1
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
2
|
Snadin AV, Chuklina NO, Kiryutin AS, Lukzen NN, Yurkovskaya AV. Magnetic field dependence of the para-ortho conversion rate of molecular hydrogen in SABRE experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107630. [PMID: 38364339 DOI: 10.1016/j.jmr.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
The use of parahydrogen - the isomer of molecular hydrogen with zero nuclear spin - is important for promising and actively developing methods for spin hyperpolarization of nuclei called parahydrogen induced polarization (PHIP). However, the dissolved parahydrogen in PHIP experiments quickly loses its spin order, resulting in the formation of orthohydrogen and reduction of the overall nuclear polarization of the substrate. This process is due to the difference of chemical shifts of hydride protons, as well as spin-spin couplings between nuclei, in the intermediate catalytic complexes, and it has not been rigorously explained so far. We proposed a new experimental technique based on magnetic field cycling for measuring the rate of molecular hydrogen para-ortho conversion in solution and applied it for non-hydrogenative PHIP Signal Amplification By Reversible Exchange (SABRE) experiments. The para-ortho conversion rate was measured over a wide range of magnetic field from 0.5 mT to 9.4 T. It was found that the conversion rate strongly depends on the magnetic field in which the reaction occurs, as well as on the concentrations of reactants. The rate decreases with increasing the concentration of pyridine ligand and increases with increasing the concentration of iridium catalyst. The model, which takes into account the reversible exchange of molecular hydrogen with the catalyst, nuclear spin-spin interaction of hydride protons with nuclei of ligands within catalytic complex and nuclear Zeeman interactions, qualitatively describes the experimental data. Two types of complexes with different spin system symmetry contribute to the molecular hydrogen conversion. In asymmetric complexes possessing hydride protons with different chemical shifts due to the presence of chlorine anion ligand the para-ortho conversion rate increases with magnetic field, while for symmetric complexes this mechanism is not operable. In the magnetic field where level anti-crossing occurs the resonant feature for the rate of para-ortho conversion is found. The results of this work can be utilized for finding the optimal conditions for obtaining the maximum hyperpolarization in the experiments employing parahydrogen.
Collapse
Affiliation(s)
- Alexander V Snadin
- Novosibirsk State University, Novosibirsk 630090, Russia; Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Natalia O Chuklina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Nikita N Lukzen
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Ellermann F, Sirbu A, Brahms A, Assaf C, Herges R, Hövener JB, Pravdivtsev AN. Spying on parahydrogen-induced polarization transfer using a half-tesla benchtop MRI and hyperpolarized imaging enabled by automation. Nat Commun 2023; 14:4774. [PMID: 37553405 PMCID: PMC10409769 DOI: 10.1038/s41467-023-40539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Aidan Sirbu
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Charbel Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Ivanov KL, Snadin AV, Kiryutin AS, Lukzen NN. Analytical solution for the inverting pulses with constant adiabaticity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107298. [PMID: 36116162 DOI: 10.1016/j.jmr.2022.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The exact solution was found for inverting pulses with constant adiabaticity for spin ½. The analytical relationship between the time-varying frequency of the microwave resonant field (or RF field in the case of NMR) and its amplitude time dependence such that the adiabaticity parameter remains constant for the single isochromat throughout the pulse is found. Comparison with EPR (hyperbolic tangent)-(hyperbolic secant) pulse method was carried out. On the basis of the analytical solution the pulses with different dependences of the microwave field amplitude conserving the constant adiabaticity have been constructed. The pulses exhibit rather sharp inversion selectivity that can be used in the field of EPR, NMR and MRI.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander V Snadin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexei S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita N Lukzen
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
7
|
Lindale JR, Eriksson SL, Warren WS. Phase coherent excitation of SABRE permits simultaneous hyperpolarization of multiple targets at high magnetic field. Phys Chem Chem Phys 2022; 24:7214-7223. [PMID: 35266466 DOI: 10.1039/d1cp05962a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperpolarization methods in magnetic resonance overcome sensitivity limitations, especially for low-γ nuclei such as 13C and 15N. Signal Amplification By Reversible Exchange (SABRE) and extended SABRE (X-SABRE) are efficient and low-cost methods for generating large polarizations on a variety of nuclei, but they most commonly use low magnetic fields (μT-mT). High field approaches, where hyperpolarization is generated directly in the spectrometer, are potentially much more convenient but have been limited to selectively hyperpolarize single targets. Here we introduce a new pulse sequence-based approach that affords broadband excitation of SABRE hyperpolarization at high magnetic fields without having to tailor pulse sequence parameters to specific targets. This permits simultaneous hyperpolarization of multiple targets for the first time at high field and offers a direct approach to integration of high-field SABRE hyperpolarization into routine NMR applications, such as NMR-based metabonomics and biomolecular NMR.
