1
|
Udupi A, Shetty S, Aranjani JM, Kumar R, Bharati S. Anticancer therapeutic potential of multimodal targeting agent- "phosphorylated galactosylated chitosan coated magnetic nanoparticles" against N-nitrosodiethylamine-induced hepatocellular carcinoma. Drug Deliv Transl Res 2025; 15:1023-1042. [PMID: 38990437 PMCID: PMC11782354 DOI: 10.1007/s13346-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as carriers in targeted drug delivery and has several advantages in the field of magnetic hyperthermia, chemodynamic therapy and magnet assisted radionuclide therapy. The characteristics of SPIONs can be tailored to deliver drugs into tumor via "passive targeting" and they can also be coated with tissue-specific agents to enhance tumor uptake via "active targeting". In our earlier studies, we developed HCC specific targeting agent- "phosphorylated galactosylated chitosan"(PGC) for targeting asialoglycoprotein receptors. Considering their encouraging results, in this study we developed a multifunctional targeting system- "phosphorylated galactosylated chitosan-coated magnetic nanoparticles"(PGCMNPs) for targeting HCC. PGCMNPs were synthesized by co-precipitation method and characterized by DLS, XRD, TEM, VSM, elemental analysis and FT-IR spectroscopy. PGCMNPs were evaluated for in vitro antioxidant properties, uptake in HepG2 cells, biodistribution, in vivo toxicity and were also evaluated for anticancer therapeutic potential against NDEA-induced HCC in mice model in terms of tumor status, electrical properties, antioxidant defense status and apoptosis. The characterization studies confirmed successful formation of PGCMNPs with superparamagnetic properties. The internalization studies demonstrated (99-100)% uptake of PGCMNPs in HepG2 cells. These results were also supported by biodistribution studies in which increased iron content (296%) was noted inside the hepatocytes. Further, PGCMNPs exhibited no in vivo toxicity. The anticancer therapeutic potential was evident from observation that PGCMNPs treatment decreased tumor bearing animals (41.6%) and significantly (p ≤ 0.05) lowered tumor multiplicity. Overall, this study indicated that PGCMNPs with improved properties are efficiently taken-up by hepatoma cells and has therapeutic potential against HCC. Further, this agent can be tagged with 32P and hence can offer multimodal cancer treatment options via radiation ablation as well as magnetic hyperthermia.
Collapse
Affiliation(s)
- Anushree Udupi
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, 342005, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Meng X, Yao J, Gu J. Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems. J Pharm Anal 2025; 15:101070. [PMID: 39885973 PMCID: PMC11780097 DOI: 10.1016/j.jpha.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 02/01/2025] Open
Abstract
Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of in vivo processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks. However, the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies. Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug, the encapsulated drug, and the nanomaterial, which present a higher level of complexity compared to traditional small-molecule drugs. Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines. This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years. We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiayi Yao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
5
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
6
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
7
|
Tian X, Yuan Y. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv 2024; 14:20757-20764. [PMID: 38952930 PMCID: PMC11216039 DOI: 10.1039/d4ra03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
PEGylated gold nanoparticles (PEG-AuNPs) are widely used in drug delivery, imaging and diagnostics, therapeutics, and biosensing. However, the effect of PEG dispersity on the molecular weight (M W) distribution of PEG grafted onto AuNP surfaces has been rarely reported. This study investigates the effect of PEG dispersity on the M W distribution of PEG grafted onto AuNP surfaces and its subsequent impact on protein adsorption and pharmacokinetics, by modifying AuNPs with monodisperse PEG methyl ether thiols (mPEG n -HS, n = 36, 45) and traditional polydisperse mPEG2k-SH (M W = 1900). Polydisperse PEG-AuNPs favor the enrichment of lower M W PEG fractions on their surface due to the steric hindrance effect, which leads to increased protein adsorption. In contrast, monodisperse PEG-AuNPs have a uniform length of PEG outlayer, exhibiting markedly lower yet constant protein adsorption. Pharmacokinetics analysis in tumor-bearing mice demonstrated that monodisperse PEG-AuNPs possess a significantly prolonged blood circulation half-life and enhanced tumor accumulation compared with their polydisperse counterpart. These findings underscore the critical, yet often underestimated, impacts of PEG dispersity on the in vitro and in vivo behavior of PEG-AuNPs, highlighting the role of monodisperse PEG in enhancing therapeutic nanoparticle performance.
