chemistry, University of New South Wales , Sydney , Australia
| | - Frances L Byrne
- b School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Kyle L Hoehn
- b School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Marwa N Rahimi
- a School of Chemistry, University of New South Wales , Sydney , Australia
| | - Shelli R McAlpine
- a School of Chemistry, University of New South Wales , Sydney , Australia
| |
Collapse
|
19
|
Rahimi MN, Foster HG, Farazi SN, Chapman R, McAlpine SR. Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chem Commun (Camb) 2019; 55:4515-4518. [PMID: 30920570 DOI: 10.1039/c9cc00890j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LB76 is a cyclic peptide that shows great promise as a selective heat shock protein 90 (Hsp90) inhibitor. However despite strong binding to and inhibition of Hsp90 in cell lysate its polar structure prevents it from crossing the cell membrane. We have developed a pH responsive polymer nanoparticle that effectively encapsulates LB76 from solution without need for purification. The nanoparticle releases the molecule upon crossing the cell membrane. Treatment of human colon cancer HCT116 cells with nanoparticles laden with LB76 produces the typical phenotype associated with Hsp90 inhibition, providing evidence of a therapeutically active payload.
Collapse
Affiliation(s)
- Marwa N Rahimi
- School of Chemistry, University of New South Wales, Gate 2 High street, Dalton 219, Sydney, Australia.
| | | | | | | | | |
Collapse
|
20
|
Kirillova MA, Ranjan R, Esimbekova EN, Kratasyuk VA. Role of Hsp90 and ATP in modulating apyrase activity and firefly luciferase kinetics. Int J Biol Macromol 2019; 131:691-696. [PMID: 30902720 DOI: 10.1016/j.ijbiomac.2019.03.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
Abstract
The present manuscript describes a novel bioassay consisting of apyrase and heat shock protein 90 (Hsp90) without additional co-chaperone supplementation; intended for high-throughput screening of anti-cancer drugs and prognosis of stress. In this regard, Hsp90 and adenosine 5'-triphosphate (ATP) mediated firefly luciferase (FLuc) kinetics was investigated using apyrase and FLuc as client proteins. Bioluminescent assay containing Hsp90, ATP, and apyrase led to complete loss of luminescence at 50 °C which indicates the protective role of Hsp90 against thermal denaturation. Similarly, the assay sample comprising Hsp90, ATP, and FLuc showed 2 fold increments in luminescence than their counterparts. Introduction of bovine serum albumin (BSA) to the pre-incubated assay mixture led to an initial rise in the luminescence (28%) in comparison to the sample containing Hsp90, ATP and FLuc. Therefore, FLuc based HTS assays are not suitable for clinical samples which may contain stabilizing agents. However, thermally denatured FLuc and apyrase could not regain their active conformation even when Hsp90 and ATP were introduced in the assay system. This observation justifies the role of Hsp90 to be protective rather than a reparation agent when acts without co-chaperones.
Collapse
Affiliation(s)
- Maria A Kirillova
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia
| | - Rajeev Ranjan
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
| | - Elena N Esimbekova
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia
| | - Valentina A Kratasyuk
- Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', Akademgorodok 50/50, Krasnoyarsk 660036, Russia
| |
Collapse
|
21
|
Rahimi MN, McAlpine SR. Protein-protein inhibitor designed de novo to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Chem Commun (Camb) 2019; 55:846-849. [PMID: 30575826 DOI: 10.1039/c8cc07576j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions control all cellular functions. Presented is the first de novo designed protein-protein inhibitor that targets the C-terminus of heat shock protein 90 (Hsp90) and blocks co-chaperones from binding. Compound LB76, which was created from an Hsp90 co-chaperone, selectively pulls down Hsp90 from cell lysates, binds to Hsp90's C-terminal domain, and blocks the interactions between Hsp90 and TPR-containing co-chaperones. Through these interactions, LB76 inhibits the protein-folding function of Hsp90. Blocking these protein-protein interactions between Hsp90 and C-terminal co-chaperones regulate the cell's entire protein-folding machinery.