Collapse
Affiliation(s)
- Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- School of Medicine, Duke University, Durham, NC, 27708, USA
| | - Warren S Warren
- Departments of Physics, Biomedical Engineering, and Radiology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Carvalho JP, Pell AJ. Frequency-swept adiabatic pulses for broadband solid-state MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106911. [PMID: 33482528 DOI: 10.1016/j.jmr.2020.106911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
We present a complete description of frequency-swept adiabatic pulses applied to isolated spin-1/2 nuclei with a shift anisotropy in solid materials under magic-angle spinning. Our theoretical framework unifies the existing descriptions of adiabatic pulses in the high-power regime, where the radiofrequency (RF) amplitude is greater than twice the spinning frequency, and the low-power regime, where the RF power is less than the spinning frequency, and so links the short high-powered adiabatic pulse (SHAP) and single-sideband-selective adiabatic pulses (S3AP) schemes used in paramagnetic solid-state NMR. We also identify a hitherto unidentified third regime intermediate between the low- and high-power regimes, and separated from them by rotary resonance conditions. We show that the prevailing benchmark of inversion performance based on (super) adiabatic factors is only applicable in the high- and intermediate-power regimes, but fails to account both for the poor performance at rotary resonance, and the impressive inversion seen in the low-power regime. For low-power pulses, which are non-adiabatic according to this definition of (super) adiabaticity, the effective Floquet Hamiltonian in the jolting frame reveals "hidden" (super) adiabaticity. The theory is demonstrated using a combination of simulation and experiment, and is used to refine the practical recommendations for the experimentalist who wishes to use these pulses.
Collapse
Affiliation(s)
- José P Carvalho
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden
| | - Andrew J Pell
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (FRE 2034 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
9
|
Rodin B, Ivanov K. Representation of population exchange at level anti-crossings. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:347-365. [PMID: 38111911 PMCID: PMC10726024 DOI: 10.5194/mr-1-347-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2023]
Abstract
A theoretical framework is proposed to describe the spin dynamics driven by coherent spin mixing at level anti-crossings (LACs). We briefly introduce the LAC concept and propose to describe the spin dynamics using a vector of populations of the diabatic eigenstates. In this description, each LAC gives rise to a pairwise redistribution of eigenstate populations, allowing one to construct the total evolution operator of the spin system. Additionally, we take into account that in the course of spin evolution a "rotation" of the eigenstate basis case take place. The approach is illustrated by a number of examples, dealing with magnetic field inversion, cross-polarization, singlet-state nuclear magnetic resonance and parahydrogen-induced polarization.
