1
|
Aishwarya A, Adaval A, Mondal S, Dasgupta T, Bhattacharyya AR. Influence of H-bonding on the crystalline structures and ferroelectric and piezoelectric properties of novel nanogenerators of the lithium salt of 6-amino hexanoic acid incorporated poly(vinylidene fluoride) composites. Phys Chem Chem Phys 2024; 26:26314-26329. [PMID: 39380553 DOI: 10.1039/d4cp02497d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The lithium salt of 6-amino hexanoic acid (Li-AHA) was melt-mixed with poly(vinylidene fluoride) (PVDF), wherein the Li-AHA concentration was varied between 1-15 wt% with the aim of establishing hydrogen bonding between the NH2 functionality of Li-AHA and the -CF2 moieties of PVDF. This was followed by compression-moulding as well as solution-casting to make PVDF/Li-AHA composite thin films. FTIR analysis established interactions between the -CF2 groups in PVDF with amine functional moieties of Li-AHA. Moreover, FTIR analysis estimated that the solution-cast PVDF/Li-AHA composite of 15 wt% Li-AHA exhibited the highest polar phase fraction of ∼60%. Furthermore, ferroelectric analysis showed that the solution-cast PVDF/Li-AHA composite of 15 wt% Li-AHA exhibited the highest remnant polarization of 0.07 μC cm-2 (at 50 Hz, 1000 V) from the polarization versus electric field loop. Finally, energy harvester devices were fabricated using compression-moulded and solution-cast PVDF/Li-AHA composite films, in which a maximum output voltage of ∼110 V was obtained in the solution-cast PVDF/Li-AHA composite of 15 wt% Li-AHA. The devices also displayed a maximum power density of 75 μW cm-2 and 85 μW cm-2 for those fabricated via compression-moulding and solution-casting, respectively. Three different capacitors were efficiently charged by the tapping of the devices made from solution-cast and compression-moulded composite films of 15 wt% Li-AHA. An interrelationship between processing, structure and properties was successfully established in the PVDF/Li-AHA composites with greatly enhanced piezoelectric properties.
Collapse
Affiliation(s)
- Ananya Aishwarya
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Akanksha Adaval
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Suvankar Mondal
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Titas Dasgupta
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Arup R Bhattacharyya
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Likhi FH, Singh M, Potdukhe HR, Ajayan PM, Rahman MM, Karim A. Tuning Dielectric Properties with Nanofiller Dimensionality in Polymer Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57253-57267. [PMID: 39394987 DOI: 10.1021/acsami.4c16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Polymer nanocomposites hold great potential as dielectrics for energy storage devices and flexible electronics. The structural architecture of the nanofillers is expected to play a crucial role in the fundamental mechanisms governing the electrical breakdown and dielectric properties of the nanocomposites. However, the effect of nanofiller structure and dimensionality on these properties has not been studied thoroughly to date. This study explores the critical relationship between nanofiller dimensionality and dielectric properties in polymer nanocomposites. We fabricated polyvinylidene fluoride (PVDF) nanocomposites by incorporating a range of carbon-based nanofillers separately, including zero-dimensional (0D) carbon black (CB), one-dimensional (1D) multiwalled carbon nanotubes (MWCNT), 1D single-walled carbon nanotubes (SWCNT), two-dimensional (2D) reduced graphene oxide (rGO), and three-dimensional (3D) graphite. The frequency-dependent (1 kHz to 1 MHz) dielectric permittivity (k) of the nanocomposites at the same concentration of nanofillers demonstrated a hierarchical order, with MWCNT showing the highest permittivity (∼400%), succeeded by rGO (∼360%), CB (∼290%), SWCNT (∼230%), and graphite (∼70%), respectively. The temperature-dependent (50-150 °C) dielectric spectroscopy revealed high k with increasing temperature due to the enhanced dipole movement. However, their dielectric breakdown strength and energy densities were not correlated to k and exhibited the following order: SWCNT > MWCNT > CB > rGO > graphite. As the electrical breakdown depends upon the nanocomposites' mechanical strength, we correlated the mechanical properties with the nanofiller dimensionality, and Young's modulus followed the 1D ≈ 2D > 0D > 3D order. These findings will provide fundamental insights into designing tunable, conducive nanofiller-based nanocomposites in next-generation flexible electronics and capacitive energy storage devices.
Collapse
Affiliation(s)
- Farzana Hasan Likhi
- Materials Science and Engineering, University of Houston, Houston, Texas 77004, United States
| | - Maninderjeet Singh
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77004, United States
- Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hitesh Ravi Potdukhe
- Elelctrical and Computer Engineering, University of Houston, Houston, Texas 77004, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Muhammad M Rahman
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Alamgir Karim
- Materials Science and Engineering, University of Houston, Houston, Texas 77004, United States
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
3
|
Su M, Zhou J, Chen Y, Wang Y, Jin G, Wang H, Zhou J, Pang X, Lv Z, Wu K. Electrical Response of Different Crystalline Microregions in Poly(vinylidene fluoride). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1555. [PMID: 39404282 PMCID: PMC11478445 DOI: 10.3390/nano14191555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
The crystal structure has a great influence on the dielectric and piezoelectric performance of poly(vinylidene fluoride) (PVDF). In this work, we prepared PVDF films with two typical crystalline phases (α and β). In situ Kelvin probe force microscopy (KPFM) and Piezoelectric force microscopy (PFM) were employed to investigate the responses of different PVDF crystalline phases to charge mobility, polarization, and piezoelectric properties. We used a homemade Kelvin probe force microscope (KPFM) to inject charges into the two crystalline phases to investigate the differences in the response of different crystalline phases of PVDF to electrical excitation on a microscopic scale. It was found that the α-phase has a lower charge injection barrier and is more susceptible to charge injection and that the α-phase is accompanied by a faster charge dissipation rate, which makes it easier to accumulate charge at the interface between the α-phase and β-phase PVDF. Moreover, the PFM polarization manipulation showed no change in the amplitude and phase diagram of the α-phase under ±10 V bias. In contrast, the β-phase showed a clear polarization reversal phenomenon and a significant increase in piezoelectric amplitude, which is consistent with its polar intrinsic properties. This study provides valuable insights into the multiphase contributions and a reference for designing advanced PVDF dielectrics.
Collapse
Affiliation(s)
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | | | | | | | | | | | | | | | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
4
|
Wang N, Xu ZJ, Ni HF, Luo W, Li HK, Ren ML, Shi C, Ye HY, Fu XB, Zhang Y, Miao LP. Molecular Engineering Regulation Achieving Out-of-Plane Polarization in Rare-Earth Hybrid Double Perovskites for Ferroelectrics and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202409796. [PMID: 38958031 DOI: 10.1002/anie.202409796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Out-of-plane polarization is a highly desired property of two-dimensional (2D) ferroelectrics for application in vertical sandwich-type photoferroelectric devices, especially in ultrathin ferroelectronic devices. Nevertheless, despite great advances that have been made in recent years, out-of-plane polarization remains unrealized in the 2D hybrid double perovskite ferroelectric family. Here, from our previous work 2D hybrid double perovskite HQERN ((S3HQ)4EuRb(NO3)8, S3HQ=S-3-hydroxylquinuclidinium), we designed a molecular strategy of F-substitution on organic component to successfully obtain FQERN ((S3FQ)4EuRb(NO3)8, S3FQ=S-3-fluoroquinuclidinium) showing circularly polarized luminescence (CPL) response. Remarkably, compared to the monopolar axis ferroelectric HQERN, FQERN not only shows multiferroicity with the coexistence of multipolar axis ferroelectricity and ferroelasticity but also realizes out-of-plane ferroelectric polarization and a dramatic enhancement of Curie temperature of 94 K. This is mainly due to the introduction of F-substituted organic cations, which leads to a change in orientation and a reduction in crystal lattice void occupancy. Our study demonstrates that F-substitution is an efficient strategy to realize and optimize ferroelectric functional characteristics, giving more possibility of 2D ferroelectric materials for applications in micro-nano optoelectronic devices.
