1
|
Deng XW, Liu S, Fan C, Liu H, Zou Y, He HF, Deng DD, Pu S, Chen Z. Tetraphenylethene-based mononuclear aggregation-induced emission (AIE)-active mechanofluorochromism gold(I) complexes with different auxiliary ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124712. [PMID: 38950476 DOI: 10.1016/j.saa.2024.124712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
In this study, a series of tetraphenylethene-containing gold(I) complexes with different auxiliary ligands have been synthesized. These complexes were characterized using a variety of techniques including nuclear magnetic resonance spectroscopy, mass spectrometry, and single crystal X-ray diffraction. Their aggregation-induced emission (AIE) behaviors were investigated through ultraviolet/visible and photoluminescence spectrum analyses, and dynamic light scattering measurements. Meanwhile, their mechanofluorochromic properties were also studied via solid-state photoluminescence spectroscopy. Intriguingly, all these mononuclear gold(I) molecules functionalized by tetraphenylethene group demonstrated AIE phenomena. Furthermore, five gold(I) complexes possessing diverse auxiliary ligands exhibited distinct fluorescence changes in response to mechanical grinding. For luminogens 2-5, their solids showed reversible mechanofluorochromic behaviors triggered by the mutual transformation of crystalline and amorphous states, while for luminogen 1, blue-green-cyan three-color solid fluorescence conversion was realized by sequential mechanical grinding and solvent fumigation. Based on this stimuli-responsive tricolored fluorescence feature of 1, an information encryption system was successfully constructed.
Collapse
Affiliation(s)
- Xiao-Wen Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shanting Liu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hongliang Liu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yijie Zou
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hai-Feng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Dian-Dian Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, PR China.
| | - Shouzhi Pu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| | - Zhao Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
Saito Y, Suda A, Sakai M, Nakajima S, Shichibu Y, Kanai H, Ishida Y, Konishi K. Controlled nanocrystallization of gold nanoclusters within surfactant envelopes: enhancing aggregation-induced emission in solution. Chem Sci 2024; 15:11775-11782. [PMID: 39092103 PMCID: PMC11290417 DOI: 10.1039/d4sc02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
The nanocrystallization of functional molecules has been a subject of recent interest in the current development of nanotechnology. Herein, we report the unprecedented synthesis of single nanocrystals of a molecular gold nanocluster in a homogeneous solution by using surfactant-based nano-envelopes. The co-assembling of a Au8 nanocluster carrying lipophilic phosphine ligands with sodium dodecyl sulfate (SDS) in an aqueous solution results in the formation of sphere-shaped amorphous nano-aggregates coated with the surfactant. Upon sonication, the spherical amorphous aggregates are smoothly shape-shifted into discrete rhombic nanocrystals, which can be tracked by TEM and solution XRD. The transformation into single nanocrystals occurs exclusively without further growth or agglomeration, implying that the crystal growth is restricted within the surfactant nano-envelopes. The robust but flexible nature of the wrapped surfactant is likely responsible for the controlled crystallization. We also demonstrate that the amorphous-to-nanocrystalline transition in solution remarkably enhances the photoluminescence emission from the nanocluster, providing a clear example of crystallization-induced emission enhancement. Notably, the obtained nanocrystals showed high stability in solution and retained their shape, size, and PL intensity even after several months, owing to the densely packed surfactant shell. The present surfactant-directed nanocrystallization method may be applicable to other molecular species to contribute to the development of nanocluster science as well as the designed synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yuki Saito
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Ayano Suda
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Maki Sakai
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Shogo Nakajima
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Yukatsu Shichibu
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| | - Hayato Kanai
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Katsuaki Konishi
- Faculty of Environmental Earth Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
- Graduate School of Environmental Science, Hokkaido University North 10 West 5 Sapporo 060-0810 Japan
| |
Collapse
|
3
|
Zhang K, He G, Cai L, Fan J, Lin L, Wang CK, Li J. Role of Bridging Groups in Regulating the Luminescence and Charge Transfer Properties of Thermally Activated Delayed Fluorescence Molecules: A Theoretical Perspective. J Phys Chem A 2024; 128:3158-3169. [PMID: 38598685 DOI: 10.1021/acs.jpca.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Organic emitters with a simultaneous combination of aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics are in great demand due to their excellent comprehensive performances toward efficient organic light-emitting diodes (OLEDs), biomedical imaging, and the telecommunications field. However, the development of efficient AIE-TADF materials remains a substantial challenge. In this work, light-emitting properties of two AIE-TADF molecules with different bridging groups ICz-BP and ICz-DPS are theoretically investigated in the solid state with the combined quantum mechanics/molecular mechanics (QM/MM) method and the thermal vibration correlation function (TVCF) theory. The research indicates that the C═O bridging bond in ICz-BP is more favorable than the S═O bridging bond in ICz-DPS for enhancing the planarity of the acceptor, increasing conjugation, and thereby elevating the transition dipole moment density. Simultaneously, the stacking pattern of ICz-BP in the solid facilitates a reduction in energy gap between S1 and T1 (ΔEST), achieving rapid reverse intersystem crossing rate (kRISC). Furthermore, compared to toluene, the stacking patterns of ICz-BP and ICz-DPS in the solid effectively suppress the out-of-plane wagging vibration of the acceptor, thereby inhibiting the loss of nonradiative energy in the excited state and realizing aggregation-induced emission. Moreover, the charge transport properties of both electrons and holes in ICz-BP are found to be higher than the corresponding rates in ICz-DPS, attributed to the smaller internal reorganization energy of ICz-BP in the solid state. Additionally, the calculations reveal a more balanced charge transport characteristic in ICz-BP, contributing to efficient exciton recombination and emission and ultimately mitigating efficiency roll-off. Based on these computational results, we aim to unveil the relationship between molecular structure and light-emitting properties, aiding in the design and development of efficient AIE-TADF devices.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - GuangLu He
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
4
|
Potopnyk MA, Mech-Piskorz J, Angulo G, Ceborska M, Luboradzki R, Andresen E, Gajek A, Wisniewska A, Resch-Genger U. Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms. Chemistry 2024; 30:e202400004. [PMID: 38361470 DOI: 10.1002/chem.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kuharya Str. 5, 02000, Kyiv, Ukraine
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Magdalena Ceborska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elina Andresen
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| | - Arkadiusz Gajek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materilaforschung und -prüfung (BAM), Department 1, Richard-Willstätter-Straβe 11, 12489, Berlin, Germany
| |
Collapse
|
5
|