Collapse
Affiliation(s)
- Xinsheng Tian
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University Hangzhou 310018 China
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| | - Yumin Yuan
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| |
Collapse
|
8
|
Oh JY, Jana B, Seong J, An EK, Go EM, Jin S, Ok HW, Seu MS, Bae JH, Lee C, Lee S, Kwon TH, Seo JK, Choi E, Jin JO, Kwak SK, Lah MS, Ryu JH. Unveiling the Power of Cloaking Metal-Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS NANO 2024; 18:15790-15801. [PMID: 38847355 DOI: 10.1021/acsnano.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jong-Hoon Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
George N, Chakraborty S, Mary NL, Suguna L. Incorporating silver nanoparticles into electrospun nanofibers of casein/polyvinyl alcohol to develop scaffolds for tissue engineering. Int J Biol Macromol 2024; 267:131501. [PMID: 38614170 DOI: 10.1016/j.ijbiomac.2024.131501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Developing novel antimicrobial wound dressings that have the potential to address the challenges associated with chronic wounds is highly imperative in providing effective infection control and wound healing support. Biocompatible electrospun nanofibers with their high porosity and surface area enabling efficient drug loading and delivery have been investigated in this regard as viable candidates for chronic wound care. Here, we design Casein/Polyvinyl alcohol (CAN/PVA) nanofibers reinforced with silver nanoparticles (Ag NPs) by the electrospinning technique to develop diabetic wound healing scaffolds. The prepared samples were characterized using spectroscopic and electron microscopic techniques. The biocompatibility of the polymer samples were assessed using 3 T3 fibroblast cell lines and the maximum cell viability was found to 95 % at a concentration of 50 μg/mL for the prepared nanofibers. Scratch assay tests were also performed to analyze the wound healing activity of the nanofibers wherein they demonstrated increased migration and proliferation of fibroblast 3 T3 cells. Moreover, these nanofibers also exhibit antibacterial efficiency against Gram-negative bacteria, Escherichia coli (E.coli). Therefore, the antimicrobial nature of the electrospun nanofibers coupled with their moisture absorption properties and wound healing ability render them as effective materials for wound dressing applications.
Collapse
Affiliation(s)
- Nisha George
- Department of Chemistry, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, India
| | - Sohini Chakraborty
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, Tamil Nadu, India
| | - N L Mary
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, Tamil Nadu, India.
| | - L Suguna
- Biotechnology and Biochemistry, CSIR- Central Leather Research Institute, Chennai, Tamil Nādu, India
| |
Collapse
|
11
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
12
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
13
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
14
|
Marin A, Kethanapalli SH, Andrianov AK. Immunopotentiating Polyphosphazene Delivery Systems: Supramolecular Self-Assembly and Stability in the Presence of Plasma Proteins. Mol Pharm 2024; 21:791-800. [PMID: 38206583 PMCID: PMC11164237 DOI: 10.1021/acs.molpharmaceut.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Studies on the biological performance of nanomedicines have been increasingly focused on the paradigm shifting role of the protein corona, which is imminently formed once the formulation is placed in a complex physiological environment. This phenomenon is predominantly studied in the context of protein adsorption science, while such interactions for water-soluble systems remain virtually unexplored. In particular, the importance of plasma protein binding is yet to be understood for pharmaceuticals designed on the basis of supramolecular architectures, which generally lack well-defined surfaces. Water-soluble ionic polyphosphazenes, clinically proven immunoadjuvants and vaccine delivery vehicles, represent an example of a system that requires supramolecular coassembly with antigenic proteins to attain an optimal immunopotentiating effect. Herein, the self-assembly behavior and stability of noncovalently bound complexes on the basis of a model antigen─hen egg lysozyme─and polyphosphazene adjuvant are studied in the presence of plasma proteins utilizing isothermal calorimetry, asymmetric flow field flow fractionation, dynamic light scattering, and size exclusion chromatography methods. The results demonstrate that although plasma proteins, such as human serum albumin (HSA), show detectable avidity to polyphosphazene, the strength of such interactions is significantly lower than that for the model antigen. Furthermore, thermodynamic parameters indicate different models of binding: entropy driven, which is consistent with the counterion release mechanism for albumin versus electrostatic interactions for lysozyme, which are characterized by beneficial enthalpy changes. In vitro protein release experiments conducted in Franz diffusion cells using enzyme-linked immunoassay detection suggest that the antigen-adjuvant complex stability is not adversely affected by the presence of the most physiologically abundant protein, which confirms the importance of the delivery modality for this immunoadjuvant. Moreover, HSA shows an unexpected stabilizing effect on complexes with high antigen load─an important consideration for further development of polyphosphazene adjuvanted vaccine formulations and their functional assessment.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Sri H. Kethanapalli
