1
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
2
|
Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol 2023; 43:e291-e302. [PMID: 37317849 DOI: 10.1161/atvbaha.122.318235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
The ECM (extracellular matrix) is a 3-dimensional network that supports cellular responses and maintains structural tissue integrity in healthy and pathological conditions. The interactions between ECM and cells trigger signaling cascades that lead to phenotypic changes and structural and compositional turnover of the ECM, which in turn regulates vascular cell behavior. Hydrogel biomaterials are a powerful platform for basic and translational studies and clinical applications due to their high swelling capacity and exceptional versatility in compositions and properties. This review highlights recent developments and uses of engineered natural hydrogel platforms that mimic the ECM and present defined biochemical and mechanical cues for vascularization. Specifically, we focus on modulating vascular cell stimulation and cell-ECM/cell-cell interactions in the microvasculature that are the established biomimetic microenvironment.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
3
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
4
|
Alves Fávaro M, Ditz D, Yang J, Bergwinkl S, Ghosh AC, Stammler M, Lorentz C, Roeser J, Quadrelli EA, Thomas A, Palkovits R, Canivet J, Wisser FM. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14182-14192. [PMID: 35293203 DOI: 10.1021/acsami.1c24713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.
Collapse
Affiliation(s)
- Marcelo Alves Fávaro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daniel Ditz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jin Yang
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Michael Stammler
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chantal Lorentz
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Jérôme Roeser
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Elsje Alessandra Quadrelli
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Arne Thomas
- Fakultät II Institut für Chemie, Technische Universität Berlin, Hardenbergstrasse 40, 10623 Berlin, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Wang Y, Liu L, Jin Z, Zhang D. Microbial Cell Factories for Green Production of Vitamins. Front Bioeng Biotechnol 2021; 9:661562. [PMID: 34222212 PMCID: PMC8247775 DOI: 10.3389/fbioe.2021.661562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamins are a group of essential nutrients that are necessary to maintain normal metabolic activities and optimal health. There are wide applications of different vitamins in food, cosmetics, feed, medicine, and other areas. The increase in the global demand for vitamins has inspired great interest in novel production strategies. Chemical synthesis methods often require high temperatures or pressurized reactors and use non-renewable chemicals or toxic solvents that cause product safety concerns, pollution, and hazardous waste. Microbial cell factories for the production of vitamins are green and sustainable from both environmental and economic standpoints. In this review, we summarized the vitamins which can potentially be produced using microbial cell factories or are already being produced in commercial fermentation processes. They include water-soluble vitamins (vitamin B complex and vitamin C) as well as fat-soluble vitamins (vitamin A/D/E and vitamin K). Furthermore, metabolic engineering is discussed to provide a reference for the construction of microbial cell factories. We also highlight the current state and problems encountered in the fermentative production of vitamins.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Verduzco L, García-Pérez AL, Guerrero-Santos R, Ledezma-Pérez A, Romero-García J, Torres-Lubián JR. Bioconjugation of papain with poly( N-vinylpyrrolidone): NMR characterization and study of its enzymatic activity. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A poly(vinylpyrrolidone) end-functionalized with a carboxylic acid group (PVP–CO2H) was synthesized by reversible addition-fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) polymerization mediated by 4-(O-ethylxanthyl)methyl benzoic acid. The molecular weight of the as-synthesized PVP–CO2H was estimated through UV–vis spectroscopy (Mn(UV–vis) = 7322 g/mol), gel permeation chromatography (GPC) (Mn(GPC) = 8670 g/mol), and 1H NMR, (Mn(NMR) = 8207 g/mol). The values obtained were close with the theoretical molecular weight (Mn(th) = 7925 g/mol). Subsequently, the preformed PVP–CO2H was activated to produce N-succinimidyl poly(vinylpyrrolidone) (PVP–NHS). This precursor was covalently coupled to papain to produce bioconjugate PVP–papain. The functional group modifications in the PVP chain-end were observed by the variations in the chemical shift values by 1H and 13C NMR and FTIR analysis at each step of the synthesis. The molecular weight of the PVP–papain was obtained by SEC–HPLC and suggests that, on average, four or five chains of PVP–CO2H were attached to one papain molecule. Compared with papain, the PVP–papain exhibited significantly improved catalytic activity, pH, and thermal stability. Additionally, the storage studies showed that the catalytic activity of PVP–papain was about 79% versus the native enzyme (29%), and this activity was maintained even when it was stored for 25 days.