Zhang K, Cai L, Fan J, Song Y, Lin L, Wang CK, Li J. Conformational Isomerization Effect on Singlet/Triplet Energy Consumption Process of Thermally Activated Delayed Fluorescence Molecules with Aggregation Induced Emission: A QM/MM Study. J Phys Chem Lett 2024; 15:2436-2446. [PMID: 38394771 DOI: 10.1021/acs.jpclett.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties hold tremendous potential in biomedical sensing/imaging and telecommunications. In this study, a multiscale method combined with thermal vibration correlation function (TVCF) theory is used to investigate the photophysical properties of the novel TADF molecule CNPy-SPAC in toluene and crystal and amorphous states. In the crystal state, an increase in radiative rates and a decrease in nonradiative rates lead to AIE. Additionally, conformational isomerization effects result in significantly different luminescent efficiencies between the two crystal structures. Furthermore, the isomerization effect allows for the coexistence of three configurations in the amorphous state. Among them, the non-TADF quasi-axial (Qa) configuration may facilitate energy transfer to the TADF-characteristic quasi-equal/quasi-equal-H (Qe/Qe-H) configurations, enhancing AIE. Moreover, the Qa configuration enables rapid electron transport, offering the potential for self-doped devices. Our work elucidates a new mechanism for the isomerization effect in AIE-TADF molecules.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
6
|
Muthamma K, Acharya S, Sunil D, Shetty P, Abdul Salam AA, Kulkarni SD, Anand PJ. Fluorene-naphthalene Schiff base as a smart pigment in invisible ink with multiple security features for advanced anticounterfeiting and forensic applications. J Colloid Interface Sci 2024; 653:209-219. [PMID: 37713919 DOI: 10.1016/j.jcis.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Smart functional materials with captivating optical properties are of immense importance due to their versatile applicability in anticounterfeiting and forensic science. A fluorene-naphthalene Schiff base (FNH) that displays aggregation induced emission, mechanofluorochromism and excitation wavelength dependent fluorescence inherent to the pristine and ground samples is synthesized. Water/solvent-based invisible security inks for flexo/screen printing were formulated using FNH as a smart pigment to check the originality of documents/branded products etc. The prints with good photostability, adherence to substrate and rub resistance are invisible in daylight showcasing multiple non-destructive and destructive techniques to authenticate the document. The inked area on UV dull paper substrate exhibits a weak emission, which is observed by the forger under UVA light. However, the user can validate the authenticity of the document by rubbing the print with hard objects, especially using a metal coin or glass rod to perceive a human eye detectable intensification in the orange fluorescence under the same illumination source. The intensity of the orange fluorescence reverts to the original, which enables the reuse of the security document after originality check. Yet another nondestructive authentication method is to observe a cyan fluorescence from the print and orangish yellow fluorescence from the rubbed printed region when shined with a 270-400 nm light source, whereas a cyanish green fluorescence both from the unrubbed and rubbed regions of the print when illuminated with a visible light source ranging from 420 to 480 nm. An additional verification through a destructive technique is to perceive red and yellow fluorescence of the ink film upon contact with THF and NaOH/KOH, respectively and a penetrating red fluorescence from the rear side of the THF-exposed printed area of the paper. The multi-level security features that cannot be easily replicated by the forger but allows a simple and easy validation process by the user are unique to FNH, used as a single pigment in the inks. Further, the applicability of the ground FNH in forensic science is established to distinctly observe Level I to II details of latent fingerprints.
Collapse
Affiliation(s)
- Kashmitha Muthamma
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Acharya
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Prakasha Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Suresh D Kulkarni
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - P J Anand
- Manipal Technologies Limited, Manipal, Karnataka 576104, India
| |
Collapse
|
7
|
Wu H, Ju S, Ling Y, Sun H, Tang Y, Tong C. Gelatinous lanthanide coordination polymer with aggregation-enhanced antenna effect for ratiometric detection of endogenous alkaline phosphatase. J Colloid Interface Sci 2023; 645:338-349. [PMID: 37150007 DOI: 10.1016/j.jcis.2023.04.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Aggregation-induced emission (AIE) and antenna effect (AE) are two significant behaviors that have attracted increasing attention. However, it is challenging to achieve the synergistic effect of AIE and AE in luminescent materials for more extensive applications. Here, four gelatinous Ln3+ coordination polymers (Ln-CPs) are synthesized by self-assembly of ciprofloxacin (CIP), adenosine monophosphate (AMP), and Ln3+ ions in aqueous medium. Encouragingly, a remarkable increase in the characteristic fluorescence of Ln3+ and a significant decrease in CIP are observed along with increasing concentration of Ln-CPs, which is attributed to the large aggregates formed by self-assembly that strictly constrain the intramolecular motions of antenna ligands, thereby achieving the aggregation-enhanced AE. More meaningfully, Eu-CP not only shows a rice-like morphology at high aggregation state, but also provides an opportunity for the selective detection of alkaline phosphatase (ALP). A new flower-like polymer is formed upon incubating Eu-CP with ALP, accompanied by the fluorescence quenching of Eu3+ and recovery of CIP, a ratiometric determination of ALP in the range of 0.1-6.0 U·L-1 is thus achieved. Additionally, ALP assay in human serum and bioimaging in living cells have been successfully performed. This research opens a new horizon for the fabrication of Ln3+-based luminescent materials with promising applications.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Shiying Ju
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuwei Ling
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Haozhe Sun
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Wang Z, Guo X, Jia L, Zhao Z, Yang R, Zhang Y. Novel 4,4′-Binaphthalimidyl Derivatives with Carboxyalkyl Side Chains: Synthesis, Aggregation-Induced Emission, Hydrogel and Cell Imaging. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K, Sun Y. Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chemistry 2023; 29:e202203797. [PMID: 36545826 DOI: 10.1002/chem.202203797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Huan Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Yang Y, Liu S, Deng DD, Chen Z, Pu S. D-A-D type cyclohexyl and cycloheptyl-modified benzo[d]imidazole derivatives with different aggregation-induced emission enhancement (AIEE) and mechanofluorochromic properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chen Z, Deng XW, Wang XY, Wang AQ, Luo WT. Carbazole-based aggregation-induced phosphorescent emission-active gold(I) complexes with various phosphorescent mechanochromisms. Front Chem 2022; 10:1083757. [DOI: 10.3389/fchem.2022.1083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
A series of carbazole-containing gold(I) complexes modified with different substituents were successfully designed and synthesized, and their molecular structures were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The aggregation-induced behaviors of these gold(I) complexes were studied by ultraviolet/visible and photoluminescence spectroscopy. Meanwhile, their mechanical force-responsive emissive properties were also investigated via solid-state photoluminescence spectroscopy. Interestingly, all these gold(I)-based luminogenic molecules were capable of exhibiting aggregation-induced phosphorescent emission phenomena. Furthermore, their solids of three gold(I) complexes displayed contrasting mechano-responsive phosphorescence features. More specifically, trifluoromethyl or methoxyl-substituted luminophores 1 and 3 demonstrated mechanochromic behaviors involving blue-shifted phosphorescence changes, and their mechanoluminochromic phenomena were reversible. However, the solid-state phosphorescence of phenyl-substituted luminophor 2 was not sensitive to external mechanical force.