Collapse
Affiliation(s)
- Na Wang
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Ze-Jiang Xu
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Wang Luo
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Hua-Kai Li
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Mei-Ling Ren
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Xiao-Bin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi, University of Science and Technology, Ganzhou, 341000, P.R. China
| |
Collapse
|
5
|
Ahmed A, Khoso NA, Arain MF, Khan IA, Javed K, Khan A, Memon SI, Fan Q, Shao J. Development of Highly Flexible Piezoelectric PVDF-TRFE/Reduced Graphene Oxide Doped Electrospun Nano-Fibers for Self-Powered Pressure Sensor. Polymers (Basel) 2024; 16:1781. [PMID: 39000637 PMCID: PMC11244387 DOI: 10.3390/polym16131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
The demand for self-powered, flexible, and wearable electronic devices has been increasing in recent years for physiological and biomedical applications in real-time detection due to their higher flexibility and stretchability. This work fabricated a highly sensitive, self-powered wearable microdevice with Poly-Vinylidene Fluoride-Tetra Fluoroethylene (PVDF-TrFE) nano-fibers using an electrospinning technique. The dielectric response of the polymer was improved by incorporating the reduced-graphene-oxide (rGO) multi-walled carbon nano-tubes (MWCNTs) through doping. The dielectric behavior and piezoelectric effect were improved through the stretching and orientation of polymeric chains. The outermost layer was attained by chemical vapor deposition (CVD) of conductive polymer poly (3,4-ethylenedioxythiophene) to enhance the electrical conductivity and sensitivity. The hetero-structured nano-composite comprises PVDF-TrFE doped with rGO-MWCNTs over poly (3,4-ethylenedioxythiophene) (PEDOT), forming continuous self-assembly. The piezoelectric pressure sensor is capable of detecting human physiological vital signs. The pressure sensor exhibits a high-pressure sensitivity of 19.09 kPa-1, over a sensing range of 1.0 Pa to 25 kPa, and excellent cycling stability of 10,000 cycles. The study reveals that the piezoelectric pressure sensor has superior sensing performance and is capable of monitoring human vital signs, including heartbeat and wrist pulse, masticatory movement, voice recognition, and eye blinking signals. The research work demonstrates that the device could potentially eliminate metallic sensors and be used for early disease diagnosis in biomedical and personal healthcare applications.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Department of Textiles and Clothing, School of Engineering and Technology, National Textile University Karachi Campus, Karachi 74900, Pakistan
- Engineering Research Centre for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Materials & Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nazakat Ali Khoso
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Materials & Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Textile Engineering, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 54000, Pakistan
| | - Muhammad Fahad Arain
- Department of Textiles and Clothing, School of Engineering and Technology, National Textile University Karachi Campus, Karachi 74900, Pakistan
- College of Materials & Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Imran Ahmad Khan
- Department of Textile and Apparel Science, School of Design and Textile, University of Management & Technology, Lahore 42000, Pakistan
| | - Kashif Javed
- Department of Textile and Apparel Science, School of Design and Textile, University of Management & Technology, Lahore 42000, Pakistan
| | - Asfandyar Khan
- Department of Textile and Apparel Science, School of Design and Textile, University of Management & Technology, Lahore 42000, Pakistan
- Department of Textile Engineering, Daffodil International University, Dhaka 1216, Bangladesh
| | - Sanam Irum Memon
- Textile Engineering Department, Mehran University of Engineering & Technology (MUET), Jamshoro 76062, Pakistan
| | - Qinguo Fan
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Jianzhong Shao
- Engineering Research Centre for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Materials & Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Yasar M, Hassett P, Murphy N, Ivankovic A. β Phase Optimization of Solvent Cast PVDF as a Function of the Processing Method and Additive Content. ACS OMEGA 2024; 9:26020-26029. [PMID: 38911727 PMCID: PMC11190934 DOI: 10.1021/acsomega.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
A semicrystalline polymer with high piezo-, pyro-, and ferroelectric characteristics, poly(vinylidene fluoride) (PVDF) offers exciting possibilities in various applications. The semicrystalline structure of PVDF is composed of several phases including α, β, θ, γ, and ε phases. β phase polymorphs of PVDF exhibit the highest piezoelectric properties, which can be enhanced through different processing methods. This study aims to investigate the β phase transformation of PVDF through different processes/treatment methods and the processing of a PVDF polymer composite containing 0.2 wt % multiwalled carbon nanotubes and/or 20 wt % modified/unmodified barium titanate. The effects of annealing, uniaxial stretching, rolling, atmospheric plasma treatment, UV treatment, and their combinations were investigated. The transformation of α to β phase was determined by Fourier transform infrared spectrometer, X-ray diffractometer and differential scanning calorimeter. The most remarkable β phase transformation of PVDF films was obtained by stretching following solvent casting and hot pressing. It was observed that various process combinations, as well as the incorporation of additives, influence the β phase content of PVDF. Alongside studying β phase content of PVDF, the investigation extends to analyzing the tan δ and elastic and loss modulus values of rolled PVDF polymer composite films.
Collapse
Affiliation(s)
- Miray Yasar
- School
of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Patrick Hassett
- School
of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Neal Murphy
- School
of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Alojz Ivankovic
- School
of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Koo YS, Galan-Mascaros JR. Memory effect in ferroelectric polyvinylidene fluoride (PVDF) films via spin crossover probes. Dalton Trans 2024; 53:7590-7595. [PMID: 38616712 DOI: 10.1039/d4dt00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ferroelectric polymers are of great interest due to their intrinsic processing capabilities, superior to classic inorganic ferroelectric materials. For example, polyvinylidene fluoride (PVDF) and derivatives have been incorporated into multiple device architectures for information storage and transfer. Here we report an additional advantage of organic ferroelectrics as their flexibility allows for the preparation of composites with spin crossover (SCO) probes to tune their ferroelectric parameters by external stimuli. We demonstrate how the saturation polarization and coercive field of a ferroelectric [Fe(NH2trz)3](NO3)2/PVDF composite film depends on the spin state of the [Fe(NH2trz)3](NO3)2, opening a thermal hysteresis and delivering a ferroelectric material with a memory effect. This switching may now be used to tune the function of a device, adding additional information states to the elemental binary logic. Additional evidence of the synergy between the two components of these films was also found in the glass transition of the PVDF component that induces small changes in the paramagnetic component.