Collapse
Affiliation(s)
- Marwa N Rahimi
- School of Chemistry, Gate 2 High street, Dalton 219, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
22
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
23
|
Sauvage F, Fattal E, Al-Shaer W, Denis S, Brotin E, Denoyelle C, Blanc-Fournier C, Toussaint B, Messaoudi S, Alami M, Barratt G, Vergnaud-Gauduchon J. Antitumor activity of nanoliposomes encapsulating the novobiocin analog 6BrCaQ in a triple-negative breast cancer model in mice. Cancer Lett 2018; 432:103-111. [DOI: 10.1016/j.canlet.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
24
|
Lee Y, Okayasu R. Strategies to Enhance Radiosensitivity to Heavy Ion Radiation Therapy. Int J Part Ther 2018; 5:114-121. [DOI: 10.14338/ijpt-18-00014.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Ryuichi Okayasu
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology/National Institute of Radiological Sciences, Japan
| |
Collapse
|
25
|
Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, Lang F, Zang T, Kröger T, Ernst T, Kögler G, Krieg A, Lüdeke S, Kunkel H, Rodrigues Moita AJ, Kassack MU, Marquardt V, Opitz FV, Oldenburg M, Remke M, Babor F, Grez M, Hochhaus A, Borkhardt A, Groth G, Nagel-Steger L, Jose J, Kurz T, Gohlke H, Hansen FK, Hauer J. Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood 2018; 132:307-320. [PMID: 29724897 PMCID: PMC6225350 DOI: 10.1182/blood-2017-10-810986] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Biomarkers, Tumor
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/metabolism
- Heat-Shock Response/drug effects
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization/drug effects
- Spectrum Analysis
- Structure-Activity Relationship
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Daniela Diedrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Stefan Stein
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Bertan Bopp
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Franziska Lang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Tao Zang
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Kröger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Ernst
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics and
| | - Andreas Krieg
- Department of Surgery (A), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Hana Kunkel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Ana J Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Friederike V Opitz
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Andreas Hochhaus
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Georg Groth
- Institute for Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; and
| | - Luitgard Nagel-Steger
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Finn K Hansen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Leipzig, Germany
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| |
Collapse
|
26
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Park J, Im H, Hong S, Castro CM, Weissleder R, Lee H. Analyses of Intravesicular Exosomal Proteins Using a Nano-Plasmonic System. ACS PHOTONICS 2018; 5:487-494. [PMID: 29805987 PMCID: PMC5966285 DOI: 10.1021/acsphotonics.7b00992] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, are nanoscale membrane particles shed from cells and contain cellular proteins whose makeup could inform cancer diagnosis and treatment. Most analyses have focused on surface proteins while analysis of intravesicular proteins has been more challenging. Herein, we report an EV screening assay for both intravesicular and transmembrane proteins using a nanoplasmonic sensor. Termed iNPS (intravesicular nanoplasmonic system), this platform used nanohole-based surface plasmon resonance (SPR) for molecular detection. Specifically, we i) established a unified assay protocol to detect intravesicular as well as transmembrane proteins; and ii) engineered plasmonic substrates to enhance detection sensitivity. The resulting iNPS enabled sensitive (0.5 μL sample per marker) and high-throughput (a 10 × 10 array) detection for EV proteins. When applied to monitor EVs from drug-treated cancer cells, the iNPS assay revealed drug-dependent unique EV protein signatures. We envision that iNPS could be a powerful tool for comprehensive molecular screening of EVs.
Collapse
Affiliation(s)
- Jongmin Park
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Seonki Hong
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
- Corresponding author: H. Lee, PhD, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, 617-726-8226,
| |
Collapse
|
28
|
Rahimi MN, Buckton LK, Zaiter SS, Kho J, Chan V, Guo A, Konesan J, Kwon S, Lam LKO, Lawler MF, Leong M, Moldovan GD, Neale DA, Thornton G, McAlpine SR. Synthesis and Structure-Activity Relationships of Inhibitors That Target the C-Terminal MEEVD on Heat Shock Protein 90. ACS Med Chem Lett 2018; 9:73-77. [PMID: 30555625 PMCID: PMC6291811 DOI: 10.1021/acsmedchemlett.7b00310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/13/2017] [Indexed: 01/04/2023] Open
Abstract
![]()
Herein, we describe
the synthesis and structure–activity
relationships of cyclic peptides designed to target heat shock protein
90 (Hsp90). Generating 19 compounds and evaluating their binding affinity
reveals that increasing electrostatic interactions allows the compounds
to bind more effectively with Hsp90 compared to the lead structure.