Collapse
Affiliation(s)
- L.E. Verduzco
- Departamento de Materiales Avanzados, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
- Departamento de Síntesis de Polímeros, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| | - Ana L. García-Pérez
- Departamento de Materiales Avanzados, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
- Departamento de Síntesis de Polímeros, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| | - Ramiro Guerrero-Santos
- Departamento de Síntesis de Polímeros, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| | - Antonio Ledezma-Pérez
- Departamento de Materiales Avanzados, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| | - Jorge Romero-García
- Departamento de Materiales Avanzados, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| | - José R. Torres-Lubián
- Departamento de Síntesis de Polímeros, Centro de Investigación en Quimica Aplicada, Blvd. Enrique Reyna 140, Col. San José de los Cerritos, 25294 Saltillo, Coah., Mexico
| |
Collapse
|
7
|
Corrigan N, Ciftci M, Jung K, Boyer C. Gesteuerte Reaktionsorthogonalität in der Polymer‐ und Materialwissenschaft. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
8
|
Corrigan N, Ciftci M, Jung K, Boyer C. Mediating Reaction Orthogonality in Polymer and Materials Science. Angew Chem Int Ed Engl 2020; 60:1748-1781. [DOI: 10.1002/anie.201912001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
9
|
Cui L, Vivona S, Smith BR, Kothapalli SR, Liu J, Ma X, Chen Z, Taylor M, Kierstead PH, Fréchet JM, Gambhir SS, Rao J. Reduction Triggered In Situ Polymerization in Living Mice. J Am Chem Soc 2020; 142:15575-15584. [PMID: 32804495 PMCID: PMC8171073 DOI: 10.1021/jacs.0c07594] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Smart" biomaterials that are responsive to physiological or biochemical stimuli have found many biomedical applications for tissue engineering, therapeutics, and molecular imaging. In this work, we describe in situ polymerization of activatable biorthogonal small molecules in response to a reducing environment change in vivo. We designed a carbohydrate linker- and cyanobenzothiazole-cysteine condensation reaction-based small molecule scaffold that can undergo rapid condensation reaction upon physiochemical changes (such as a reducing environment) to form polymers (pseudopolysaccharide). The fluorescent and photoacoustic properties of a fluorophore-tagged condensation scaffold before and after the transformation have been examined with a dual-modality optical imaging method. These results confirmed the in situ polymerization of this probe after both local and systemic administration in living mice.
Collapse
Affiliation(s)
- Lina Cui
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, CA, USA
| | - Sandro Vivona
- Department of Molecular and Cellular Physiology, Stanford University, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | - Sri R. Kothapalli
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | - Jun Liu
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Xiaowei Ma
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zixin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Chemistry, Stanford University, CA, USA
| | - Madelynn Taylor
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
| | | | | | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Bio-X Program, Department of Radiology, School of medicine, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, CA, USA
| |
Collapse
|
10
|
Jain K, Mehra NK, Jain VK, Jain NK. IPN Dendrimers in Drug Delivery. INTERPENETRATING POLYMER NETWORK: BIOMEDICAL APPLICATIONS 2020:143-181. [DOI: 10.1007/978-981-15-0283-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019; 7:5742-5761. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival. Tissues targeted for cell delivery often undergo diverse mechanical loading including high stress, high strain, and repetitive loading conditions. This review focuses on the development of hydrogel systems that meet the requirements of mechanical resiliency, cytocompatibility, and injectability for such applications. First, we describe the most important design considerations for maintaining the viability and function of encapsulated cells, for reproducing the target tissue morphology, and for achieving degradation profiles that facilitate tissue replacement. Models describing the relationships between hydrogel structure and mechanical properties are described, focusing on design principles necessary for producing mechanically resilient hydrogels. The advantages and limitations of current strategies for preparing cytocompatible, injectable, and mechanically resilient hydrogels are reviewed, including double networks, nanocomposites, and high molecular weight amphiphilic copolymer networks. Finally, challenges and opportunities are outlined to guide future research in this developing field.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
12
|
Zerdoum AB, Fowler EW, Jia X. Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue. ACS Biomater Sci Eng 2019; 5:4531-4541. [PMID: 33178886 PMCID: PMC7654958 DOI: 10.1021/acsbiomaterials.9b00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scar formation is the typical endpoint of wound healing in adult mammalian tissues. An overactive or prolonged fibrogenic response following injury leads to excessive deposition of fibrotic proteins that promote tissue contraction and scar formation. Although well-defined in the dermal tissue, the progression of fibrosis is less explored in other connective tissues, such as the vocal fold. To establish a physiologically relevant 3D model of loose connective tissue fibrosis, we have developed a synthetic extracellular matrix using hyaluronic acid (HA) and peptidic building blocks carrying complementary functional groups. The resultant network was cell adhesive and protease degradable, exhibiting viscoelastic properties similar to the human vocal fold. Human mesenchymal stem cells (hMSCs) were encapsulated in the HA matrix as single cells or multicellular aggregates and cultured in pro-fibrotic media containing connective tissue growth factor (CTGF) for up to 21 days. hMSCs treated with CTGF-supplemented media exhibited an increased expression of fibrogenic markers and ECM proteins associated with scarring. Incorporation of α-smooth muscle actin into F-actin stress fibers was also observed. Furthermore, CTGF treatment increased the migratory capacity of hMSCs as compared to the CTGF-free control groups, indicative of the development of a myofibroblast phenotype. Addition of an inhibitor of the mitogen-activated protein kinase (MAPK) pathway attenuated cellular expression of fibrotic markers and related ECM proteins. Overall, this study demonstrates that CTGF promotes the development of a fibrogenic phenotype in hMSCs encapsulated within an HA matrix and that the MAPK pathway is a potential target for future therapeutic endeavors towards limiting scar formation in loose connective tissues.