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
15
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
16
|
Ling B, Ko JH, Stordy B, Zhang Y, Didden TF, Malounda D, Swift MB, Chan WCW, Shapiro MG. Gas Vesicle-Blood Interactions Enhance Ultrasound Imaging Contrast. NANO LETTERS 2023; 23:10748-10757. [PMID: 37983479 PMCID: PMC10722532 DOI: 10.1021/acs.nanolett.3c02780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as systemically injectable nanomaterials have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact in vivo behavior. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface we can alter these interactions and thereby modify GVs' in vivo performance. These results provide critical insights for the development of GVs as agents for nanomedicine.
Collapse
Affiliation(s)
- Bill Ling
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jeong Hoon Ko
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Benjamin Stordy
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
- Terrence
Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S
3E1, Canada
| | - Yuwei Zhang
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
- Terrence
Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S
3E1, Canada
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Tighe F. Didden
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dina Malounda
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Margaret B. Swift
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Warren C. W. Chan
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
- Terrence
Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S
3E1, Canada
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mikhail G. Shapiro
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
- Howard Hughes
Medical Institute, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Gahtori P, Gunwant V, Pandey R. How Does pH Affect the Adsorption of Human Serum Protein in the Presence of Hydrophobic and Hydrophilic Nanoparticles at Air-Water and Lipid-Water Interfaces? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15487-15498. [PMID: 37878019 DOI: 10.1021/acs.langmuir.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This study investigates interaction between hydrophilic (11-mercaptoundecanoic acid (MUA)) and hydrophobic (1-undecanethiol (UDT)) gold nanoparticles (GNPs) with human serum albumin (HSA) protein on air-water and lipid-water interfaces at pH 3 and 7. Vibrational sum frequency generation (VSFG) spectroscopy is used to analyze changes in the intensity of interfacial water molecules and the C-H group of the protein. At the air-water interface, the hydrophobic interaction between the HSA protein and hydrophobic GNPs at pH 3 leads to their accumulation at the interface, resulting in an increased C-H intensity of the protein with a slight decrease in water intensity. Whereas, at pH 7, where the negative charge of the protein results in the reduced surface activity of the HSA compared to pH 3, the interaction between alkyl chain of the hydrophobic GNPs and alkyl group of the protein results in the adsorption of the protein-capped GNPs at the interface. This leads to an increased intensity of the C-H group of protein and water molecules. However, negatively charged hydrophilic GNPs do not induce significant changes in the interfacial water structure or the C-H group of the protein due to the electrostatic force of repulsion with the negatively charged HSA at pH 7. In contrast, at the lipid-water interface, both hydrophobic and hydrophilic GNPs interact with HSA protein, causing disordering of interfacial water molecules at pH 3 and ordering at pH 7. Interestingly, similar behavior of the protein with both types of GNPs results in comparable ordering/disordering at the interface depending on the pH of solution. Furthermore, the VSFG results obtained with the deuterated lipid suggest that changes in ordering and disorder occur due to increased protein adsorption in the presence of GNPs, causing alterations in the membrane structure. These findings give a better understanding of the mechanisms that govern protein-nanoparticle interaction and their consequential effects on the structure, function, and behavior of molecules at the biological membrane interface, which is crucial for developing safe and effective nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
18
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
19
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
20
|