Collapse
|
12
|
Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Song Z, Fang Z, Chen J, Zhang Y, Guo L, Fu F. Highly fluorescent carbon nitride oligomer with aggregation-induced emission characteristic for plastic staining. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121238. [PMID: 35413529 DOI: 10.1016/j.saa.2022.121238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride often displays weak photoluminescence in solid state due to the aggregation-caused quenching effect. Herein, highly fluorescent carbon nitride oligomer (CNO) with aggregation-induced emission (AIE) characteristic was prepared via one-step solid-phase thermal condensation of 2,4-diamino-6-phenyl-1,3,5-triazine (DPT) at 350 °C. CNO is mainly composed of DPT dimer connected by rotatable imine groups, and exhibits weak fluorescence in the dispersed state and strong blue-green emission in the aggregated state and solid state. Density functional theory calculations indicate that the restriction of phenyl and triazine ring twisting motions is the main origin of the AIE phenomenon of CNO. Finally, CNO was preliminarily applied for fluorescent staining of plastic pellets. This work not only provides a solid-state strategy to synthesize fluorescent material with AIE characteristic but also extends the application of polymeric carbon nitride.
Collapse
Affiliation(s)
- Zhiping Song
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China; College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhongpu Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingru Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
14
|
Yang Y, Tian JJ, Wang L, Chen Z, Pu S. D-π-A type carbazole and triphenylamine derivatives with different π-conjugated units: Tunable aggregation-induced emission (AIE) and mechanofluorochromic properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Yin Y, Chen Z, Li RH, Yi F, Liang XC, Cheng SQ, Wang K, Sun Y, Liu Y. Highly Emissive Multipurpose Organoplatinum(II) Metallacycles with Contrasting Mechanoresponsive Features. Inorg Chem 2022; 61:2883-2891. [PMID: 35108490 DOI: 10.1021/acs.inorgchem.1c03563] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of supramolecular coordination complexes (SCCs) with a bright aggregate state or mechanical-stimuli-responsive luminescence is very significant and challenging. Herein, we report the synthesis of three different supramolecular platinum(II) metallacycles via coordination-driven self-assembly of a diplatinum(II) acceptor and organic donors with a triphenylamine, carbazole, or tetraphenylethylene moiety. The triphenylamine-modified SCC exhibits aggregation-induced emission enhancement (AIEE) but no mechanofluorochromism. The carbazole and tetraphenylethylene-based SCCs exhibit changes in aggregate fluorescence and also exhibit reversible mechanofluorochromism. This work not only reports three rare metallacycles with AIEE, aggregate fluorescence change, or mechanofluorochromic nature but also explores their potential applications in cell imaging and solid-state lighting.
Collapse
Affiliation(s)
- Ya Yin
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Run-Hao Li
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Fan Yi
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Xiao-Cui Liang
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
16
|
Tian JJ, Deng DD, Wang L, Chen Z, Pu S. Tetraphenylethene-Modified Colorimetric and Fluorescent Chemosensor for Hg 2+ With Aggregation-Induced Emission Enhancement, Solvatochromic, and Mechanochromic Fluorescence Features. Front Chem 2022; 9:811294. [PMID: 35155382 PMCID: PMC8828043 DOI: 10.3389/fchem.2021.811294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
A tetraphenylethene (TPE)-modified rhodanine derivative was successfully designed and prepared, and this luminophor showed intramolecular charge transfer nature from the TPE unit to the rhodanine-3-acetic acid unit. Interestingly, this luminogen not only exhibited typical aggregation-induced emission enhancement (AIEE) behavior but also showed good cell imaging performance. Remarkably, this AIEE-active TPE-containing rhodanine derivative possessed noticeable solvatochromic fluorescence effect involving multiple fluorescent colors of green, yellow-green, yellow, orange, and red. Meanwhile, this fluorescigenic compound displayed reversible mechanochromic fluorescence behavior based on the mutual transformation of between stable crystalline and metastable amorphous states. On the other hand, this multifunctional fluorophor could selectively and sensitively detect Hg2+ in an acetonitrile solution. Furthermore, this chemosensor could also be used to detect Hg2+ on test paper strips.