Collapse
Affiliation(s)
- Yong Sung Koo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007-Tarragona, Spain.
| | - Jose Ramon Galan-Mascaros
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007-Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010-Barcelona, Spain
| |
Collapse
|
8
|
Amrutha B, Anand Prabu A, Pathak M. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications. Heliyon 2024; 10:e29192. [PMID: 38601609 PMCID: PMC11004416 DOI: 10.1016/j.heliyon.2024.e29192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Flexible electrospun fiber-based piezoelectric nanogenerator (PENG) has attracted a lot of interest due to its ability of generating electrical energy from mechanical energy sources. The present work aims to improve the piezoelectric output of PENG devices based on electrospun polyvinylidene fluoride (PVDF) doped with nickel oxide nanoparticles (NiO NPs) in different concentrations (2, 4, 6, 8 and 10 wt.-%). Crystalline phase changes and β-crystalline content in electrospun fibers were evaluated using XRD and FTIR-ATR, respectively. Surface morphology and surface roughness of the electrospun fibers were observed using FE-SEM and AFM, respectively. The hydrophobic nature of the fibers was analyzed using a wettability test. PENG output voltage and short-circuit current performance of neat PVDF and PVDF doped with NiO (PN) composite electrospun fibers were calculated using a customized variable-pressure setup with an optimized force of 1.0 kgf and 1.0 Hz frequency. Neat PVDF-based PENG exhibited only 1.7 V and 0.7 μA, whereas, PVDF doped with 6 wt.-% NiO NP (PN-6) based PENG generated a high output voltage of 5.5 V and 1.83 μA current. The optimized PN-6 PENG device is demonstrated for use in wearable devices towards identifying certain body movements like tapping, wrist movement, walking and running.
Collapse
Affiliation(s)
- Bindhu Amrutha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
9
|
Stolbov OV, Raikher YL. Magnetostrictive and Magnetoactive Effects in Piezoelectric Polymer Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:31. [PMID: 38202485 PMCID: PMC10780694 DOI: 10.3390/nano14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
A mesoscopic model for a polymer-based magnetoelectric (ME) composite film is developed. The film is assumed to consist of a piezoelectric polymer matrix of the PVDF type filled with CFO-like single-domain nanoparticles. The model is treated numerically and enables one to obtain in detail the intrinsic distributions of mechanical stress, polarization and electric potential and helps to understand the influence of the main configurational parameters, viz., the poling direction and the orientational order of the particle magnetic anisotropy axes on the electric response of the film. As the model is fairly simple-it uses the RVE-like (Representative Volume Element) approach with a single-particle cell-the results obtained are rather of qualitative than quantitative nature. However, the general conclusions seem to be independent of the particularities of the model. Namely, the presented results establish that the customary ME effect in composite films always comprises at least two contributions of different origins, viz., the magnetostrictive and the magnetoactive (magnetorotational) ones. The relative proportion between those contributions is quite movable depending on the striction coefficient of the particles and the stiffness of the polymer matrix. This points out the necessity to explicitly take into account the magnetoactive contribution when modeling the ME response of composite films and when interpreting the measurements on those objects.
Collapse
Affiliation(s)
- Oleg V. Stolbov
- Laboratory of Dynamics of Disperse Media, Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, 614018 Perm, Russia;
- Research and Education Center “Smart Materials and Biological Applications”, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Yuriy L. Raikher
- Laboratory of Dynamics of Disperse Media, Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, 614018 Perm, Russia;
- Research and Education Center “Smart Materials and Biological Applications”, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| |
Collapse
|
10
|
Wang T, Wang Y, Dang F, Liu M, Sun S, Jin K, Cheng P. Optimizing solvent dipole moment enables PVDF to improve piezoelectric performance. NANOTECHNOLOGY 2023; 35:075501. [PMID: 37918030 DOI: 10.1088/1361-6528/ad0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
The all-trans conformation (β-phase) possesses a significant impact on the piezoelectric polymer polyvinylidene fluoride (PVDF). Inducing more molecular chain [-CH2-CF2-]nto form all-trans conformation is one of the biggest obstacles for manufacturing high-performance piezoelectric sensing devices. Herein, the continuous vacuum technology is used to modulate the polarity of binary solvents by the proportion of the lower solvent. The regulated solvent forms a high dipole moment, an interaction between the dipole ofβ-phase and the dipole moment makes the phase reversal in PVDF. Fourier transform infrared spectroscopy, piezoelectric constant test and other characterization results show that when the weakly polar acetone and the strongly polar solvent DMF reach a ratio of 4:6, the pure PVDF film possesses high piezoelectricity (d33∼ -44.8 pC N-1) and strong self-polarization. Additionally, the A4D6device exhibits high sensitivity (S1= 0.182 V/N, 0.5 N ∼ 30 N), driven capability (0.49 mW m-2), and reliability during the electrical tests as a pressure device. This work provides an effective and cost-effective route of optimizing the solvent's polarity to improve the piezoelectric characteristics of the polymer.
Collapse
Affiliation(s)
- Tianliang Wang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Yinglin Wang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Fan Dang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Mengge Liu
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Shanfu Sun
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Ke Jin
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
11
|
Ali N, Kenawy ER, Wadoud AA, Elhadary MI. Wearable Electrospun Piezoelectric Mats Based on a PVDF Nanofiber-ZnO@ZnS Core-Shell Nanoparticles Composite for Power Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2833. [PMID: 37947679 PMCID: PMC10648488 DOI: 10.3390/nano13212833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2023]
Abstract
This work adopted a strategy to use new functional high-performance piezoelectric materials for sustainable energy production in wearable self-powered electrical devices. An innovative modification in electrospinning was used to produce highly aligned nanofibers. In the nanogenerator, the flexible membrane constituents were tunefully combined. The novel composite nanofibers were made of Poly (vinylidene fluoride) PVDF, loaded with ZnO@ZnS core-shell nanoparticles to achieve a non-brittle performance of the hetero nanoparticles and piezoelectric polymer. A nanofiber mat was inserted between two thermoplastic sheets with conductive electrodes for application in wearable electronic devices. Complete spectroscopic analyses were performed to characterize the nanofiber's material composition. It is shown that the addition of 10 wt % ZnO@ZnS core-shell nanoparticles significantly improved the piezoelectric properties of the nanofibers and simultaneously kept them flexible due to the exceedingly resilient nature of the composite. The superior performance of the piezoelectric parameter of the nanofibrous mats was due to the crystallinity (polar β phase) and surface topography of the mat. The conversion sensitivity of the PVDF device recorded almost 0.091 V/N·mm3, while that of the PVDF-10 wt % ZnO@ZnS composite mat recorded a sensitivity of 0.153 V/N·mm3, which is higher than many flexible nano-generators. These nanogenerators provide a simple, efficient, and cost-effective solution to microelectronic wearable devices.