Ling B, Ko JH, Stordy B, Zhang Y, Didden TF, Malounda D, Swift MB, Chan WC, Shapiro MG. Gas vesicle-blood interactions enhance ultrasound imaging contrast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550434. [PMID: 37546852 PMCID: PMC10402017 DOI: 10.1101/2023.07.24.550434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as a systemically injectable nanomaterial have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact in vivo performance. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface, we can alter these interactions and thereby modify GVs' in vivo performance. These results provide critical insights for the development of GVs as agents for nanomedicine.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
- These authors contributed equally to this work
| | - Jeong Hoon Ko
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
- These authors contributed equally to this work
| | - Benjamin Stordy
- Institute of Biomedical Engineering, University of Toronto; Toronto, ON M5S 3G9, Canada
- Terence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto; Toronto, ON M5S 3E1, Canada
| | - Yuwei Zhang
- Institute of Biomedical Engineering, University of Toronto; Toronto, ON M5S 3G9, Canada
- Terence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto; Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto; Toronto, ON M5S 3H6, Canada
| | - Tighe F. Didden
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
| | - Warren C.W. Chan
- Institute of Biomedical Engineering, University of Toronto; Toronto, ON M5S 3G9, Canada
- Terence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto; Toronto, ON M5S 3E1, Canada
- Department of Chemistry, University of Toronto; Toronto, ON M5S 3H6, Canada
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology; Pasadena, CA 91125, USA
- Howard Hughes Medical Institute; Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
22
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Costagliola di Polidoro A, Baghbantarghdari Z, De Gregorio V, Silvestri S, Netti PA, Torino E. Insulin Activation Mediated by Uptake Mechanisms: A Comparison of the Behavior between Polymer Nanoparticles and Extracellular Vesicles in 3D Liver Tissues. Biomacromolecules 2023; 24:2203-2212. [PMID: 37023462 PMCID: PMC10170511 DOI: 10.1021/acs.biomac.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
In this work, we compare the role of two different uptake mechanisms in the effectiveness of a nanoformulated drug, specifically insulin. Insulin is activated by interacting with insulin receptors exposed on the liver cell membrane that triggers the uptake and storage of glucose. To prove that the uptake mechanism of a delivery system can interfere directly with the effectiveness of the delivered drug, two extremely different delivery systems are tested. In detail, hydrogel-based NPs (cHANPs) and natural lipid vesicles (EVs) encapsulating insulin are used to trigger the activation of this hormone in 3D liver microtissues (μTs) based on their different uptake mechanisms. Results demonstrated that the fusion mechanism of Ins-EVs mediates faster and more pronounced insulin activation with respect to the endocytic mechanism of Ins-cHANPs. Indeed, the fusion causes an increased reduction in glucose concentration in the culture medium EV-treated l-μTs with respect to free insulin-treated tissues. The same effect is not observed for Ins-cHANPs that, taken up by endocytosis, can only equal the reduction in glucose concentration produced by free insulin in 48 h. Overall, these results demonstrate that the effectiveness of nanoformulated drugs depends on the identity they acquire in the biological context (biological identity). Indeed, the nanoparticle (NP) biological identity, such as the uptake mechanism, triggers a unique set of nano-bio-interactions that is ultimately responsible for their fate both in the extracellular and intracellular compartments.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Zahra Baghbantarghdari
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Biology, University of Naples ″Federico II″, Complesso Universitario di Monte S Angelo, Naples 80125, Italy
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| |
Collapse
|
24
|
Mishra S, Bhatt T, Kumar H, Jain R, Shilpi S, Jain V. Nanoconstructs for theranostic application in cancer: Challenges and strategies to enhance the delivery. Front Pharmacol 2023; 14:1101320. [PMID: 37007005 PMCID: PMC10050349 DOI: 10.3389/fphar.2023.1101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Nanoconstructs are made up of nanoparticles and ligands, which can deliver the loaded cargo at the desired site of action. Various nanoparticulate platforms have been utilized for the preparation of nanoconstructs, which may serve both diagnostic as well as therapeutic purposes. Nanoconstructs are mostly used to overcome the limitations of cancer therapies, such as toxicity, nonspecific distribution of the drug, and uncontrolled release rate. The strategies employed during the design of nanoconstructs help improve the efficiency and specificity of loaded theranostic agents and make them a successful approach for cancer therapy. Nanoconstructs are designed with a sole purpose of targeting the requisite site, overcoming the barriers which hinders its right placement for desired benefit. Therefore, instead of classifying modes for delivery of nanoconstructs as actively or passively targeted systems, they are suitably classified as autonomous and nonautonomous types. At large, nanoconstructs offer numerous benefits, however they suffer from multiple challenges, too. Hence, to overcome such challenges computational modelling methods and artificial intelligence/machine learning processes are being explored. The current review provides an overview on attributes and applications offered by nanoconstructs as theranostic agent in cancer.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Satish Shilpi