Collapse
Affiliation(s)
- Jin-jin Tian
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Dian-dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Long Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| |
Collapse
|
17
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
|
19
|
Wang X, Chen Z, Yin J, Liu SH. Mononuclear aggregation-induced emission (AIE)-active gold(I)-isocyanide phosphors: Contrasting phosphorescent mechanochromisms and effect of halogen substitutions on room-temperature phosphorescence nature. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
|
21
|
Coffey B, Clough L, Bartkus DD, McClellan IC, Greenberg MW, LaFratta CN, Tanski JM, Anderson CM. Photophysical Properties of Cyclometalated Platinum(II) Diphosphine Compounds in the Solid State and in PMMA Films. ACS OMEGA 2021; 6:28316-28325. [PMID: 34723028 PMCID: PMC8552474 DOI: 10.1021/acsomega.1c04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Platinum(II) compounds were synthesized with both chelate cyclometalated ligands and chelate diphosphine ligands. The cyclometalated ligands include phenylpyridine and a benzothiophene-containing ligand. The three new benzothiophene compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), and photophysical measurements. In the case of one compound, L1-DPPM, the structure was determined by single crystal X-ray diffraction. The structural coherence of the noncrystalline emissive solid state was measured by X-ray total scattering real space pair distribution function analysis. Quantum yield values of all of the platinum compounds measured in the solid state and in PMMA films were much greater than in solution.
Collapse
Affiliation(s)
- Belle Coffey
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Lily Clough
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Daphne D. Bartkus
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Ian C. McClellan
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Matthew W. Greenberg
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Christopher N. LaFratta
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| | - Joseph M. Tanski
- Department
of Chemistry, Vassar College, Poughkeepsie, New York 12604, United States
| | - Craig M. Anderson
- Department
of Chemistry & Biochemistry, Bard College, 30 Campus Road, Annandale-on-Hudson, New York 12504, United States
| |
Collapse
|
22
|
Inoue R, Naota T, Ehara M. Origin of the Aggregation-Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal-Metal Interactions on Emission Decay in the Crystalline State. Chem Asian J 2021; 16:3129-3140. [PMID: 34476913 DOI: 10.1002/asia.202100887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Discerning the origins of the phosphorescent aggregation-induced emission (AIE) from Pt(II) complexes is crucial for developing the broader range of photo-functional materials. Over the past few decades, several mechanisms of phosphorescent AIE have been proposed, however, not have been directly elucidated. Herein, we describe phosphorescence and deactivation processes of four class of AIE active Pt(II) complexes in the crystalline state based on experimental and theoretical investigation. These complexes show metal-to-ligand and/or metal-metal-to-ligand charge transfer emission in crystalline state with different heat resistance against thermal emission quenching. The calculated energy profiles including the minimum energy crossing point between S0 and T1 states were consistent with the heat resistant properties, which provided the mechanism for AIE expression. Furthermore, we have clarified the role of metal-metal interaction in AIE by comparing two computational models.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, Nishigo-naka 38, Myodai-ji, 444-8585, Okazaki, Japan
| |
Collapse
|
23
|
Liu S, Tan S, Hu H, Chen Z, Pu S. Novel colorimetric and fluorescent chemosensor for Hg2+/Sn2+ based on a photochromic diarylethene with a styrene-linked pyrido[2,3-b]pyrazine unit. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Liu S, Zhang MX, Yang X, Zhang K, Yin J. Osmaindenes: Synthesis and Reversible Mechanochromism Characteristics. Chemistry 2021; 27:14645-14652. [PMID: 34350652 DOI: 10.1002/chem.202102180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/07/2022]
Abstract
A series of novel osmaindenes 1 - 6 bearing different substituents (CF 3 , H, I, Br, OCH 3 , N(Ph) 2 ) has been synthesized by nucleophilic reaction of water with the corresponding aromatic osmanaphthalyne complexes. All osmaindenes 1 - 6 have been characterized by elemental analysis (EA) and nuclear magnetic resonance (NMR) spectroscopy, although the low solubilities of 3 and 4 precluded the accumulation of their 13 C NMR spectra. Osmaindenes 2 , 3 and 5 have also been characterized by single-crystal X-ray diffraction analysis. Subsequently, through solid-state fluorescence spectroscopy, mechanochromic studies, and powder X-ray diffraction (XRD) analysis, we found that osmaindenes 1 - 6 fluoresce at wavelengths in the range 500-800 nm, while also displaying reversible mechanochromic properties. The solid-state fluorescence emission of 1 after grinding extends into the near-infrared region. This research provides new insight into the design and synthesis of metallic materials with excellent mechanochromic properties.