Collapse
Affiliation(s)
- Nehal Ali
- Department of Engineering Physics and Mathematics, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - A. A. Wadoud
- Atomic Reactors Department, Egyptian Atomic Energy Authority, Inshas, Cairo 13759, Egypt
| | - M. I. Elhadary
- Department of Mechanical Power Engineering, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Mamache FE, Mesbah A, Zaïri F, Vozniak I. A Coupled Electro-Mechanical Homogenization-Based Model for PVDF-Based Piezo-Composites Considering α → β Phase Transition and Interfacial Damage. Polymers (Basel) 2023; 15:2994. [PMID: 37514384 PMCID: PMC10386585 DOI: 10.3390/polym15142994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a piezoelectric semi-crystalline polymer whose electro-mechanical properties may be modulated via strain-induced α → β phase transition and the incorporation of polarized inorganic particles. The present work focuses on the constitutive representation of PVDF-based piezo-composites developed within the continuum-based micromechanical framework and considering the combined effects of particle reinforcement, α → β phase transition, and debonding along the interface between the PVDF matrix and the particles under increasing deformation. The micromechanics-based model is applied to available experimental data of PVDF filled with various concentrations of barium titanate (BaTiO3) particles. After its identification and predictability verification, the model is used to provide a better understanding of the separate and synergistic effects of BaTiO3 particle reinforcement and the micromechanical deformation processes on the electro-mechanical properties of PVDF-based piezo-composites.
Collapse
Affiliation(s)
- Fateh Enouar Mamache
- University of Sciences and Technology Houari Boumediene, Laboratory of Advanced Mechanics, Algiers 16111, Algeria
| | - Amar Mesbah
- University of Sciences and Technology Houari Boumediene, Laboratory of Advanced Mechanics, Algiers 16111, Algeria
| | - Fahmi Zaïri
- Univ. Lille, IMT Nord Europe, JUNIA, Univ. Artois, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - Iurii Vozniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Str., 112, 90363 Lodz, Poland
| |
Collapse
|
13
|
Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z. The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters. Polymers (Basel) 2023; 15:2766. [PMID: 37447413 DOI: 10.3390/polym15132766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Owing to their biocompatibility, chemical stability, film-forming ability, cost-effectiveness, and excellent electroactive properties, poly(vinylidene fluoride) (PVDF) and PVDF-based polymers are widely used in sensors, actuators, energy harvesters, etc. In this review, the recent research progress on the PVDF phase structures and identification of different phases is outlined. Several approaches for obtaining the electroactive phase of PVDF and preparing PVDF-based nanocomposites are described. Furthermore, the potential applications of these materials in wearable sensors and human energy harvesters are discussed. Finally, some challenges and perspectives for improving the properties and boosting the applications of these materials are presented.
Collapse
Affiliation(s)
- Weiran Zhang
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Guohua Wu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Hailan Zeng
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Ziyu Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Wei Wu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Haiyun Jiang
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Weili Zhang
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Ruomei Wu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yiyang Huang
- Shenzhen Glareway Technology Co., Ltd., Shenzhen 518110, China
| | - Zhiyong Lei
- Shenzhen Glareway Technology Co., Ltd., Shenzhen 518110, China
| |
Collapse
|
14
|
Li J, Yin J, Wee MGV, Chinnappan A, Ramakrishna S. A Self-Powered Piezoelectric Nanofibrous Membrane as Wearable Tactile Sensor for Human Body Motion Monitoring and Recognition. ADVANCED FIBER MATERIALS 2023; 5:1-14. [PMID: 37361108 PMCID: PMC10088646 DOI: 10.1007/s42765-023-00282-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
Wearable sensors have drawn vast interest for their convenience to be worn on body to monitor and track body movements or exercise activities in real time. However, wearable electronics rely on powering systems to function. Herein, a self-powered, porous, flexible, hydrophobic and breathable nanofibrous membrane based on electrospun polyvinylidene fluoride (PVDF) nanofiber has been developed as a tactile sensor with low-cost and simple fabrication for human body motion detection and recognition. Specifically, effects of multi-walled carbon nanotubes (CNT) and barium titanate (BTO) as additives to the fiber morphology as well as mechanical and dielectric properties of the piezoelectric nanofiber membrane were investigated. The fabricated BTO@PVDF piezoelectric nanogenerator (PENG) exhibits the high β-phase content and best overall electrical performances, thus selected for the flexible sensing device assembly. Meanwhile, the nanofibrous membrane demonstrated robust tactile sensing performance that the device exhibits durability over 12,000 loading test cycles, holds a fast response time of 82.7 ms, responds to a wide pressure range of 0-5 bar and shows a high relative sensitivity, especially in the small force range of 11.6 V/bar upon pressure applied perpendicular to the surface. Furthermore, when attached on human body, its unique fibrous and flexible structure offers the tactile sensor to present as a health care monitor in a self-powered manner by translating motions of different movements to electrical signals with various patterns or sequences. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00282-8.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| | - Jing Yin
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Mei Gui Vanessa Wee
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, 119077 Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, 117081 Singapore
| |
Collapse
|
15
|
Solodilov V, Kochervinskii V, Osipkov A, Makeev M, Maltsev A, Yurkov G, Lokshin B, Bedin S, Shapetina M, Tretyakov I, Petrova T. Structure and Thermomechanical Properties of Polyvinylidene Fluoride Film with Transparent Indium Tin Oxide Electrodes. Polymers (Basel) 2023; 15:polym15061483. [PMID: 36987260 PMCID: PMC10051213 DOI: 10.3390/polym15061483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
This paper is devoted to the study of the structure and thermomechanical properties of PVDF-based ferroelectric polymer film. Transparent electrically conductive ITO coatings are applied to both sides of such a film. In this case, such material acquires additional functional properties due to piezoelectric and pyroelectric effects, forming, in fact, a full-fledged flexible transparent device, which, for example, will emit a sound when an acoustic signal is applied, and under various external influences can generate an electrical signal. The use of such structures is associated with the influence of various external influences on them: thermomechanical loads associated with mechanical deformations and temperature effects during operation, or when applying conductive layers to the film. The article presents structure investigation and its change during high-temperature annealing using IR spectroscopy and comparative results of testing a PVDF film before and after deposition of ITO layers for uniaxial stretching, its dynamic mechanical analysis, DSC, as well as measurements of the transparency and piezoelectric properties of such structure. It is shown that the temperature-time mode of deposition of ITO layers has little effect on the thermal and mechanical properties of PVDF films, taking into account their work in the elastic region, slightly reducing the piezoelectric properties. At the same time, the possibility of chemical interactions at the polymer–ITO interface is shown.
Collapse
Affiliation(s)
- Vitaliy Solodilov
- Laboratory of Ferroelectric Polymers, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valentin Kochervinskii
- Laboratory of Ferroelectric Polymers, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Correspondence: (V.K.); (A.O.); (G.Y.)
| | - Alexey Osipkov
- Laboratory of Ferroelectric Polymers, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Correspondence: (V.K.); (A.O.); (G.Y.)
| | - Mstislav Makeev
- Laboratory of Ferroelectric Polymers, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Aleksandr Maltsev
- Department of Electronics of Organic Materials and Nanostructures, N.M. Emanuel Institute of Biochemical Physics (IBCP), Russian Academy of Science (RAS), 119334 Moscow, Russia
| | - Gleb Yurkov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (V.K.); (A.O.); (G.Y.)