Collapse
Affiliation(s)
- Bogdan A. Rodin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Lindale JR, Tanner CPN, Eriksson SL, Warren WS. Decoupled LIGHT-SABRE variants allow hyperpolarization of asymmetric SABRE systems at an arbitrary field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106577. [PMID: 31454701 DOI: 10.1016/j.jmr.2019.106577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Signal Amplification By Reversible Exchange, or SABRE, uses the singlet-order of parahydrogen to generate hyperpolarized signals on target nuclei, bypassing the limitations of traditional magnetic resonance. Experiments performed directly in the magnet provide a route to generate large magnetizations continuously without having to field-cycle the sample. For heteronuclear SABRE, these high-field methods have been restricted to the few SABRE complexes that exhibit efficient exchange with symmetric ligand environments as co-ligands induce chemical shift differences between the parahydrogen-derived hydrides, destroying the hyperpolarized spin order. Through careful consideration of the underlying spin physics, we introduce 1H decoupled LIGHT-SABRE pulse sequence variants which bypasses this limitation, drastically expanding the scope of heteronuclear SABRE at high field.
Collapse
Affiliation(s)
- Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | | | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, United States; School of Medicine, Duke University, Durham, NC 27708, United States
| | - Warren S Warren
- Departments of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
11
|
Bordonali L, Nordin N, Fuhrer E, MacKinnon N, Korvink JG. Parahydrogen based NMR hyperpolarisation goes micro: an alveolus for small molecule chemosensing. LAB ON A CHIP 2019; 19:503-512. [PMID: 30627714 PMCID: PMC6369676 DOI: 10.1039/c8lc01259h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 05/17/2023]
Abstract
Complex mixtures, commonly encountered in metabolomics and food analytics, are now routinely measured by nuclear magnetic resonance (NMR) spectroscopy. Since many samples must be measured, one-dimensional proton (1D 1H) spectroscopy is the experiment of choice. A common challenge in complex mixture 1H NMR spectroscopy is spectral crowding, which limits the assignment of molecular components to those molecules in relatively high abundance. This limitation is exacerbated when the sample quantity itself is limited and concentrations are reduced even further during sample preparation for routine measurement. To address these challenges, we report a novel microfluidic NMR platform integrating signal enhancement via parahydrogen induced hyperpolarisation. The platform simultaneously addresses the challenges of handling small sample quantities through microfluidics, the associated decrease in signal given the reduced sample quantity by Signal Amplification by Reversible Exchange (SABRE), and overcoming spectral crowding by taking advantage of the chemosensing aspect of the SABRE effect. SABRE at the microscale is enabled by an integrated PDMS membrane alveolus, which provides bubble-free hydrogen gas contact with the sample solution. With this platform, we demonstrate high field NMR chemosensing of microliter sample volumes, nanoliter detection volumes, and micromolar concentrations corresponding to picomole molecular sensitivity.
Collapse
Affiliation(s)
- Lorenzo Bordonali
- Institute for Microtechnology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | |
Collapse
|
12
|
Lindale JR, Eriksson SL, Tanner CPN, Zhou Z, Colell JFP, Zhang G, Bae J, Chekmenev EY, Theis T, Warren WS. Unveiling coherently driven hyperpolarization dynamics in signal amplification by reversible exchange. Nat Commun 2019; 10:395. [PMID: 30674881 PMCID: PMC6344499 DOI: 10.1038/s41467-019-08298-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
Signal amplification by reversible exchange (SABRE) is an efficient method to hyperpolarize spin-1/2 nuclei and affords signals that are orders of magnitude larger than those obtained by thermal spin polarization. Direct polarization transfer to heteronuclei such as 13C or 15N has been optimized at static microTesla fields or using coherence transfer at high field, and relies on steady state exchange with the polarization transfer catalyst dictated by chemical kinetics. Here we demonstrate that pulsing the excitation field induces complex coherent polarization transfer dynamics, but in fact pulsing with a roughly 1% duty cycle on resonance produces more magnetization than constantly being on resonance. We develop a Monte Carlo simulation approach to unravel the coherent polarization dynamics, show that existing SABRE approaches are quite inefficient in use of para-hydrogen order, and present improved sequences for efficient hyperpolarization. There is increasing effort to improve the signal sensitivity and explore the hyperpolarization dynamics. Here the authors demonstrate the parahydrogen spin transfer dynamics in compounds containing 15N using SABRE hyperpolarization technique with different strengths of the magnetic field.