Collapse
Affiliation(s)
- Shenghua Liu
- Central China Normal University, college of chemistry, luoyu road 152, 430079, Wuhan, CHINA
| | - Ming-Xing Zhang
- Central China Normal University, College of Chemistry, CHINA
| | - Xiaofei Yang
- Central China Normal University, College of Chemistry, CHINA
| | - Kunming Zhang
- Central China Normal University, College of Chemistry, CHINA
| | - Jun Yin
- Central China Normal University, College of Chemistry, CHINA
| |
Collapse
|
25
|
Zhang MX, Jin X, Yang X, Xu Z, Liu SH. Synthesis and properties of 3-fold symmetrical hexabenzocoronene-bridged trinuclear alkynylgold(I) complexes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1937613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ming-Xing Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, P.R. China
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Xuyang Jin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Xiaofei Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Zhiqiang Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| |
Collapse
|
26
|
Wang XY, Yin Y, Yin J, Chen Z, Liu SH. Persistent room-temperature phosphorescence or high-contrast phosphorescent mechanochromism: polymorphism-dependent different emission characteristics from a single gold(I) complex. Dalton Trans 2021; 50:7744-7749. [PMID: 33988209 DOI: 10.1039/d1dt00959a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Luminophores with persistent room-temperature phosphorescence (p-RTP) or effective phosphorescent mechanochromism features have significant potential applications in the field of optoelectronic materials. Until now, p-RTP and remarkable phosphorescent mechanochromism phenomena have been observed in some luminescent molecules with different molecular structures. However, separately realizing p-RTP and high-contrast phosphorescent mechanochromism in different polymorphs from a single luminophore is still a valuable and challenging topic. In this work, two polymorphs 1B and 1YG of a new gold(i) complex with blue and yellow-green luminescence, respectively, are reported. Interestingly, 1B exhibits high-contrast phosphorescent mechanochromic behavior, while 1YG exhibits a persistent room-temperature phosphorescence effect. This is the first example of simultaneously obtaining double-purpose crystalline materials with a high-contrast phosphorescent mechanochromism or persistent room-temperature phosphorescence feature from a single luminophore.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Zhao Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China. and Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
27
|
Jindal S, Anjum G, Maka VK, Moorthy JN. Mechanoluminescence and aggregation-enhanced emission (AEE) of an In-MOF based on a 9,9'-diphenyl-9 H-fluorene tetraacid linker. NANOSCALE 2021; 13:9668-9677. [PMID: 34018528 DOI: 10.1039/d1nr00898f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A water-stable In-MOF, constructed based on a conformationally-flexible tetraacid linker, i.e., 2,7-bis(3,5-dicarboxyphenyl)-9,9'-diphenyl-9H-fluorene, i.e., H4DPF, is shown to exhibit a significantly enhanced solid-state fluorescence quantum yield (φf) of 23% in comparison with that of the linker (φfca. 4%) as a consequence of rigidification of the latter by metalation. Application of external stimulus in the form of grinding of the In-MOF leads to a drastic enhancement by 29%, φf from 23 to 52%. Solid-state absorption and emission spectra show that the absorption in the region of 368-550 nm gets diminished with a concomitant change in the emission maximum with a blue shift upon grinding. Fluorescence enhancement with grinding is correlated with a gradual reduction in the size of the particles, as established by SEM analysis. MOF particle aggregation has been invoked to account for the observed fluorescence enhancement in addition to a subtle conformational change in the structure of the linker upon grinding. Intriguingly, the ground MOF particles exhibit aggregation behaviour in the DMF-water solvent system with the emission further increasing up to 75% for the increase in the water fraction (fw) from 0 to 60%; hydrophobic aggregation of particles evidently leads to a change in the conformation of the linker and particle aggregation-enhanced emission (AEE). De-aggregation of particles ensues for fw = 70-90%, as reflected by a gradual decrease in the emission intensity. It is shown that the suspension of ground In-MOF particles in water permits sensing of metal ions, in particular Al3+ ions, by fluorescence quenching with detection at a sub-ppb level. The observed results comprise first demonstration of both mechanoluminescence and AEE of MOF particles.
Collapse
Affiliation(s)
- Swati Jindal
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| | | | | | | |
Collapse
|
28
|
Aggregation-induced emission and remarkable piezochromism based on tetraphenylethene modified cyanostilbene derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Recent Progress on Supramolecular Luminescent Assemblies Based on Aurophilic Interactions in Solution. INORGANICS 2021. [DOI: 10.3390/inorganics9050032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of supramolecular systems showing aurophilic interactions in solution is gaining much attention in the last years. This is due to the intriguing photophysical properties of gold(I) complexes, which usually confer to these supramolecular assemblies interesting luminescent properties, as well as the possibility of morphological modulation, through fine tuning of inter- and intramolecular aurophilic interactions, in synergy with the formation of other supramolecular contacts. In this work, an overview of the advances made in this area since 2015 is presented. A large variety of systems showing different spectroscopical and structural topologies has been reported. Moreover, these supramolecular assemblies have proven to be useful in a wide range of applications.
Collapse
|
30
|
Hu H, Chen Z, Pu S. Fluorene-based aggregation-induced emission (AIE)-active tetraphenylethene derivatives: The effect of alkyl chain length on mechanofluorochromic behaviors. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Maity S, Shyamal M, Maity R, Mudi N, Hazra P, Giri PK, Samanta SS, Pyne S, Misra A. An antipyrine based fluorescent probe for distinct detection of Al 3+ and Zn 2+ and its AIEE behaviour. Photochem Photobiol Sci 2021; 19:681-694. [PMID: 32329762 DOI: 10.1039/c9pp00472f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple antipyrine based fluorescent probe, 4-[(2-hydroxy-3-methoxy-benzylidene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (OVAP), has been successfully synthesized using a one-step condensation method. It exhibits dual sensing properties toward Al3+ and Zn2+ in the presence of other relevant metal ions and also displays novel aggregation induced emission enhancement (AIEE) characteristics in its aggregated/solid state. Aggregated OVAP microstructures with interesting morphologies have been synthesized using SDS as a morphology directing agent. Morphologies of the particles are characterized using optical microscopy. Photophysical properties of the as-synthesized OVAP hydrosol are studied using UV-Vis absorption, steady state and time resolved fluorescence spectroscopy. The 'turn on' luminescence property of OVAP is used for the selective detection of trace amounts of Al3+ and Zn2+ and a significant turn on fluorescence enhancement over ∼100-fold is triggered via chelation-enhanced fluorescence (CHEF) through complex formation. The 1 : 1 stoichiometry of each sensor metal ion complex is observed from Job's plot based on UV-Vis absorption titration. The LODs for Al3+ and Zn2+ are found to be 1.05 nM and 2.35 nM, respectively. Notably, the sensor, OVAP, is further demonstrated using a molecular INHIBIT logic gate.
Collapse
Affiliation(s)
- Samir Maity
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Milan Shyamal
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Rakesh Maity
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Naren Mudi
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Paresh Hazra
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Prabhat Kr Giri
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | | | - Santanu Pyne
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India
| | - Ajay Misra
- Department of Chemistry, Vidyasagar University, 721 102, Midnapore, W.B., India.
| |
Collapse
|
32
|
Younes EA, Issa MJ, Abdollahi MF, Ding YF, Rasras AJ, Mok GSP, Lin JB, Zhao Y. Studies of cyanomethylcarbamoyl-bridged anthracene and pyrene fluorophores. NEW J CHEM 2021. [DOI: 10.1039/d1nj03044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanomethylcarbamoyl-bridged anthracene and pyrene derivatives were prepared as functional fluorophores with diverse structural, electronic, and fluorescence properties.