- Department of Pharmaceutics, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- *Correspondence: Vikas Jain,
| |
Collapse
|
25
|
Kuznetsova OV, Kolotilina NK, Dolgonosov AM, Khamizov RK, Timerbaev AR. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
27
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
28
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
30
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
31
|
Popov AB, Melle F, Linnane E, González-López C, Ahmed I, Parshad B, Franck CO, Rahmoune H, Richards FM, Muñoz-Espín D, Jodrell DI, Fairen-Jimenez D, Fruk L. Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. NANOSCALE 2022; 14:6656-6669. [PMID: 35438701 PMCID: PMC9070568 DOI: 10.1039/d2nr00864e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Andrea Bistrović Popov
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Cristina González-López
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ishtiaq Ahmed
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Badri Parshad
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Christoph O Franck
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Translational Medicine, Oncology R&D, Astra Zeneca, Cambridge CB4 0WG, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ljiljana Fruk
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
32
|
Zhang X, Jin X, Sun R, Zhang M, Lu W, Zhao M. Gene knockout in cellular immunotherapy: Application and limitations. Cancer Lett 2022; 540:215736. [DOI: 10.1016/j.canlet.2022.215736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
|
33
|
Beringhs AO, Ndaya D, Bosire R, Kasi RM, Lu X. Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using Perfluorooctyl Bromide Nanocapsule X‐ray Computed Tomography Contrast. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- André O'Reilly Beringhs
- Department of Pharmaceutical Sciences School of Pharmacy University of Connecticut Storrs CT 06269 USA
| | - Dennis Ndaya
- Polymer Program Institute of Material Sciences University of Connecticut Storrs CT 06269 USA
| | - Reuben Bosire
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Rajeswari M. Kasi
- Polymer Program Institute of Material Sciences University of Connecticut Storrs CT 06269 USA
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences School of Pharmacy University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
34
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
35
|
Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. J Control Release 2022; 350:60-79. [DOI: 10.1016/j.jconrel.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
36
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
37
|
Kang J, Wu F, Xue Y, Li Z, Wang Y, Liu K. Dopamine Functionalized Polyethylene Glycol for Improving Stability of Gold Nanoparticles Against Reactive Oxygen Species in Serum. Macromol Rapid Commun 2022; 43:e2200035. [DOI: 10.1002/marc.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Fei‐Zheng Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhi‐Han Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yu‐Xi Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
38
|
Radziwon A, Bhangu SK, Fernandes S, Cortez-Jugo C, De Rose R, Dyett B, Wojnilowicz M, Laznickova P, Fric J, Forte G, Caruso F, Cavalieri F. Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. NANOSCALE 2022; 14:3452-3466. [PMID: 35179174 DOI: 10.1039/d1nr08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.
Collapse
Affiliation(s)
- Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sukhvir K Bhangu
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Brendan Dyett
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Petra Laznickova
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
39
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
40
|
Kamaly N, Farokhzad OC, Corbo C. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. NANOSCALE 2022; 14:1606-1620. [PMID: 35076049 DOI: 10.1039/d1nr06580g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.
Collapse
Affiliation(s)
- Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, UK.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Claudia Corbo
- Department of Medicine and Surgery, Center for Nanomedicine NANOMIB, University of Milan Bicocca, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
41
|
Nerantzaki M, Michel A, Petit L, Garnier M, Menager C, Griffete N. Biotinylated magnetic molecularly imprinted polymer nanoparticles for cancer cell targeting and controlled drug delivery. Chem Commun (Camb) 2022; 58:5642-5645. [DOI: 10.1039/d2cc00740a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, multivalent functions have been successfully integrated on a single core-shell type nanostructure, for remote-controlled and receptor-targeted intracellular delivery of doxorubicin (DOX) to breast cancer cells that overexpress biotin receptors.