Exchanging specific residues for lysine improves binding affinity
for Hsp90, indicating some residues are not critical for interacting
with the target, whereas others are essential. Replacing l- for d-amino acids produced compounds with decreased binding
affinity compared to the parent structure, confirming the importance
of conformation and identifying key residues most important for binding.
Thus, a specific conformation and electrostatic interactions are required
in order for these inhibitors to bind to Hsp90.
Collapse
Affiliation(s)
- Marwa N. Rahimi
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura K. Buckton
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samantha S. Zaiter
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica Kho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vickie Chan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aldwin Guo
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jenane Konesan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - SuHyeon Kwon
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lok K. O. Lam
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael F. Lawler
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Leong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel D. Moldovan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - David A. Neale
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gillian Thornton
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shelli R. McAlpine
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain. Sci Rep 2018; 8:1709. [PMID: 29374167 PMCID: PMC5786060 DOI: 10.1038/s41598-017-14902-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone deeply involved in the complex network of cellular signaling governing some key functions, such as cell proliferation and survival, invasion and angiogenesis. Over the past years the N-terminal protein domain has been fully investigated as attractive strategy against cancer, but despite the many efforts lavished in the field, none of the N-terminal binders (termed "classical inhibitors"), currently in clinical trials, have yet successfully reached the market, because of the detrimental heat shock response (HSR) that showed to induce; thus, recently, the selective inhibition of Hsp90 C-terminal domain has powerfully emerged as a more promising alternative strategy for anti-cancer therapy, not eliciting this cell rescue cascade. However, the structural complexity of the target protein and, mostly, the lack of a co-crystal structure of C-terminal domain-ligand, essential to drive the identification of new hits, represent the largest hurdles in the development of new selective C-terminal inhibitors. Continuing our investigations on the identification of new anticancer drug candidates, by using an orthogonal screening approach, here we describe two new potent C-terminal inhibitors able to induce cancer cell death and a considerable down-regulation of Hsp90 client oncoproteins, without triggering the undesired heat shock response.
Collapse
|
30
|
Zhao Z, Zhu J, Quan H, Wang G, Li B, Zhu W, Xie C, Lou L. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget 2018; 7:29648-63. [PMID: 27105490 PMCID: PMC5045423 DOI: 10.18632/oncotarget.8818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 90 (HSP90) is essential for cancer cells to assist the function of various oncoproteins, and it has been recognized as a promising target in cancer therapy. Although the HSP90 inhibitors in clinical trials have shown encouraging clinical efficacy, these agents induce heat shock response (HSR), which undermines their therapeutic effects. In this report, we detailed the pharmacologic properties of 4-(2-((1H-indol-3-yl)methylene)hydrazinyl)-N-(4-bromophenyl)-6-(3,5- dimethyl-1H -pyrazol-1-yl)-1,3,5-triazin-2-amine (X66), a novel and potent HSP90 inhibitor. X66 binds to the N-terminal domain in a different manner from the classic HSP90 inhibitors. Cellular study showed that X66 depleted HSP90 client proteins, resulted in cell cycle arrest and apoptosis, and inhibition of proliferation in cancer cell lines. X66 did not activate heat shock factor-1 (HSF-1) or stimulate transcription of HSPs. Moreover, the combination of X66 with HSP90 and proteasome inhibitors yielded synergistic cytotoxicity which was involved in X66-mediated abrogation of HSR through inhibition of HSF-1 activity. The intraperitoneal administration of X66 alone depleted client protein and inhibited tumor growth, and led to enhanced activity when combined with celastrol as compared to either agent alone in BT-474 xenograft model. Collectively, the HSP90 inhibitory action and the potent antitumor activity, with the anti-HSR action, promise X66 a novel HSP90-targeted agent, which merits further research and development.
Collapse
Affiliation(s)
- Zhixin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianming Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guimin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
31
|
Byrd KM, Kent CN, Blagg BSJ. Synthesis and Biological Evaluation of Stilbene Analogues as Hsp90 C-Terminal Inhibitors. ChemMedChem 2017; 12:2022-2029. [PMID: 29058824 PMCID: PMC5892432 DOI: 10.1002/cmdc.201700630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/22/2022]
Abstract
The design, synthesis, and biological evaluation of stilbene-based novobiocin analogues is reported. Replacement of the biaryl amide side chain with a triazole side chain produced compounds that exhibited good antiproliferative activities. Heat shock protein 90 (Hsp90) inhibition was observed when N-methylpiperidine was replaced with acyclic tertiary amines on the stilbene analogues that also contain a triazole-derived side chain. These studies revealed that ≈24 Å is the optimal length for compounds that exhibit good antiproliferative activity as a result of Hsp90 inhibition.