Collapse
Affiliation(s)
- Eyad A. Younes
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Maram J. Issa
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Maryam F. Abdollahi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Yuan-Fu Ding
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau SAR, China
| | - Anas J. Rasras
- Faculty of Science, Department of Chemistry, Al-Balqa Applied University, Al-Salt, Jordan
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau SAR, China
| | - Jian-Bin Lin
- C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
33
|
Ito S, Nagai S, Ubukata T, Tachikawa T. Multi-color mechanochromic luminescence of three polymorphic crystals of a donor–acceptor-type benzothiadiazole derivative. CrystEngComm 2021. [DOI: 10.1039/d1ce00445j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three polymorphic crystals of a donor–acceptor dye exhibited different luminescence colors, which changed in response to mechanical grinding.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Sayaka Nagai
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
34
|
Li X, Zhao Z, Hu L, Wei D, Liu Q. Tetraphenylethylene-Based Tetradentate Azolium Salts: Synthesis and Selective Recognition for Ions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
A highly sensitive ‘turn-on’ phosphorescence probe based on iridium(III) complex with polyether segment subunits for rapid detection of thiophenol. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat Commun 2020; 11:5218. [PMID: 33060573 PMCID: PMC7562750 DOI: 10.1038/s41467-020-19027-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023] Open
Abstract
Divalent europium 5d-4f transition has aroused great attention in many fields, in a way of doping Eu2+ ions into inorganic solids. However, molecular Eu2+ complexes with 5d-4f transition are thought to be too air-unstable to explore their applications. In this work, we synthesized four Eu2+-containing azacryptates EuX2-Nn (X = Br, I, n = 4, 8) and systematically studied the photophysical properties in crystalline samples and solutions. Intriguingly, the EuX2-N8 complexes exhibit near-unity photoluminescence quantum yield, good air-/thermal-stability and mechanochromic property (X = I). Furthermore, we proved the application of Eu2+ complexes in organic light-emitting diodes (OLEDs) with high efficiency and luminance. The optimized device employing EuI2-N8 as emitter has the best performance as the maximum luminance, current efficiency, and external quantum efficiency up to 25470 cd m−2, 62.4 cd A−1, and 17.7%, respectively. Our work deepens the understanding of structure-property relationship in molecular Eu2+ complexes and could inspire further research on application in OLEDs. Though divalent-europium-based complexes are promising materials for next-generation light-emitting devices, their poor air stability limits their applicability. Here, the authors report the design of air stable divalent-europium-based complexes for efficient organic light-emitting diodes.
Collapse
|
37
|
Wang D, Wang Z, Wang X, Zhuang X, Tian C, Luan F, Fu X. Functionalized Copper Nanoclusters-Based Fluorescent Probe with Aggregation-Induced Emission Property for Selective Detection of Sulfide Ions in Food Additives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11301-11308. [PMID: 32926614 DOI: 10.1021/acs.jafc.0c04275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, a novel and facile synthetic method of 3-mercaptopropionic acid functionalized copper nanoclusters with aggregation-induced emission (AIE) induced by Cu2+ (Cu2+@MPA-Cu NCs) was developed by a one-pot reaction as a fluorescent probe for the detection of sulfide ion (S2-). The prepared Cu2+@MPA-Cu NCs behaved as aggregated clusters and had strong pink fluorescence under 365 nm UV light with excellent fluorescence emission at 610 nm. The quantum yield increased from 0.56% to 4.8% before and after Cu2+ added. The presence of S2- would strongly bind to Cu2+, which caused the structure of the aggregated Cu2+@MPA-Cu NCs to be destroyed and then the fluorescence quenched. On the basis of this principle, a fluorescent probe was constructed for the detection of S2- with a very good linearity in the range 0-600 μM (R2 = 0.9843) and a detection limit of 26.3 nM. Finally, the nanohybrids were successfully demonstrated for the application in the selective detection of S2- in food additives. This study essentially paved a new avenue for effectively developing an easy sensor platform for S2- measurements in food additives.
Collapse
Affiliation(s)
- Dawei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaobin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
38
|
Luong LMC, Lowe CD, Adams AV, Moshayedi V, Olmstead MM, Balch AL. Seeing luminescence appear as crystals crumble. Isolation and subsequent self-association of individual [(C 6H 11NC) 2Au] + ions in crystals. Chem Sci 2020; 11:11705-11713. [PMID: 34123201 PMCID: PMC8162474 DOI: 10.1039/d0sc03299a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Non-luminescent, isostructural crystals of [(C6H11NC)2Au](EF6)·C6H6 (E = As, Sb) lose benzene upon standing in air to produce green luminescent (E = As) or blue luminescent (E = Sb) powders. Previous studies have shown that the two-coordinate cation, [(C6H11NC)2Au]+, self-associates to form luminescent crystals that contain linear or nearly linear chains of cations and display unusual polymorphic, vapochromic, and/or thermochromic properties. Here, we report the formation of non-luminescent crystalline salts in which individual [(C6H11NC)2Au]+ ions are isolated from one another. In [(C6H11NC)2Au](BArF24) ((BArF24)- is tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) each cation is surrounded by two anions that prohibit any close approach of the gold ions. Crystallization of [(C6H11NC)2Au](EF6) (E = As or Sb, but not P) from benzene solution produces colorless, non-emissive crystals of the solvates [(C6H11NC)2Au](EF6)·C6H6. These two solvates are isostructural and contain columns in which cations and benzene molecules alternate. With the benzene molecules separating the cations, the shortest distances between gold ions are 6.936(2) Å for E = As and 6.9717(19) Å for E = Sb. Upon removal from the mother liquor, these crystals crack due to the loss of benzene from the crystal and form luminescent powders. Crystals of [(C6H11NC)2Au](SbF6)·C6H6 that powder out form a pale yellow powder with a blue luminescence with emission spectra and powder X-ray diffraction data that show that the previously characterized [(C6H11NC)2Au](SbF6) is formed. In the process, the distances between the gold(i) ions decrease to ∼3 Å and half of the cyclohexyl groups move from an axial orientation to an equatorial one. Remarkably, when crystals of [(C6H11NC)2Au](AsF6)·C6H6 stand in air, they lose benzene and are converted into the yellow, green-luminescent polymorph of [(C6H11NC)2Au](AsF6) rather than the colorless, blue-luminescent polymorph. Paradoxically, the yellow, green-luminescent powder that forms as well as authentic crystals of the yellow, green-luminescent polymorph of [(C6H11NC)2Au](AsF6) are sensitive to benzene vapor and are converted by exposure to benzene vapor into the colorless, blue-luminescent polymorph.