| | - Boris Lokshin
- Department of Physical and Physico-Chemical Methods for Studying the Structure of Substances, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey Bedin
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow Pedagogical State University, 119991 Moscow, Russia
| | - Maria Shapetina
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow Pedagogical State University, 119991 Moscow, Russia
| | - Ilya Tretyakov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tuyara Petrova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Lim J, Choi S, Kim HS. Electrospinning behavior and piezoelectric property of
PVDF
/
PEDOT
:
PSS
composite web by
PEDOT
:
PSS
addition. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Jihwan Lim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| | - Sejin Choi
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| | - Han Seong Kim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
- Institute of Advanced Organic Materials Pusan National University Busan Republic of Korea
| |
Collapse
|
17
|
Malik P, Gupta V, Mishra HK, Kumar A, Mandal D. Long term retention in
δ‐PVDF
thin film prepared by rapid ice quenching technique. J Appl Polym Sci 2023. [DOI: 10.1002/app.53714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Pinki Malik
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Varun Gupta
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Hari Krishna Mishra
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Ajay Kumar
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit Institute of Nano Science and Technology Mohali India
| |
Collapse
|
18
|
Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Manipulation of crystallization and dielectric relaxation dynamics via hot pressing and copolymerization of PVDF with Hexafluoropropylene. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Effects of SWCNT content on the electrospinning behavior and structure formation of a PVDF/SWCNT composite web. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
A Flexible Piezoelectric Device for Frequency Sensing from PVDF/SWCNT Composite Fibers. Polymers (Basel) 2022; 14:polym14214773. [DOI: 10.3390/polym14214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Polymer piezoelectric devices have been widely studied as sensors, energy harvesters, and generators with flexible and simple processes. Flexible piezoelectric devices are sensitive to external stimuli and are attracting attention because of their potential and usefulness as acoustic sensors. In this regard, the frequency sensing of sound must be studied to use flexible piezoelectric devices as sensors. In this study, a flexible piezoelectric device composed of a polymer and an electrode was successfully fabricated. Polyvinylidene fluoride, the active layer of the piezoelectric device, was prepared by electrospinning, and electrodes were formed by dip−coating in a prepared single−walled carbon nanotube dispersion. The output voltage of the external sound was matched with the input frequency through a fast Fourier transform, and frequency matching was successfully performed, even with mechanical stimulation. In a high−frequency test, the piezoelectric effect and frequency domain peak started to decrease sharply at 300 Hz, and the limit of the piezoelectric effect and sensing was observed from 800 Hz. The results of this study suggest a method for developing flexible piezoelectric-fiber frequency sensors based on piezoelectric devices for acoustic sensor systems.
Collapse
|
22
|
Pusty M, Shirage PM. Defect-Induced Self-Poling in a W 18O 49/PVDF Piezoelectric Energy Harvester. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11787-11800. [PMID: 36112780 DOI: 10.1021/acs.langmuir.2c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
W18O49 nanostructures, previously used for electrocatalysis, energy storage, electrochromic, and gas sensing applications, are incorporated in poly(vinylidene fluoride) (PVDF) in this work for mechanical energy-harvesting applications. X-ray diffraction spectroscopy (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), and the polarization-electric (P-E) field loop test prompts the addition of W18O49 nanorods in PVDF nucleates and stabilizes the piezoelectric polar γ-phase in the nanocomposite. Electrochemical experiments were employed for the first time to relate the event of the evolution of crystalline phases in PVDF to the transfer of electrons to the electrolyte from PVDF using the data from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). High dielectric constant (ε') and low dielectric loss (ε″) values were obtained proportionately for different weight percentage additions of W18O49 nanorods in PVDF. DSC was employed to study the crystallization kinetics of γ-phase evolution. Piezoresponse force microscopy (PFM) was used to compare the piezoelectric responses from the PVDF nanocomposites. The W18O49/PVDF nanocomposite could generate a peak open circuit voltage of ∼6 V and a peak short circuit current of ∼700 nA. The W18O49/PVDF nanocomposite could light two commercial blue-light-emitting diodes (LEDs) with hand impulse imparting.
Collapse
Affiliation(s)
- Manojit Pusty
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Parasharam M Shirage
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
23
|
Hintermueller D, Prakash R. Comprehensive Characterization of Solution-Cast Pristine and Reduced Graphene Oxide Composite Polyvinylidene Fluoride Films for Sensory Applications. Polymers (Basel) 2022; 14:2546. [PMID: 35808590 PMCID: PMC9268764 DOI: 10.3390/polym14132546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023] Open
Abstract
Pristine and doped polyvinylidene fluoride (PVDF) are actively investigated for a broad range of applications in pressure sensing, energy harvesting, transducers, porous membranes, etc. There have been numerous reports on the improved piezoelectric and electric performance of PVDF-doped reduced graphene oxide (rGO) structures. However, the common in situ doping methods have proven to be expensive and less desirable. Furthermore, there is a lack of explicit extraction of the compression mode piezoelectric coefficient (d33) in ex situ rGO doped PVDF composite films prepared using low-cost, solution-cast processes. In this work, we describe an optimal procedure for preparing high-quality pristine and nano-composite PVDF films using solution-casting and thermal poling. We then verify their electromechanical properties by rigorously characterizing β-phase concentration, crystallinity, piezoelectric coefficient, dielectric permittivity, and loss tangent. We also demonstrate a novel stationary atomic force microscope (AFM) technique designed to reduce non-piezoelectric influences on the extraction of d33 in PVDF films. We then discuss the benefits of our d33 measurements technique over commercially sourced piezometers and conventional piezoforce microscopy (PFM). Characterization outcomes from our in-house synthesized films demonstrate that the introduction of 0.3%w.t. rGO nanoparticles in a solution-cast only marginally changes the β-phase concentration from 83.7% to 81.7% and decreases the crystallinity from 42.4% to 37.3%, whereas doping increases the piezoelectric coefficient by 28% from d33 = 45 pm/V to d33 = 58 pm/V, while also improving the dielectric by 28%. The piezoelectric coefficients of our films were generally higher but comparable to other in situ prepared PVDF/rGO composite films, while the dielectric permittivity and β-phase concentrations were found to be lower.
Collapse
Affiliation(s)
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
24
|
Hiener DC, Hutchison GR. Pareto Optimization of Oligomer Polarizability and Dipole Moment Using a Genetic Algorithm. J Phys Chem A 2022; 126:2750-2760. [PMID: 35471827 DOI: 10.1021/acs.jpca.2c01266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-performance electronic components are highly sought after in order to produce increasingly smaller and cheaper electronic devices. Drawing inspiration from inorganic dielectric materials, in which both polarizability and polarization contribute, organic materials can also maximize both. For a large set of small molecules drawn from PubChem, a Pareto-like front appears between the polarizability and dipole moment, indicating the presence of an apparent trade-off between these two properties. We tested this balance in π-conjugated materials by searching for novel conjugated hexamers with simultaneously large polarizabilities and dipole moments with potential use for dielectric materials. Using a genetic algorithm (GA) screening technique in conjunction with an approximate density functional tight-binding method for property calculations, we were able to efficiently search chemical space for optimal hexamers. Given the scope of chemical space, using the GA technique saves considerable time and resources by speeding up molecular searches compared to a systematic search. We also explored the underlying structure-function relationships, including sequence and monomer properties, that characterize large polarizability and dipole moment regimes.
Collapse
Affiliation(s)
- Danielle C Hiener
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Geoffrey R Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
25
|
Park J, Lim YW, Cho SY, Byun M, Park KI, Lee HE, Bu SD, Lee KT, Wang Q, Jeong CK. Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104472. [PMID: 35187776 DOI: 10.1002/smll.202104472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.