Collapse
|
42
|
Upreti T, Wolfe K, Van Bavel N, Anikovskiy M, Labouta HI. Collagen – A Newly Discovered Major Player in Protein Corona Formation on Nanoparticles. Phys Chem Chem Phys 2022; 24:5610-5617. [DOI: 10.1039/d1cp03968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tracking protein corona (PC) formation on the surface of nanoparticles (NPs) is a prerequisite for successful design of next generation nanocarriers with predictable fate and behavior. However, PC formation has...
Collapse
|
43
|
Barth C, Spreen H, Mulac D, Keuter L, Behrens M, Humpf HU, Langer K. Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles. BIOMATERIALS AND BIOSYSTEMS 2021; 5:100032. [PMID: 36825111 PMCID: PMC9934468 DOI: 10.1016/j.bbiosy.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor-mediated active targeting of nanocarriers is a widely investigated approach to specifically address cancerous cells and tissues in the human body. The idea is to use these formulations as drug carriers with enhanced specificity and therefore reduced systemic side effects. Until today a big obstacle to reach this goal remains the adsorption of serum proteins to the nanocarrier's surface after contact with biological fluids. In this context different nanoparticle characteristics could be beneficial for effective active targeting after formation of a protein corona which need to be identified. In this study trastuzumab was used as an active targeting ligand which was covalently attached to human serum albumin nanoparticles. For coupling reaction different molecular weight spacers were used and resulting physicochemical nanoparticle characteristics were evaluated. The in vitro cell association of the different nanoparticle formulations was tested in cell culture experiments with or without fetal bovine serum. For specific receptor-mediated cell interaction SK-BR-3 breast cancer cells with human epidermal growth factor receptor 2 (HER2) overexpression were used. MCF-7 breast cancer cells with normal HER2 expression served as control. Furthermore, serum protein adsorption on respective nanoparticles was characterized. The qualitative and quantitative composition of the protein corona was analyzed by SDS-PAGE and LC-MS/MS and the influence of protein adsorption on active targeting capability was determined.
Collapse
Affiliation(s)
- Christina Barth
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Lucas Keuter
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany,To whom correspondence should be addressed.
| |
Collapse
|
44
|
de Lázaro I, Mooney DJ. Obstacles and opportunities in a forward vision for cancer nanomedicine. NATURE MATERIALS 2021; 20:1469-1479. [PMID: 34226688 DOI: 10.1038/s41563-021-01047-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 05/14/2023]
Abstract
Cancer nanomedicines were initially envisioned as magic bullets, travelling through the circulation to target tumours while sparing healthy tissues the toxicity of classic chemotherapy. While a limited number of nanomedicine therapies have resulted, the disappointing news is that major obstacles were overlooked in the nanoparticle's journey. However, some of these challenges may be turned into opportunities. Here, we discuss biological barriers to cancer nanomedicines and elaborate on two directions that the field is currently exploring to meet its initial expectations. The first strategy entails re-engineering cancer nanomedicines to prevent undesired interactions en route to the tumour. The second aims instead to leverage these obstacles into out-of-the-box diagnostic and therapeutic applications of nanomedicines, for cancer and beyond. Both paths require, among other developments, a deeper understanding of nano-bio interactions. We offer a forward look at how classic cancer nanomedicine may overcome its limitations while contributing to other areas of research.