Collapse
Affiliation(s)
- Lucy M C Luong
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| | - Christopher D Lowe
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| | - Alexandria V Adams
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| | - Venoos Moshayedi
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| | - Marilyn M Olmstead
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| | - Alan L Balch
- Department of Chemistry, University of California, Davis One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
39
|
Zhang H, Xu Z, Tao F, Li Y, Cui Y, Li X. New barbituric acid derivatives for data encryption and decryption based on the mechanochromic fluorescence effect. Analyst 2020; 145:5325-5332. [PMID: 32558852 DOI: 10.1039/d0an00728e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two barbituric acid derivatives CB-Ph and CB-Me were synthesized, both of which show a strong aggregation induced emission (AIE) effect. It was found that these two compounds show almost the same absorption and emission spectra. As a result, they show the same yellow color in daylight and the same yellow-green color under UV at 365 nm. Upon grinding, CB-Ph exhibits superior mechanochromic fluorescence (MCF) properties, with its fluorescence color from yellow-green (555 nm) to brown (580 nm) and its emission intensity decreases by 93%. However, neither the fluorescence peak wavelength nor the intensity of CB-Me shows observable changes after being ground, indicating no MCF effect. The X-ray diffraction (XRD) data indicate that the CB-Ph powder changes from the crystalline to amorphous state after being ground, whereas CB-Me remains in its crystalline state. Molecular dynamics simulation (MDS) shows that CB-Ph takes a 3D conformation due to three phenyl groups on the periphery of the molecule, which hinders the molecules from aggregating closely and results in the change of the microstructure by external force stimuli. However, CB-Me aggregated more closely due to its better planarity and hydrophobic n-hexane group, which make it difficult to change the microstructure upon being ground. Based on the unique optical properties of CB-Ph and CB-Me, a new data encryption-decryption technology is developed. CB-Ph is used as cryptographic ink due to its excellent MCF effect upon grinding. CB-Me is used as a camouflage material as it shows the same color as CB-Ph in the daylight and under UV-365 nm; furthermore, its colors remain unchanged after being ground.
Collapse
Affiliation(s)
- Hanjun Zhang
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | | | | | | | | | | |
Collapse
|
40
|
Yang L, Koo D, Wu J, Wong JM, Day T, Zhang R, Kolongoda H, Liu K, Wang J, Ding Z, Pagenkopf BL. Benzosiloles with Crystallization-Induced Emission Enhancement of Electrochemiluminescence: Synthesis, Electrochemistry, and Crystallography. Chemistry 2020; 26:11715-11721. [PMID: 32484982 DOI: 10.1002/chem.202002647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 01/19/2023]
Abstract
Crystallization-induced emission enhancement (CIEE) was demonstrated for the first time for electrochemilunimescence (ECL) with two new benzosiloles. Compared with their solution, the films of the two benzosiloles gave CIEE of 24 and 16 times. The mechanism of the CIEE-ECL was examined by spooling ECL spectroscopy, X-ray crystal structure analysis, photoluminescence, and DFT calculations. This CIEE-ECL system is a complement to the well-established aggregation-induced emission enhancement (AIEE) systems. Unique intermolecular interactions are noted in the crystalline chromophore. The first heterogeneous ECL system is established for organic compounds with highly hydrophobic properties.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Donghyun Koo
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jackie Wu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jonathan M Wong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Tyler Day
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Ruizhong Zhang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Harshana Kolongoda
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Kehan Liu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Jian Wang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| | - Brian L Pagenkopf
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, N6A 5B7, ON, Canada
| |
Collapse
|
41
|
Stimuli-Sensitive Aggregation-Induced Emission of Organogelators Containing Mesogenic Au(I) Complexes. CRYSTALS 2020. [DOI: 10.3390/cryst10050388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the luminescence from conventional organic luminophores is typically quenched in constrained environments, the aggregation-induced emission (AIE) phenomenon is of interest for the development of materials that exhibit strong luminescence in condensed phases. Herein, new bismesogenic Au complexes were developed as organogelators and their photophysical properties, including their AIE characteristics, were investigated in organogels and crystals. The crystals of the gold complexes exhibited room-temperature phosphorescence with relatively high quantum yields. Moreover, the gold complexes also showed photoluminescence in the organogels and we demonstrated that the reversible switching of the luminescence intensity was induced by the sol-gel phase transition. The intense photoluminescence in the crystal and gel was induced by the restricted internal motion of the luminophore in the molecular aggregates. However, in the sol, the network structure of the organogel was destroyed and the nonradiative deactivation of the excited states was enhanced. As a result, we can conclude that the switching of the luminescence intensity was induced by changes in the aggregated structures of the molecules. The developed Au-complex-based gelators are excellent candidates for the realization of stimuli-responsive soft and smart luminescent materials.