Collapse
Affiliation(s)
- Katherine M. Byrd
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Caitlin N. Kent
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
32
|
Ariyasu S, Mu J, Zhang X, Huang Y, Yeow EKL, Zhang H, Xing B. Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-Based Nanocomposite. Bioconjug Chem 2017; 28:1059-1067. [DOI: 10.1021/acs.bioconjchem.6b00741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shinya Ariyasu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jing Mu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiao Zhang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ying Huang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Edwin Kok Lee Yeow
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hua Zhang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bengang Xing
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|
33
|
Wang Y, Koay YC, McAlpine SR. How Selective are Hsp90 Inhibitors for Cancer Cells over Normal Cells? ChemMedChem 2017; 12:353-357. [PMID: 28139075 DOI: 10.1002/cmdc.201600595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Selectively inhibiting target proteins in cancer cells over normal cells is one of the most critical features of a successful protein inhibitor for clinical applications. By evaluating and comparing the impact of a clinical N-terminal heat shock protein 90 (Hsp90) inhibitor, AUY922 (luminespib), on Hsp90 inhibition-associated cellular events in cancer cells versus normal cells, we found that it produces similar phenotype characteristics in both cell types, indicating that AUY922 is not selective for targeting Hsp90 in tumor cells. By comparison, the C-terminal Hsp90 modulator SM258 suppresses cell proliferation, triggers apoptosis, regulates the expression of Hsp90-associated heat shock proteins, and enhances the degradation of Hsp90's client proteins preferentially in cancer cells over normal cells. Our findings support a new paradigm that AUY922 is not tumor selective, whereas SM258 is more selective and likely acts through an Hsp90-dependent mechanism.
Collapse
Affiliation(s)
- Yao Wang
- Department of Medicine, University of New South Wales, 2052, Australia
| | - Yen Chin Koay
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shelli R McAlpine
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
34
|
Armstrong HK, Koay YC, Irani S, Das R, Nassar ZD, Selth LA, Centenera MM, McAlpine SR, Butler LM. A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response. Prostate 2016; 76:1546-1559. [PMID: 27526951 DOI: 10.1002/pros.23239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND While there is compelling rationale to use heat shock protein 90 (Hsp90) inhibitors for treatment of advanced prostate cancer, agents that target the N-terminal ATP-binding site of Hsp90 have shown little clinical benefit. These N-terminal binding agents induce a heat shock response that activates compensatory heat shock proteins, which is believed to contribute in part to the agents' lack of efficacy. Here, we describe the functional characterization of two novel agents, SM253 and SM258, that bind the N-middle linker region of Hsp90, resulting in reduced client protein activation and preventing C-terminal co-chaperones and client proteins from binding to Hsp90. METHODS Inhibition of Hsp90 activity in prostate cancer cells by SM253 and SM 258 was assessed by pull-down assays. Cell viability, proliferation and apoptosis were assayed in prostate cancer cell lines (LNCaP, 22Rv1, PC-3) cultured with N-terminal Hsp90 inhibitors (AUY922, 17-AAG), SM253 or SM258. Expression of HSR heat shock proteins, Hsp90 client proteins and co-chaperones was assessed by immunoblotting. Efficacy of the SM compounds was evaluated in human primary prostate tumors cultured ex vivo by immunohistochemical detection of Hsp70 and Ki67. RESULTS SM253 and SM258 exhibit antiproliferative and pro-apoptotic activity in multiple prostate cancer cell lines (LNCaP, 22Rv1, and PC-3) at low micromolar concentrations. Unlike the N-terminal inhibitors AUY922 and 17-AAG, these SM agents do not induce expression of Hsp27, Hsp40, or Hsp70, proteins that are characteristic of the heat shock response, in any of the prostate cell lines analyzed. Notably, SM258 significantly reduced proliferation within 2 days in human primary prostate tumors cultured ex vivo, without the significant induction of Hsp70 that was caused by AUY922 in the tissues. CONCLUSIONS Our findings provide the first evidence of efficacy of this class of C-terminal modulators of Hsp90 in human prostate tumors, and indicate that further evaluation of these promising new agents is warranted. Prostate 76:1546-1559, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Heather K Armstrong