Collapse
Affiliation(s)
- Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
13
|
Nguyen HD, Liu HY, Hudson BN, Lin CC. Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels. ACS Biomater Sci Eng 2019; 5:1247-1256. [PMID: 33304998 PMCID: PMC7725231 DOI: 10.1021/acsbiomaterials.8b01607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by the enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ crosslinking of macromers containing hydroxyl-phenol groups. The use of HRP on initiating thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the crosslinking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) were used as crosslinkers for forming enzymatically and orthogonally polymerized hydrogels. For HRP-initiated PEG-peptide hydrogel crosslinking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide crosslinkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine crosslinks following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary crosslinking, which dynamically increases hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels provide excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new crosslinking mechanism for preparing modularly and dynamically crosslinked hydrogels.
Collapse
Affiliation(s)
- Han D. Nguyen
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hung-Yi Liu
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Britney N. Hudson
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
15
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
16
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Liu S, Moore AC, Zerdoum AB, Zhang H, Scinto SL, Zhang H, Gong L, Burris DL, Rajasekaran AK, Fox JM, Jia X. Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials 2018; 180:24-35. [PMID: 30014964 PMCID: PMC6091885 DOI: 10.1016/j.biomaterials.2018.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
Fibrous proteins found in the natural extracellular matrix (ECM) function as host substrates for migration and growth of endogenous cells during wound healing and tissue repair processes. Although various fibrous scaffolds have been developed to recapitulate the microstructures of the native ECM, facile synthesis of hydrogel microfibers that are mechanically robust and biologically active have been elusive. Described herein is the use of interfacial bioorthogonal polymerization to create hydrogel-based microfibrous scaffolds via tetrazine ligation. Combination of a trifunctional strained trans-cyclooctene monomer and a difunctional s-tetrazine monomer at the oil-water interface led to the formation of microfibers that were stable under cell culture conditions. The bioorthogonal nature of the synthesis allows for direct incorporation of tetrazine-conjugated peptides or proteins with site-selectively, genetically encoded tetrazines. The microfibers provide physical guidance and biochemical signals to promote the attachment, division and migration of fibroblasts. Mechanistic investigations revealed that fiber-guided cell migration was both F-actin and microtubule-dependent, confirming contact guidance by the microfibers. Prolonged culture of fibroblasts in the presence of an isolated microfiber resulted in the formation of a multilayered cell sheet wrapping around the fiber core. A fibrous mesh provided a 3D template to promote cell infiltration and tissue-like growth. Overall, the bioorthogonal approach led to the straightforward synthesis of crosslinked hydrogel microfibers that can potentially be used as instructive materials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Axel C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Han Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Liang Gong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Patil SS, Misra RDK. The significance of macromolecular architecture in governing structure-property relationship for biomaterial applications: an overview. MATERIALS TECHNOLOGY 2018; 33:364-386. [DOI: 10.1080/10667857.2018.1447266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- S. S. Patil
- Department of Metallurgy, Materials and Biomedical Engineering, The University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - R. D. K. Misra
- Department of Metallurgy, Materials and Biomedical Engineering, The University of Texas at El Paso (UTEP), El Paso, TX, USA
| |
Collapse
|
19
|
Hao Y, Fowler EW, Jia X. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. POLYM INT 2017; 66:1787-1799. [PMID: 31080322 PMCID: PMC6510501 DOI: 10.1002/pi.5407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to the high water content, porous structure, biocompatibility and tissue-like viscoelasticity, hydrogels have become attractive and promising biomaterials for use in drug delivery, 3D cell culture and tissue engineering applications. Various chemical approaches have been developed for hydrogel synthesis using monomers or polymers carrying reactive functional groups. For in vivo tissue repair and in vitro cell culture purposes, it is desirable that the crosslinking reactions occur under mild conditions, do not interfere with biological processes and proceed at high yield with exceptional selectivity. Additionally, the cross-linking reaction should allow straightforward incorporation of bioactive motifs or signaling molecules, at the same time, providing tunability of the hydrogel microstructure, mechanical properties, and degradation rates. In this review, we discuss various chemical approaches applied to the synthesis of complex hydrogel networks, highlighting recent developments from our group. The discovery of new chemistries and novel materials fabrication methods will lead to the development of the next generation biomimetic hydrogels with complex structures and diverse functionalities. These materials will likely facilitate the construction of engineered tissue models that may bridge the gap between 2D experiments and animal studies, providing preliminary insight prior to in vivo assessments.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