Collapse
|
42
|
Zhang S, Yin W, Yang Z, Shah I, Yang Y, Li Z, Zhang S, Zhang B, Lei Z, Ma H. Facile Polymerization Strategy for the Construction of Eu3+-Based Fluorescent Materials with the Capability of Distinguishing D2O from H2O. Anal Chem 2020; 92:7808-7815. [DOI: 10.1021/acs.analchem.0c00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaoxiong Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Weidong Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zengming Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Imran Shah
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yuan Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Shengjun Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bo Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
43
|
Sivalingam S, Debsharma K, Dasgupta A, Sankararaman S, Prasad E. Effect of Slip-Stack Self-Assembly on Aggregation-Induced Emission and Solid-State Luminescence in 1,3-Diarylpropynones. Chempluschem 2020; 84:392-402. [PMID: 31939217 DOI: 10.1002/cplu.201900024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Indexed: 12/26/2022]
Abstract
Co-facial stacking can result in aggregation-caused quenching (ACQ) in conjugated organic luminogens. This study provides an attractive 'slip-stack' self-assembly approach which can eliminate the occurrence of ACQ. The obtained results from steady-state and time-resolved optical studies, along with X-ray diffraction and computational studies demonstrate aggregation-induced emission enhancement (AIEE) of a donor-π-acceptor based 1,3-diarylpropynone, namely 1-(naphthalenyl)-3-(pyren-1-yl)prop-2-yn-1-one (PYNAP). Unlike the monomer, which exhibits poor photoluminescence in solution (φf =2 % in ACN), the twisted manifold of PYNAP allows the orientation of the molecules in a slip-stack fashion during the course of aggregation, which not only avoids a direct co-facial arrangement, but also induces augmented rigidity, leading to restricted intramolecular rotation (RIR) and enhanced emission quantum yield (φf =5 % in ACN/H2 O). The aggregation behavior of PYNAP's congener, 1-phenyl-3-(pyren-1-yl)prop-2-yn-1-one (PYPH) reinforces the hypothesis that slip-stack assembly is a useful strategy for AIEE in polycyclic hydrocarbon luminogens.
Collapse
Affiliation(s)
- Soumya Sivalingam
- Soumya Sivalingam, Kingshuk Debsharma, Prof. Edamana Prasad Physical Organic Chemistry Division Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kingshuk Debsharma
- Soumya Sivalingam, Kingshuk Debsharma, Prof. Edamana Prasad Physical Organic Chemistry Division Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ayan Dasgupta
- Ayan Dasgupta, Prof. Sethuraman Sankararaman Organic Chemistry Division Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sethuraman Sankararaman
- Ayan Dasgupta, Prof. Sethuraman Sankararaman Organic Chemistry Division Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Edamana Prasad
- Soumya Sivalingam, Kingshuk Debsharma, Prof. Edamana Prasad Physical Organic Chemistry Division Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
44
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
45
|
Ma X, Zhang J, Zhang Y, Liu J. Adsorption Promoted Aggregation-Induced Emission Showing Strong Dye Lateral Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16304-16311. [PMID: 31702160 DOI: 10.1021/acs.langmuir.9b02823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) is a powerful method to produce fluorescence for a diverse range of applications. While most previous work induced aggregation by change of solvent, ionic strength, pH, or self-assembly, we herein explored adsorption-induced aggregation using 4,4'-(hydrazine-1,2-diylidene bis(methanylylidene)) bis(3-hydroxybenzoic acid) (HDBB) as an AIE luminogen. HDBB is known to aggregate with AIE at low pH but not at neutral pH, and its aggregation facilitates excited state intramolecular proton transfer for enhanced emission. Using a nonquenching nanomaterial, Y2O3 nanoparticles, HDBB showed sevenfold fluorescence increase at pH 7.0. Fluorescence lifetime showed that HDBB was in the aggregated state in the presence of Y2O3. For comparison, a fluorescent porphyrin compound showed that adsorption caused quenching after mixing with Y2O3, whereas other dyes such as fluorescein, calcein, and rhodamine B failed to be adsorbed by Y2O3. Adsorption did not follow a Langmuir isotherm, but it showed strong lateral HDBB interactions because adsorption was only achieved with a high concentration of HDBB. Adsorption was inhibited by salt and by phosphate, indicating the importance of electrostatic and metal-binding interactions. Comparisons were made with other nanomaterials, where graphene oxide and CeO2 quenched HDBB and a cationic liposome also enhanced its emission, although with a less red-shifted peak wavelength. This study provides a simple method to induce aggregation of an AIE dye and its aggregation in turn-enhanced adsorption.
Collapse
Affiliation(s)
- Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
46
|
Wang XY, Hu YX, Yang XF, Yin J, Chen Z, Liu SH. Excitation Wavelength-Dependent Nearly Pure White Light-Emitting Crystals from a Single Gold(I)-Containing Complex. Org Lett 2019; 21:9945-9949. [PMID: 31793306 DOI: 10.1021/acs.orglett.9b03875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A gold(I) complex is reported. Interestingly, crystals of the gold(I) complex exhibit an excellent excitation wavelength-dependent emission effect at room temperature. Notably, a nearly pure white emission with Commission Internationale de L'Eclairage (CIE) 1931 chromaticity coordinates of (0.32, 0.33) is obtained upon excitation with 406 nm light.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Yu-Xuan Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Xiao-Fei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Zhao Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China.,Jiangxi Key Laboratory of Organic Chemistry , Jiangxi Science and Technology Normal University , Nanchang 330013 , PR China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou 350002 , PR China
| |
Collapse
|
47
|
Alam P, Climent C, Alemany P, Laskar IR. “Aggregation-induced emission” of transition metal compounds: Design, mechanistic insights, and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
He HF, Shao XT, Deng LL, Zhou JX, Zhu YY, Xia HY, Shen L, Zhao F. Triphenylamine or carbazole-based benzothiadiazole luminophors with remarkable solvatochromism and different mechanofluorochromic behaviors. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Ozhogin IV, Chernyavina VV, Lukyanov BS, Malay VI, Rostovtseva IA, Makarova NI, Tkachev VV, Lukyanova MB, Metelitsa AV, Aldoshin SM. Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Chen Z, Tang JH, Chen W, Xu Y, Wang H, Zhang Z, Sepehrpour H, Cheng GJ, Li X, Wang P, Sun Y, Stang PJ. Temperature- and Mechanical-Force-Responsive Self-Assembled Rhomboidal Metallacycle. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00544] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhao Chen
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People’s Republic of China
| | - Jian-Hong Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Wenzhuo Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yao Xu
- Warshel Institute for Computational Biology, School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, People’s Republic of China
| | - Heng Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, People’s Republic of China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|