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Yen Chin Koay
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Swati Irani
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Rajdeep Das
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Zeyad D Nassar
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Luke A Selth
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Margaret M Centenera
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Shelli R McAlpine
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
35
|
Koay YC, Wahyudi H, McAlpine SR. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors. Chemistry 2016; 22:18572-18582. [DOI: 10.1002/chem.201603464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yen Chin Koay
- School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Hendra Wahyudi
- Department of Bioengineering; University of Utah; Salt Lake City UT 84112 USA
| | - Shelli R. McAlpine
- School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
36
|
Xu X, Wu Y, Hu M, Li X, Gu C, You Q, Zhang X. Structure–activity relationship of Garcinia xanthones analogues: Potent Hsp90 inhibitors with cytotoxicity and antiangiogenesis activity. Bioorg Med Chem 2016; 24:4626-4635. [DOI: 10.1016/j.bmc.2016.07.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/31/2023]
|
37
|
Chini MG, Malafronte N, Vaccaro MC, Gualtieri MJ, Vassallo A, Vasaturo M, Castellano S, Milite C, Leone A, Bifulco G, De Tommasi N, Dal Piaz F. Identification of Limonol Derivatives as Heat Shock Protein 90 (Hsp90) Inhibitors through a Multidisciplinary Approach. Chemistry 2016; 22:13236-50. [DOI: 10.1002/chem.201602242] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Maria G. Chini
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nicola Malafronte
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria C. Vaccaro
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Maria J. Gualtieri
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Pharmacognosy and Organic Drug; University of Los Andes; Sector Campo de Oro, detrás del IAHULA 5101 Mérida Venezuela
| | - Antonio Vassallo
- Department of Science; University of Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Michele Vasaturo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- PhD Program in Drug Discovery and Development; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Sabrina Castellano
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| | - Ciro Milite
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Antonietta Leone
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Giuseppe Bifulco
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II 132 84084 Fisciano Italy
- Department of Medicine and Surgery; University of Salerno; Via Allende 84081 Baronissi Italy
| |
Collapse
|
38
|
Byrd KM, Subramanian C, Sanchez J, Motiwala HF, Liu W, Cohen MS, Holzbeierlein J, Blagg BSJ. Synthesis and Biological Evaluation of Novobiocin Core Analogues as Hsp90 Inhibitors. Chemistry 2016; 22:6921-31. [PMID: 27037933 DOI: 10.1002/chem.201504955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Indexed: 02/06/2023]
Abstract
Development of heat shock protein 90 (Hsp90) C-terminal inhibitors has emerged as an exciting strategy for the treatment of cancer. Previous efforts have focused on modifications to the natural products novobiocin and coumermycin. Moreover, variations in both the sugar and amide moieties have been extensively studied, whereas replacements for the coumarin core have received less attention. Herein, 24 cores were synthesized with varying distances and angles between the sugar and amide moieties. Compounds that exhibited good anti-proliferative activity against multiple cancer cell lines and Hsp90 inhibitory activity, were those that placed the sugar and amide moieties between 7.7 and 12.1 Å apart along with angles of 180°.
Collapse
Affiliation(s)
- Katherine M Byrd
- Department of Medicinal Chemistry, The University of Kansas, Wescoe Hall Drive, Malott 4070, Lawrence, KS, 66045-7563, USA
| | - Chitra Subramanian
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline Sanchez
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hashim F Motiwala
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiya Liu
- Department of Urology, The University of Kansas Medical Center, 3901 Rainbow Boulevard,Stop 3016, Kansas City, Kansas, 66160, USA
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Holzbeierlein
- Department of Urology, The University of Kansas Medical Center, 3901 Rainbow Boulevard,Stop 3016, Kansas City, Kansas, 66160, USA
| | - Brian S J Blagg
- Department of Medicinal Chemistry, The University of Kansas, Wescoe Hall Drive, Malott 4070, Lawrence, KS, 66045-7563, USA.