Collapse
Affiliation(s)
- Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
45
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
46
|
Khayamian MA, Parizi MS, Ghaderinia M, Abadijoo H, Vanaei S, Simaee H, Abdolhosseini S, Shalileh S, Faramarzpour M, Naeini VF, Hoseinpour P, Shojaeian F, Abbasvandi F, Abdolahad M. A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Adv 2021; 11:34503-34515. [PMID: 35494759 PMCID: PMC9042719 DOI: 10.1039/d1ra04298j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Concurrent with the pandemic announcement of SARS-CoV-2 infection by the WHO, a variety of reports were published confirming the cytokine storm as the most mortal effect of the virus on the infected patients. Hence, cytokine storm as an evidenced consequence in most of the COVID-19 patients could offer a promising opportunity to use blood as a disease progression marker. Here, we have developed a rapid electrochemical impedance spectroscopy (EIS) sensor for quantifying the overall immune activity of the patients. Since during the cytokine storm many types of cytokines are elevated in the blood, there is no need for specific detection of a single type of cytokine and the collective behavior is just measured without any electrode functionalization. The sensor includes a monolayer graphene on a copper substrate as the working electrode (WE) which is able to distinguish between the early and severe stage of the infected patients. The charge transfer resistance (R CT) in the moderate and severe cases varies about 65% and 138% compared to the normal groups, respectively and a specificity of 77% and sensitivity of 100% based on ELISA results were achieved. The outcomes demonstrate a significant correlation between the total mass of the three main hypercytokinemia associated cytokines including IL-6, TNF-α and IFN-γ in patients and the R CT values. As an extra application, the biosensor's capability for diagnosis of COVID-19 patients was tested and a sensitivity of 92% and specificity of 50% were obtained compared to the RT-PCR results.
Collapse
Affiliation(s)
- Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
| | - Mohammad Salemizadeh Parizi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shohreh Vanaei
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Biology, College of Science, University of Tehran P. O. Box: 14155-6655 Tehran Iran
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR Tehran Iran
| | - Saeed Abdolhosseini
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Vahid Fadaei Naeini
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
- Division of Machine Elements, Luleå University of Technology Luleå SE-97187 Sweden
| | | | - Fatemeh Shojaeian
- Imam Hossein Clinical Research Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Science Tehran Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR P. O. Box 15179/64311 Tehran Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences P. O. Box 13145-158 Tehran Iran
- UT&TUMS Cancer electronic Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
47
|
Choi PS, Lee JY, Yang SD, Park JH. Biological behavior of nanoparticles with Zr-89 for cancer targeting based on their distinct surface composition. J Mater Chem B 2021; 9:8237-8245. [PMID: 34590668 DOI: 10.1039/d1tb01473k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-sized materials with properties that enable their internalization into target cells using passive targeting systems have been utilized with radioisotopes to track their pharmacokinetics in the body. Here, we report the incorporation of novel chelator-free Zr-89 using a hierarchical iron oxide nanocomposite (89Zr-IONC). Characterization revealed that it had a rice-shape with a mean width of 160 nm. The surface of the 89Zr-IONCs was coated by polyethyleneimine (PEI) and polyvinylpyrrolidone (PVP) to improve the cancer target efficacy. The biological behavior of the nanoparticles coated with the polymers differed significantly by the surface composition. Positron emission tomography measurements by the labeled Zr-89 effectively confirmed the cancer target capability and the fate of distribution in the body. We found that only PVP coated 89Zr-IONC reached the tumor region while non-coated and PEI coated 89Zr-IONC tended to be undesirably entirely cleared in the liver and spleen. The 89Zr-incorporated iron oxide nanocomposite is significantly stable for radiolabeling despite various surface modifications, allowing the potential carrier to specifically target cancer cells. The strategy of utilizing the biocompatible PEI and PVP surface coating system for negative charged nanoparticles such as iron oxide will afford enhanced biological application.