Collapse
Affiliation(s)
- Jiseul Park
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yeong-Won Lim
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen & Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sam Yeon Cho
- Department of Physics, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Myunghwan Byun
- Department of Advanced Materials Engineering, Keimyung University, Daegu, 42601, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sang Don Bu
- Department of Physics, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Ki-Tae Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen & Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen & Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
26
|
Lu J, Hu S, Li W, Wang X, Mo X, Gong X, Liu H, Luo W, Dong W, Sima C, Wang Y, Yang G, Luo JT, Jiang S, Shi Z, Zhang G. A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS NANO 2022; 16:3744-3755. [PMID: 35234032 DOI: 10.1021/acsnano.1c07614] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Currently, various electronic devices make our life more and more safe, healthy, and comfortable, but at the same time, they produce a large amount of nondegradable and nonrecyclable electronic waste that threatens our environment. In this work, we explore an environmentally friendly and flexible mechanical sensor that is biodegradable and recyclable. The sensor consists of a bacterial cellulose (BC) hydrogel as the matrix and imidazolium perchlorate (ImClO4) molecular ferroelectric as the functional element, the hybrid of which possesses a high sensitivity of 4 mV kPa-1 and a wide operational range from 0.2 to 31.25 kPa, outperforming those of most devices based on conventional functional biomaterials. Moreover, the BC hydrogel can be fully degraded into glucose and oligosaccharides, while ImClO4 can be recyclable and reused for the same devices, leaving no environmentally hazardous electronic waste.
Collapse
Affiliation(s)
- Junling Lu
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sanming Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenru Li
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuefang Wang
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiwei Mo
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuetian Gong
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Luo
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen Dong
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chaotan Sima
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing-Ting Luo
- Key Laboratory of Optoelectronic Devices and Systems of Education Ministry and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shenglin Jiang
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangzu Zhang
- School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics MOE and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Liu Z, Li S, Zhu J, Mi L, Zheng G. Fabrication of β-Phase-Enriched PVDF Sheets for Self-Powered Piezoelectric Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11854-11863. [PMID: 35192327 DOI: 10.1021/acsami.2c01611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of self-powered pressure sensors based on piezoelectric materials requires flexible piezoelectric generators produced with a continuous, large-scale, and environmentally friendly approach. In this study, continuous poly(vinylidene fluoride) (PVDF) sheets with a higher β-phase content were facilely fabricated by the melt-extrusion-calendering technique and a PVDF-based piezoelectric generator (PEG) was further assembled. Such a PEG exhibits a remarkable piezoelectric output performance. Moreover, it possesses prominent stability even after working for a long time, exhibiting potential applications for real-time monitoring of various human movements (i.e., hopping, running, and walking) and gait. This work not only provides the possibility of continuous and environmentally friendly fabrication of PVDF sheets with remarkable piezoelectric properties but also paves a new promising pathway for powering portable microelectronic applications without any external power supply.
Collapse
Affiliation(s)
- Zhongzhu Liu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Suishui Li
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold of Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingzhan Zhu
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold of Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Liwei Mi
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Guoqiang Zheng
- College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold of Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Ren JY, Ouyang QF, Ma GQ, Li Y, Lei J, Huang HD, Jia LC, Lin H, Zhong GJ, Li ZM. Enhanced Dielectric and Ferroelectric Properties of Poly(vinylidene fluoride) through Annealing Oriented Crystallites under High Pressure. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Yi Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qing-Feng Ouyang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
29
|
Panda AK, Sitaramgupta VSN, Pandya HJ, Basu B. Electrical waveform dependent osteogenesis on PVDF/BaTiO 3 composite using a customized and programmable cell stimulator. Biotechnol Bioeng 2022; 119:1578-1597. [PMID: 35244212 DOI: 10.1002/bit.28076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Directing cellular functionalities using biomaterial-based bioelectronic stimulation remains a significant constraint in translating research outcomes to address specific clinical challenges. Electrical stimulation is now being clinically used as a therapeutic treatment option to promote bone tissue regeneration and to improve neuromuscular functionalities. However, the nature of the electrical waveforms during the stimulation and underlying biophysical rationale are still not scientifically well explored. Furthermore, bone-mimicking implant-based bioelectrical regulation of osteoinductivity has not been translated to clinics. The present study demonstrates the role of the waveform in electrical signal to direct differentiation of stem cells on an electroactive polymeric substrate, using monophasic DC, square wave, and biphasic wave. In this regard, an in-house electrical stimulation device has been fabricated for the uninterrupted delivery of programmed electrical signals to stem cells in culture. To provide a functional platform for stem cells to differentiate, barium titanate (BaTiO3 , BT) reinforced PVDF has been developed with mechanical properties similar to bone. The electrical stimulation of human mesenchymal stem cells (hMSCs) on PVDF/BT composite inhibited proliferation rate at day 7, indicating early commitment for differentiation. The phenotypical characteristics of DC stimulated hMSCs provided signatures of differentiation towards osteogenic lineage, which was subsequently confirmed using ALP assay, collagen deposition, matrix mineralization, and genetic expression. Our findings suggest that DC stimulation induced early osteogenesis in hMSCs with a higher level of intracellular reactive oxygen species (ROS), whereas the stimulation with square wave directed late osteogenesis with a lower ROS regeneration. In summary, the present study critically analyzes the role of electrical stimulation and its waveforms in regulating osteogenesis, without external biochemical differentiation inducers, on a bone-mimicking functional substrate. Such a strategy can potentially be adopted to develop orthopedic implant-based bioelectronic medicine for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
30
|
Jaffari GH, Arooj H, Can MM, Khan NA. Structural and Electrical Response of Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) Copolymer Free Standing Films. POLYM INT 2022. [DOI: 10.1002/pi.6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hurriyat Arooj
- Department of Physics Quaid‐i‐Azam University Islamabad Pakistan
| | - Musa Mutlu Can
- Renewable Energy and Oxide Hybrid Systems Laboratory Department of Physics, Faculty of Science, Istanbul University Istanbul Turkey
| | | |
Collapse
|
31
|
Sharma S, Shekhar Mishra S, Kumar RP, Yadav RM. Recent progress on polyvinylidene difluoride based nanocomposite: Applications in energy harvesting and sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj00002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovered in 2006, Nanogenerators have attracted much attention as promising energy-harvesting devices. It harnesses energy by utilizing piezoelectric, pyroelectric thermoelectric properties of nanomaterials to produce electricity and have potential to...