| |
Collapse
|
39
|
Sauvage F, Franzè S, Bruneau A, Alami M, Denis S, Nicolas V, Lesieur S, Legrand FX, Barratt G, Messaoudi S, Vergnaud-Gauduchon J. Formulation and in vitro efficacy of liposomes containing the Hsp90 inhibitor 6BrCaQ in prostate cancer cells. Int J Pharm 2016; 499:101-109. [DOI: 10.1016/j.ijpharm.2015.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
40
|
Koay YC, Richardson NL, Zaiter SS, Kho J, Nguyen SY, Tran DH, Lee KW, Buckton LK, McAlpine SR. Hitting a Moving Target: How Does anN-Methyl Group Impact Biological Activity? ChemMedChem 2016; 11:881-92. [DOI: 10.1002/cmdc.201500572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yen Chin Koay
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Nicole L. Richardson
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Samantha S. Zaiter
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Jessica Kho
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Sheena Y. Nguyen
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Daniel H. Tran
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Ka Wai Lee
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Laura K. Buckton
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| | - Shelli R. McAlpine
- Department of Chemistry; University of New South Wales; Gate 2 High Street, Dalton F12 Sydney NSW 2008 Australia
| |
Collapse
|
41
|
Xu XL, Bao QC, Jia JM, Liu F, Guo XK, Zhang MY, Wei JL, Lu MC, Xu LL, Zhang XJ, You QD, Sun HP. CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells. Sci Rep 2016; 6:19004. [PMID: 26743233 PMCID: PMC4705544 DOI: 10.1038/srep19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor. It binds to the ATP-binding pocket of Hsp90 with a kinetic dissociation (Kd) constant of 27 ± 2.3 nM. It also exhibits potent in vitro antiproliferative effects in a range of solid tumor cells. In MCF-7 cells with high Hsp90 expression, CPUY201112 induces the degradation of Hsp90 client proteins including HER-2, Akt, and c-RAF. We prove that treating MCF-7 cells with CPUY201112 results in cell cycle arrest and apoptosis through the wild-type (wt) p53 pathway. CPUY201112 also synergizes with Nutlin-3a to induce cancer cell apoptosis. CPUY201112 significantly inhibited the growth of MCF-7 xenografts in nude mice without apparent body weight loss. These results demonstrate that CPUY201112 is a novel Hsp90 inhibitor with potential use in treating wild-type p53 related cancers.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-ye Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-chen Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
Teracciano S, Chini MG, Vaccaro MC, Strocchia M, Foglia A, Vassallo A, Saturnino C, Riccio R, Bifulco G, Bruno I. Identification of the key structural elements of a dihydropyrimidinone core driving toward more potent Hsp90 C-terminal inhibitors. Chem Commun (Camb) 2016; 52:12857-12860. [DOI: 10.1039/c6cc06379a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dramatic improvement in the biological activity of DHPM derivatives as a new class of Hsp90 C-terminal inhibitors for cancer therapy.
Collapse
|
43
|
Wang Y, McAlpine SR. Regulating the cytoprotective response in cancer cells using simultaneous inhibition of Hsp90 and Hsp70. Org Biomol Chem 2015; 13:2108-16. [PMID: 25526223 DOI: 10.1039/c4ob02531h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Both heat shock protein 90 and 70 (Hsp90, Hsp70) are cytoprotective proteins that regulate cell death by stabilizing and folding proteins. Taking a two-pronged approach, involving simultaneous inhibition of Hsp90 and Hsp70, leads to synergistic cell death, which makes this is an appealing clinical therapy.
Collapse
Affiliation(s)
- Y Wang
- Department of Chemistry, Gate 2 High street, Dalton 219. and University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
44
|
Wang Y, McAlpine SR. Combining an Hsp70 inhibitor with either an N- or C-terminal Hsp90 inhibitor produces mechanistically distinct phenotypes. Org Biomol Chem 2015; 13:3691-8. [PMID: 25679754 DOI: 10.1039/c5ob00147a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blocking the function of both heat shock protein 90 and 70 (Hsp90 and Hsp70) simultaneously limits these chaperones' cytoprotective effects on cancer cells. The unique phenotype associated with modulating Hsp90's C-terminus, when used in combination with Hsp70 inhibitors, produces a synergistic and highly relevant dual chemotherapy regimen.
Collapse
Affiliation(s)
- Y Wang
- Department of Chemistry, Gate 2 High street, Dalton 219, University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
45
|
Buckton LK, Wahyudi H, McAlpine SR. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90. Chem Commun (Camb) 2015; 52:501-4. [PMID: 26528929 DOI: 10.1039/c5cc03245h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sixteen linear and cyclic peptides were designed de novo to target the C-terminus of heat shock protein 90 (Hsp90). Protein binding data indicates that three compounds directly block co-chaperone access to Hsp90's C-terminus and luciferase renaturation assays confirm Hsp90-mediated protein folding is disrupted. This is the first report of an inhibitor that binds directly to the C-terminal MEEVD region of Hsp90.