20
|
Ahrens CC, Dong Z, Li W. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomater 2017; 62:64-81. [PMID: 28782721 DOI: 10.1016/j.actbio.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Ex vivo cell aggregates must overcome significant limitations in the transport of nutrients, drugs, and signaling proteins compared to vascularized native tissue. Further, engineered extracellular environments often fail to sufficiently replicate tethered signaling cues and the complex architecture of native tissue. Co-cultures of cells with microparticles (MPs) is a growing field directed towards overcoming many of these challenges by providing local and controlled presentation of both soluble and tethered proteins and small molecules. Further, co-cultured MPs offer a mechanism to better control aggregate architecture and even to report key characteristics of the local microenvironment such as pH or oxygen levels. Herein, we provide a brief introduction to established and developing strategies for MP production including the choice of MP materials, fabrication techniques, and techniques for incorporating additional functionality. In all cases, we emphasize the specific utility of each approach to form MPs useful for applications in cell aggregate co-culture. We review established techniques to integrate cells and MPs. We highlight those strategies that promote targeted heterogeneity or homogeneity, and we describe approaches to engineer cell-particle and particle-particle interactions that enhance aggregate stability and biological response. Finally, we review advances in key application areas of MP aggregates and future areas of development. STATEMENT OF SIGNIFICANT Cell-scaled polymer microparticles (MPs) integrated into cellular aggregates have been shown to be a powerful tool to direct cell response. MPs have supported the development of healthy cartilage, islets, nerves, and vasculature by the maintenance of soluble gradients as well as by the local presentation of tethered cues and diffusing proteins and small molecules. MPs integrated with pluripotent stem cells have directed in vivo expansion and differentiation. Looking forward, MPs are expected to support both the characterization and development of in vitro tissue systems for applications such as drug testing platforms. However, useful co-cultures must be designed keeping in mind the limitations and attributes of each material strategy within the context of the overall tissue biology. The present review integrates prospectives from materials development, drug delivery, and tissue engineering to provide a toolbox for the development and application of MPs useful for long-term co-culture within cell aggregates.
Collapse
Affiliation(s)
- Caroline C Ahrens
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Ziye Dong
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
21
|
Shete AU, Kloxin CJ. One-pot blue-light triggered tough interpenetrating polymeric network (IPN) using CuAAC and methacrylate reactions. Polym Chem 2017; 8:3668-3673. [PMID: 29057012 PMCID: PMC5646837 DOI: 10.1039/c7py00623c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An interpenetrating polymeric network (IPN) is formed in a one-pot blue-light activated scheme, where the step- and chain- growth polymerizations of the CuAAC and methacrylate reactions, respectively, are simultaneously triggered but proceed sequentially. The glassy IPN is polymerized under ambient conditions and is able to withstand high strain before failure owing to its significantly enhanced toughness. Additionally, this material exhibits shape memory attributes with readily tunable mechanical properties at high temperature.
Collapse
Affiliation(s)
- Abhishek U Shete
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| |
Collapse
|
22
|
Fisher SA, Baker AEG, Shoichet MS. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. J Am Chem Soc 2017; 139:7416-7427. [PMID: 28481537 DOI: 10.1021/jacs.7b00513] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniques to ligate bioactive factors, such as peptides and proteins, onto hydrogels are critical in designing materials with biological function. Here, we outline strategies for peptide and protein immobilization. We specifically focus on click chemistry, enzymatic ligation, and affinity binding for transient immobilization. Protein modification strategies have shifted toward site-specific modification using unnatural amino acids and engineered site-selective amino acid sequences to preserve both activity and structure. The selection of appropriate protein immobilization strategies is vital to engineering functional hydrogels. We provide insight into chemistry that balances the need for facile reactions while maintaining protein bioactivity or desired release.