Collapse
|
32
|
Sun Y, Niu G, Ren W, Meng X, Zhao J, Luo W, Ye ZG, Xie YH. Hybrid System Combining Two-Dimensional Materials and Ferroelectrics and Its Application in Photodetection. ACS NANO 2021; 15:10982-11013. [PMID: 34184877 DOI: 10.1021/acsnano.1c01735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodetectors are one of the most important components for a future "Internet-of-Things" information society. Compared to the mainstream semiconductor-based photodetectors, emerging devices based on two-dimensional (2D) materials and ferroelectrics as well as their hybrid systems have been extensively studied in recent decades due to their outstanding performances and related interesting physical, electrical, and optoelectronic phenomena. In this paper, we review the photodetection based on 2D materials and ferroelectric hybrid systems. The fundamentals of 2D and ferroelectric materials as well as the interaction in the hybrid system will be introduced. Ferroelectricity modulated optoelectronic properties in the hybrid system will be discussed in detail. After the basics and figures of merit of photodetectors are summarized, the 2D-ferroelectrics devices with different structures including p-n diodes, Schottky diodes, and field-effect transistors will be reviewed and compared. The polarization of ferroelectrics offers the possibility of the modulation and enhancement of the photodetection in the hybrid detectors, which will be discussed in depth. Finally, the challenges and perspectives of the photodetectors based on 2D ferroelectrics will be proposed. This Review outlines the important aspects of the recent development of the hybrid system of 2D and ferroelectric materials, which could interact with each other and thus lead to photodetectors with higher performances. Such a Review will be helpful for the research of emerging physical phenomena and for the design of multifunctional nanoscale electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yanxiao Sun
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Gang Niu
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Wei Ren
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Xiangjian Meng
- National Laboratory for Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, P. R. China
| | - Jinyan Zhao
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Wenbo Luo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zuo-Guang Ye
- Department of Chemistry and 4D Laboratories, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles 90024, California, United States
| |
Collapse
|
33
|
Chandran AM, Varun S, Mural PKS. Flexible electroactive
PVDF
/
ZnO
nanocomposite with high output power and current density. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Akash M. Chandran
- Materials Chemistry and Polymer Technology Group, Department of Chemical Engineering National Institute of Technology Calicut Kerala India
| | - S. Varun
- Materials Chemistry and Polymer Technology Group, Department of Chemical Engineering National Institute of Technology Calicut Kerala India
| | - Prasanna Kumar S. Mural
- Materials Chemistry and Polymer Technology Group, Department of Chemical Engineering National Institute of Technology Calicut Kerala India
| |
Collapse
|
34
|
Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
|
36
|
Elyashevich GK, Dmitriev IY, Rozova EY. Electroconducting Polypyrrole Coatings as an Electrode Contact Material on Porous Poly(vinylidene fluoride) Piezofilm. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x2101003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Chamakh MM, Mrlík M, Leadenham S, Bažant P, Osička J, AlMaadeed MAA, Erturk A, Kuřitka I. Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. NANOMATERIALS 2020; 10:nano10122345. [PMID: 33255990 PMCID: PMC7761233 DOI: 10.3390/nano10122345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
This study deals with the effect of zinc oxide (ZnO) star-like filler addition to the poly(vinylidene fluoride) (PVDF) matrix, and its effect on the structural and physical properties and consequences to the vibration sensing performance. Microwave-assisted synthesis in open vessel setup was optimized for the preparation of the star-like shape of ZnO crystalline particles. The crystalline and star-like structure was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX). Furthermore, the PVDF-based composites were prepared using a spin-coating technique from solution. An investigation of the transformation of the α crystalline phase to the β crystalline phase of the neat PVDF matrix and with various filler concentrations was performed using Fourier-Transform infrared (FTIR) spectroscopy, which shows an enhanced β-phase from 44.1% to 66.4% for neat PVDF and PVDF with 10 wt.% of particles, respectively. Differential scanning calorimetry (DSC) measurements and investigation showed enhanced crystallinity and melting enthalpy of the composite systems in comparison to neat PVDF, since ZnO star-like particles act as nucleating agents. The impact of the filler content on the physical properties, such as thermal and dynamic mechanical properties, which are critical for the intended applications, were investigated as well, and showed that fabricated composites exhibit enhanced thermal stability. Because of its dynamic mechanical properties, the composites can still be utilized as flexible sensors. Finally, the vibration sensing capability was systematically investigated, and it was shown that the addition of ZnO star-like filler enhanced the value of the thickness mode d33 piezoelectric constant from 16.3 pC/N to 29.2 pC/N for neat PVDF and PVDF with 10 wt.% of ZnO star-like particles.
Collapse
Affiliation(s)
- Mariem M. Chamakh
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.M.C.); (M.A.A.A.)
| | - Miroslav Mrlík
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; (P.B.); (J.O.); (I.K.)
- Correspondence: ; Tel.: +420-57-603-8027
| | - Stephen Leadenham
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.L.); (A.E.)
| | - Pavel Bažant
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; (P.B.); (J.O.); (I.K.)
| | - Josef Osička
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; (P.B.); (J.O.); (I.K.)
| | | | - Alper Erturk
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.L.); (A.E.)
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; (P.B.); (J.O.); (I.K.)
| |
Collapse
|
38
|
Brunengo E, Conzatti L, Schizzi I, Buscaglia MT, Canu G, Curecheriu L, Costa C, Castellano M, Mitoseriu L, Stagnaro P, Buscaglia V. Improved dielectric properties of poly(vinylidene fluoride)–
BaTiO
3
composites by solvent‐free processing. J Appl Polym Sci 2020. [DOI: 10.1002/app.50049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elisabetta Brunengo
- CNR‐SCITEC, Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy Genoa Italy
- Department of Chemistry and Industrial Chemistry University of Genoa Genoa Italy
| | - Lucia Conzatti
- CNR‐SCITEC, Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy Genoa Italy
| | - Ilaria Schizzi
- CNR‐SCITEC, Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy Genoa Italy
| | - Maria Teresa Buscaglia
- CNR‐ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy Genoa Italy
| | - Giovanna Canu
- CNR‐ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy Genoa Italy
| | | | - Chiara Costa
- CNR‐ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy Genoa Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry University of Genoa Genoa Italy
| | | | - Paola Stagnaro
- CNR‐SCITEC, Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council of Italy Genoa Italy
| | - Vincenzo Buscaglia
- CNR‐ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy Genoa Italy
| |
Collapse
|
39
|
Zhang H, Lu H, Liu Z, Li L. Preparation of High-Performance Polyvinylidene Fluoride Films by the Combination of Simultaneous Biaxial Stretching and Solid-State Shear Milling Technologies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huili Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd., Nanjing 210043, China
| | - Hongchao Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhaogang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Jiangsu JITRI Advanced Polymer Materials Research Institute Co., Ltd., Nanjing 210043, China
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Huang ZX, Wang MM, Feng YH, Qu JP. β-Phase Formation of Polyvinylidene Fluoride via Hot Pressing under Cyclic Pulsating Pressure. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Meng Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yan-Hong Feng
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
41
|
Chu Z, Liu L, Liao Y, Li W, Zhao R, Ma Z, Li Y. Effects of strain rate and temperature on polymorphism in flow-induced crystallization of Poly(vinylidene fluoride). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Nuamcharoen P, Kobayashi T, Potiyaraj P, Shiozaki M. Pre‐thermal treatment in binary solvent systems promoting
β
crystalline phase of electrospun poly(vinylidene fluoride) nanofibers. POLYM INT 2020. [DOI: 10.1002/pi.6008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Praewpanit Nuamcharoen
- Department of Energy and Environment ScienceNagaoka University of Technology Nagaoka Japan
| | - Takaomi Kobayashi
- Department of Energy and Environment ScienceNagaoka University of Technology Nagaoka Japan
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of ScienceChulalongkorn University Bangkok Thailand
| | | |
Collapse
|
43
|
Brunengo E, Luciano G, Canu G, Canetti M, Conzatti L, Castellano M, Stagnaro P. Double-step moulding: An effective method to induce the formation of β-phase in PVDF. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Loghavi MM, Bahadorikhalili S, Lari N, Moghim MH, Babaiee M, Eqra R. The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2018-1343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
In this paper, the effect of the crystalline microstructures of polyvinylidene fluoride (PVDF), as cathode binder, on mechanical and electrochemical properties of the cathode, and on the cell performance is investigated. The crystalline phases of the PVDF films prepared at different temperatures are determined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) and also mechanical strength of PVDF films evaluated by a tensile test. The cathodes were prepared at altered temperatures to achieve different PVDF phases. The effect of various crystalline phases on the cathode performance was studied. The obtained cathodes were analyzed by scanning electron microscope (SEM), contact angle measurement, and adhesion test. The electrochemical performance of the cathodes was evaluated by charge-discharge cycling test and AC impedance spectroscopy. Mechanical tests results showed that the cathode which is prepared at 60 °C has the best adhesion and mechanical stability. In addition, the charge-discharge cycling studies showed that this cathode has the highest capacity efficiency. AC impedance spectroscopy illustrated that this electrode has the lowest charge transfer resistance and SEI resistance.