Collapse
Affiliation(s)
- Pyeong Seok Choi
- Korea Atomic Energy Research Institute, 29, Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Jun Young Lee
- Korea Atomic Energy Research Institute, 29, Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Seung Dae Yang
- Korea Atomic Energy Research Institute, 29, Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| | - Jeong Hoon Park
- Korea Atomic Energy Research Institute, 29, Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
48
|
Jang GJ, Jeong JY, Kang J, Cho W, Han SY. Size Dependence Unveiling the Adsorption Interaction of High-Density Lipoprotein Particles with PEGylated Gold Nanoparticles in Biomolecular Corona Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9755-9763. [PMID: 34347501 DOI: 10.1021/acs.langmuir.1c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apolipoproteins have been often found to be highly enriched in the serum protein coronas produced on various engineered nanoparticles (NPs), which is also known to greatly influence the behaviors of protein corona NPs in the biological systems. As most of the apolipoproteins in blood are associated with lipoproteins, it suggests the active involvement of lipoproteins in the formation of biomolecular coronas on NPs. However, the interactions of lipoprotein complexes with NPs in the corona formation have been rarely understood. In this study, to obtain insights into the interactions, the formation of biomolecular coronas of high-density lipoproteins (HDLs) on the PEGylated gold NPs (PEG-AuNPs) of various sizes (20-150 nm dia.) was investigated as a model system. The results of this study revealed a noticeable size dependence, which is a drastic increase in the affinity of HDL for larger NPs and thus less-curved NP surfaces. For example, only a few HDLs per NP, which correspond to 5% surface coverage, were found to constitute the hard coronas of HDLs on 20 nm PEG-AuNPs, whereas 73% surface coverage was assessed for larger 150 nm PEG-AuNPs. However, the relative affinities of HDL and apolipoprotein A-1 (APOA1) examined in competition with human serum albumin exhibited the opposite size dependences, which suggests that the adsorption of HDLs is not driven by the constituent protein, APOA1. In fact, the total strength of non-covalent intermolecular interactions between a HDL particle and a NP relies on the physical contact between the two particles, which thus depends on the varying curvatures of spherical NPs in this case. Therefore, it was concluded that it is whole HDL complex that interacts with the spherical PEG-AuNPs in the initial stage of adsorption toward biomolecular coronas, which is unveiled by the distinct size dependence observed in this study.
Collapse
Affiliation(s)
- Gwi Ju Jang
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ji Yeon Jeong
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Junghoon Kang
- Department of Chemistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Wonryeon Cho
- Department of Chemistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang Yun Han
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
49
|
Yang M, Wu E, Tang W, Qian J, Zhan C. Interplay between nanomedicine and protein corona. J Mater Chem B 2021; 9:6713-6727. [PMID: 34328485 DOI: 10.1039/d1tb01063h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine is recognized as a promising agent for diverse biomedical applications; however, its safety and efficiency in clinical practice remains to be enhanced. A priority issue is the protein corona (PC), which imparts unique biological identities to prototype and determines the actual biological functions in biological fluids. Decades of work has already illuminated abundant considerations that influence the composition of the protein corona. Thereinto, the physical assets of nanomedicines (e.g., size and shape, surface properties, nanomaterials) and the biological environment collectively play fundamental roles in shaping the PC, including the types and quantities of plasma proteins. The properties of nanomedicines are dependent on certain factors. This review aims to explore the applications of nanomedicines by regulating their interplay with PC.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
| | - Ercan Wu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China. and MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
50
|
Xue Y, Liu S, An Z, Li JX, Zhang NN, Wang CY, Wang X, Sun T, Liu K. θ-Solvent-Mediated Double-Shell Polyethylene Glycol Brushes on Nanoparticles for Improved Stealth Properties and Delivery Efficiency. J Phys Chem Lett 2021; 12:5363-5370. [PMID: 34076431 DOI: 10.1021/acs.jpclett.1c01291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antifouling polymer brushes are widely used to inhibit the formation of protein corona on nanoparticles (NPs) and subsequent accumulation in the liver and spleen. Herein, we demonstrate a θ-solvent-mediated method for the preparation of gold nanoparticles with a high polyethylene glycol (PEG) grafting density. Reaching the θ-solvent by adding salt (e.g., Na2SO4) can significantly increase the grafting density of the PEG brush to 2.08 chains/nm2. The PEG polymer brush prepared in the θ-solvent possesses a double-shell structure consisting of a concentrated polymer brush (CPB) and a semidilute polymer brush (SDPB), denoted as NP@CPB@SDPB, while those prepared in a good solvent have only a SDPB shell, i.e., NP@SDPB. Compared to the NP@SDPB structure, the NP@CPB@SDPB structure decreases the liver accumulation from 34.0%ID/g to 23.1%ID/g, leading to an increase in tumor accumulation from 8.5%ID/g to 12.8%ID/g. This work provides new insights from the perspective of polymer physical chemistry into the improved stealth properties and delivery efficiency of NPs, which will accelerate the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Zixin An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jia-Xuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|