Collapse
Affiliation(s)
- Stephanie A Fisher
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Alexander E G Baker
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
23
|
Bekin Acar S, Ozcelik M, Uyar T, Tasdelen MA. Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0529-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Liang Y, Li L, Scott RA, Kiick KL. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules 2017; 50:483-502. [PMID: 29151616 PMCID: PMC5687278 DOI: 10.1021/acs.macromol.6b02389] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Nemours-Alfred I. duPont Hospital for Children, Department of Biomedical Research, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
25
|
Xu J, Zhou T, Xu ZQ, Gu XN, Wu WN, Chen H, Wang Y, Jia L, Zhu TF, Chen RH. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Renault K, Jouanno LA, Lizzul-Jurse A, Renard PY, Sabot C. Fluorogenic Behaviour of the Hetero-Diels-Alder Ligation of 5-Alkoxyoxazoles with Maleimides and their Applications. Chemistry 2016; 22:18522-18531. [DOI: 10.1002/chem.201603617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Kévin Renault
- Normandie University; CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| | - Laurie-Anne Jouanno
- Department of Chemistry and Biomolecular Sciences; University of Ottawa; 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Antoine Lizzul-Jurse
- Normandie University; CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie University; CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| | - Cyrille Sabot
- Normandie University; CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| |
Collapse
|
27
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
28
|
Molecularly imprinted microparticles in lipid-based formulations for sustained release of donepezil. Eur J Pharm Sci 2016; 93:114-22. [DOI: 10.1016/j.ejps.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022]
|
29
|
Wang X, Hu H, Wang W, Lee KI, Gao C, He L, Wang Y, Lai C, Fei B, Xin JH. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release. Colloids Surf B Biointerfaces 2016; 143:342-351. [PMID: 27022875 DOI: 10.1016/j.colsurfb.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.
Collapse
Affiliation(s)
- Xiaowen Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Huawen Hu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wenyi Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka I Lee
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang Gao
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liang He
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanfeng Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chuilin Lai
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bin Fei
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - John H Xin
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
30
|
Abstract
Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function.
Collapse
Affiliation(s)
- Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Jacob F Fischer
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
31
|
Ozdemir T, Fowler EW, Hao Y, Ravikrishnan A, Harrington DA, Witt RL, Farach-Carson MC, Pradhan-Bhatt S, Jia X. Biomaterials-based strategies for salivary gland tissue regeneration. Biomater Sci 2016; 4:592-604. [PMID: 26878077 DOI: 10.1039/c5bm00358j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.
Collapse
Affiliation(s)
- Tugba Ozdemir
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu H, Pan W, Tong M, Zhao Y. Synthesis and properties of couplable ABCDE star copolymers by orthogonal CuAAC and Diels–Alder click reactions. Polym Chem 2016. [DOI: 10.1039/c5py01960e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Well-defined ABCDE star quintopolymers generated by a modular and orthogonal strategy could self-assemble into intriguing nanoobjects sensitive to thermal and pH stimuli.
Collapse
Affiliation(s)
- Huanhuan Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Weidong Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Min Tong
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
33
|
Taynton P, Zhu C, Loob S, Shoemaker R, Pritchard J, Jin Y, Zhang W. Re-healable polyimine thermosets: polymer composition and moisture sensitivity. Polym Chem 2016. [DOI: 10.1039/c6py01395c] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the effect of polymer composition on moisture sensitivity and rehealability of polyimine thermosets.
Collapse
Affiliation(s)
- Philip Taynton
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Chengpu Zhu
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Samuel Loob
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Richard Shoemaker
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - James Pritchard
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Yinghua Jin
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| | - Wei Zhang
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
34
|
Zhang Z, Feng S, Zhang J. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene. Macromol Rapid Commun 2015; 37:318-22. [PMID: 26676283 DOI: 10.1002/marc.201500607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/13/2015] [Indexed: 01/22/2023]
Abstract
A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.
Collapse
Affiliation(s)
- Zhida Zhang
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jie Zhang
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
35
|
Lin CC. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Adv 2015; 5:39844-398583. [PMID: 26029357 PMCID: PMC4445761 DOI: 10.1039/c5ra05734e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202, USA
| |
Collapse
|