Collapse
Affiliation(s)
- Mohammad Mohsen Loghavi
- Institute of Mechanics, Iranian Space Research Center , Shiraz , Iran , Tel.: +98 71-37201758, Fax: +98 71-37203240
| | | | - Najme Lari
- Institute of Mechanics, Iranian Space Research Center , Shiraz , Iran
| | | | - Mohsen Babaiee
- Institute of Mechanics, Iranian Space Research Center , Shiraz , Iran
| | - Rahim Eqra
- Institute of Mechanics, Iranian Space Research Center , Shiraz , Iran
| |
Collapse
|
45
|
Lu H, Du J, Zhang H, Guo X, Du J, Zhang Y, Li C, Dong L, Chen Y. High energy storage capacitance of defluorinated polyvinylidene fluoride and polyvinylidene fluoride blend alloy for capacitor applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongwei Lu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Jianxin Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Huilong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Xiaojie Guo
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Jiayou Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Yishan Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Chenxiang Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
| | - Linxi Dong
- College of Electronic and Information Engineering, Hangzhou Dianzi University Hangzhou China
| | - Yingxin Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou China
- Key Laboratory of Optoelectronic Chemical Materials and DevicesMinistry of Education, School of Chemical and Environmental Engineering, Jianghan University Wuhan China
| |
Collapse
|
46
|
Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites? JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A suitable polymer matrix and well dispersed conducting fillers forming an electrically conducting network are the prime requisites for modern age electromagnetic shield designing. An effective polymer-based shield material is designed that can attenuate 99.9% of incident electromagnetic (EM) radiation at a minimum thickness of <0.5 mm. This is accomplished by the choice of a suitable partially crystalline polymer matrix while comparing non-polar polypropylene (PP) with polar polyvinylidene fluoride (PVDF) and a best suited filler nanomaterial by comparing different types of carbon nanotubes such as; branched, single-walled and multi-walled carbon nanotubes, which were added in only 2 wt %. Different types of interactions (polar-polar and CH-π and donor-acceptor) make b-MWCNT more dispersible in the PVDF matrix, which together with high crystallinity resulted in the best electrical conductivity and electromagnetic shielding ability of this composite. This investigation additionally conceals the issues related to the thickness of the shield material just by stacking individual thin nanocomposite layers containing different carbon nanotube (CNT) types with 0.3 mm thickness in a simple manner and finally achieves 99.999% shielding efficiency at just 0.9 mm thickness when using a suitable order of the different PVDF based nanocomposites.
Collapse
|
47
|
Brunengo E, Castellano M, Conzatti L, Canu G, Buscaglia V, Stagnaro P. PVDF‐based composites containing PZT particles: How processing affects the final properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Elisabetta Brunengo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle Ricerche Via de Marini 6, 16149 Genoa Italy
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Genova Via Dodecaneso 31, 16146 Genoa Italy
| | - Maila Castellano
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Genova Via Dodecaneso 31, 16146 Genoa Italy
| | - Lucia Conzatti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle Ricerche Via de Marini 6, 16149 Genoa Italy
| | - Giovanna Canu
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'EnergiaConsiglio Nazionale delle Ricerche Via de Marini 6, 16149 Genoa Italy
| | - Vincenzo Buscaglia
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'EnergiaConsiglio Nazionale delle Ricerche Via de Marini 6, 16149 Genoa Italy
| | - Paola Stagnaro
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle Ricerche Via de Marini 6, 16149 Genoa Italy
| |
Collapse
|
48
|
Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat Commun 2019; 10:4535. [PMID: 31628311 PMCID: PMC6800420 DOI: 10.1038/s41467-019-12391-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride)-based dielectric materials are prospective candidates for high power density electric storage applications because of their ferroelectric nature, high dielectric breakdown strength and superior processability. However, obtaining a polar phase with relaxor-like behavior in poly(vinylidene fluoride), as required for high energy storage density, is a major challenge. To date, this has been achieved using complex and expensive synthesis of copolymers and terpolymers or via irradiation with high-energy electron-beam or γ-ray radiations. Herein, a facile process of pressing-and-folding is proposed to produce β-poly(vinylidene fluoride) (β-phase content: ~98%) with relaxor-like behavior observed in poly(vinylidene fluoride) with high molecular weight > 534 kg mol−1, without the need of any hazardous gases, solvents, electrical or chemical treatments. An ultra-high energy density (35 J cm−3) with a high efficiency (74%) is achieved in a pressed-and-folded poly(vinylidene fluoride) (670-700 kg mol−1), which is higher than that of other reported polymer-based dielectric capacitors to the best of our knowledge. Dielectric materials are candidates for electric high power density energy storage applications, but fabrication is challenging. Here the authors report a pressing-and-folding processing of a dielectric with relaxor-like behavior, leading to high energy density in a polymer-based dielectric capacitor.
Collapse
|
49
|
Gebrekrstos A, Prasanna Kar G, Madras G, Misra A, Bose S. Does the nature of chemically grafted polymer onto PVDF decide the extent of electroactive β-polymorph? POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Piezoelectric Response in Hybrid Micropillar Arrays of Poly(Vinylidene Fluoride) and Reduced Graphene Oxide. Polymers (Basel) 2019; 11:polym11061065. [PMID: 31226755 PMCID: PMC6632062 DOI: 10.3390/polym11061065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/12/2023] Open
Abstract
This study was dedicated to the investigation of poly(vinylidene fluoride) (PVDF) micropillar arrays obtained by soft lithography followed by phase inversion at a low temperature. Reduced graphene oxide (rGO) was incorporated into the PVDF as a nucleating filler. The piezoelectric properties of the PVDF-rGO composite micropillars were explored via piezo-response force microscopy (PFM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that α, β, and γ phases co-existed in all studied samples, with a predominance of the γ phase. The piezoresponse force microscopy (PFM) data provided the local piezoelectric response of the PVDF micropillars, which exhibited a temperature-induced downward dipole orientation in the pristine PVDF micropillars. The addition of rGO into the PVDF matrix resulted in a change in the preferred polarization direction, and the piezo-response phase angle changed from −120° to 20°–40°. The pristine PVDF and PVDF loaded with 0.1 wt % of rGO after low-temperature quenching were found to possess a piezoelectric response of 86 and 87 pm/V respectively, which are significantly higher than the |d33eff| in the case of imprinted PVDF 64 pm/V. Thus, the addition of rGO significantly affected the domain orientation (polarization) while quenching increased the piezoelectric response.
Collapse
|