Collapse
Affiliation(s)
- L K Buckton
- School of Chemistry, Gate 2 High Street, Dalton 219, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
46
|
Strocchia M, Terracciano S, Chini MG, Vassallo A, Vaccaro MC, Dal Piaz F, Leone A, Riccio R, Bruno I, Bifulco G. Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold. Chem Commun (Camb) 2015; 51:3850-3. [PMID: 25656927 DOI: 10.1039/c4cc10074c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hsp90 C-terminal ligands are potential new anti-cancer drugs alternative to the more studied N-terminal inhibitors. Here we report the identification of a new dihydropyrimidinone binding the C-terminus, which is not structurally related to other well-known natural and nature-inspired inhibitors of this second druggable Hsp90 site.
Collapse
Affiliation(s)
- Maria Strocchia
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang Y, McAlpine SR. C-terminal heat shock protein 90 modulators produce desirable oncogenic properties. Org Biomol Chem 2015; 13:4627-31. [PMID: 25711919 DOI: 10.1039/c5ob00044k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular protection mechanism, the heat shock response, is only activated by classical heat shock 90 inhibitors (Hsp90) that "target" the N-terminus of the protein, but not by those that modulate the C-terminus. Significant differences in cytotoxicity (nanomolar) for classical inhibitors versus their ability to modulate Hsp90 (low micromolar) are discussed. In contrast, molecules that modulate Hsp90's C-terminus show similar IC50 values for cytotoxicity and Hsp90 inhibition. A comparison between the two types of Hsp90 inhibitors suggests that classical inhibitors may be modulating an alternative biological target that stresses the cell rather directly inhibiting Hsp90, whereas C-terminal modulators are most likely acting by directly inhibiting Hsp90.
Collapse
Affiliation(s)
- Y Wang
- Department of Chemistry, The University of New South Wales, Gate 2 High street, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
48
|
McConnell JR, Buckton LK, McAlpine SR. Regulating the master regulator: Controlling heat shock factor 1 as a chemotherapy approach. Bioorg Med Chem Lett 2015; 25:3409-14. [PMID: 26164188 DOI: 10.1016/j.bmcl.2015.06.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022]
Abstract
Described is the role that heat shock factor 1 (HSF1) plays in regulating cellular stress. Focusing on the current state of the HSF1 field in chemotherapeutics we outline the cytoprotective role of HSF1 in the cell. Summarizing the mechanism by which HSF1 regulates the unfolded proteins that are generated under stress conditions provides the background on why HSF1, the master regulator, is such an important protein in cancer cell growth. Summarizing siRNA knockdown results and current inhibitors provides a comprehensive evaluation on HSF1 and its current state. One set of molecules stands out, in that they completely obliterate the levels of HSF1, while simultaneously inhibiting heat shock protein 90 (Hsp90). These molecules are extremely promising as chemotherapeutic agents and as tools that may ultimately provide the connection between Hsp90 inhibition and HSF1 protein levels.
Collapse
Affiliation(s)
- Jeanette R McConnell
- Department of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
49
|
Brandvold KR, Morimoto RI. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis. J Mol Biol 2015; 427:2931-47. [PMID: 26003923 DOI: 10.1016/j.jmb.2015.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Protein homeostasis (proteostasis) is inextricably tied to cellular health and organismal lifespan. Aging, exposure to physiological and environmental stress, and expression of mutant and metastable proteins can cause an imbalance in the protein-folding landscape, which results in the formation of non-native protein aggregates that challenge the capacity of the proteostasis network (PN), increasing the risk for diseases associated with misfolding, aggregation, and aberrant regulation of cell stress responses. Molecular chaperones have central roles in each of the arms of the PN (protein synthesis, folding, disaggregation, and degradation), leading to the proposal that modulation of chaperone function could have therapeutic benefits for the large and growing family of diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In this review, we will discuss the current strategies used to tune the PN through targeting molecular chaperones and assess the potential of the chemical biology of proteostasis.
Collapse
Affiliation(s)
- Kristoffer R Brandvold
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
50
|
Evaluating Dual Hsp90 and Hsp70 Inhibition as a Cancer Therapy. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|