Collapse
Affiliation(s)
- Jacob R Lindale
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | | | - Zijian Zhou
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | - Guannan Zhang
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Junu Bae
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, Russia, 119991
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Warren S Warren
- Department of Physics, Chemistry, Biomedical Engineering, and Radiology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
13
|
Ivanov KL, Bodenhausen G. Generating para-water from para-hydrogen: A Gedankenexperiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:48-52. [PMID: 29778834 DOI: 10.1016/j.jmr.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
A novel conceptual approach is described that is based on the transfer of hyperpolarization from para-hydrogen in view of generating a population imbalance between the two spin isomers of H2O. The approach is analogous to SABRE (Signal Amplification By Reversible Exchange) and makes use of the transfer of spin order from para-hydrogen to H2O in a hypothetical organometallic complex. The spin order transfer is expected to be most efficient at avoided level crossings. The highest achievable enrichment levels of para- and ortho-water are discussed.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Geoffrey Bodenhausen
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
14
|
Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J 2018; 13:10.1002/asia.201800551. [PMID: 29790649 PMCID: PMC6251772 DOI: 10.1002/asia.201800551] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/10/2022]
Abstract
The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Oleg G. Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Samuel Cousin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Basile Vuichoud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Eduard Y. Chekmenev
- Department of Chemistry & Karmanos Cancer Center, Wayne State University, Detroit, 48202, MI, United States
- Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Southern Illinois University, Carbondale, IL 62901, United States
| | - Danila A. Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, United States
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| |
Collapse
|
15
|
Rayner PJ, Duckett SB. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis. Angew Chem Int Ed Engl 2018; 57:6742-6753. [DOI: 10.1002/anie.201710406] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| |
Collapse
|
16
|
Rayner PJ, Duckett SB. Signalverstärkung durch reversiblen Austausch (SABRE): von der Entdeckung zur diagnostischen Anwendung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| |
Collapse
|
17
|
Roy SS, Stevanato G, Rayner PJ, Duckett SB. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:55-60. [PMID: 29102821 PMCID: PMC5720475 DOI: 10.1016/j.jmr.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
Collapse
Affiliation(s)
- Soumya S Roy
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom.
| | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Peter J Rayner
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom.
| |
Collapse
|
18
|
Coffey AM, Shchepin RV, Feng B, Colon RD, Wilkens K, Waddell KW, Chekmenev EY. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:115-124. [PMID: 29028543 PMCID: PMC5708540 DOI: 10.1016/j.jmr.2017.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C=20±2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.
Collapse
Affiliation(s)
- Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Bibo Feng
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Raul D Colon
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Kevin W Waddell
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232-2310, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
19
|
Kadeřávek P, Strouk L, Cousin SF, Charlier C, Bodenhausen G, Marquardsen T, Tyburn J, Bovier P, Engelke F, Maas W, Ferrage F. Full Correlations across Broad NMR Spectra by Two‐Field Total Correlation Spectroscopy. Chemphyschem 2017; 18:2772-2776. [DOI: 10.1002/cphc.201700369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Pavel Kadeřávek
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
| | - Léonard Strouk
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
| | - Samuel F. Cousin
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
- Current address: Department of Chemical PhysicsWeizmann Institute of Science Rehovot Israel
| | - Cyril Charlier
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
- Current address: Laboratory of Chemical PhysicsNIDDK, NIH Bethesda MD 20892 USA
| | - Geoffrey Bodenhausen
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
| | | | - Jean‐Max Tyburn
- Bruker BioSpin 34 rue de l'Industrie BP 10002 67166 Wissembourg Cedex France
| | | | - Frank Engelke
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Germany
| | - Werner Maas
- Bruker BioSpin Billerica Massachusetts 01821 USA
| | - Fabien Ferrage
- Département de Chimie, Laboratoire des Biomolécules (LBM), École Normale Supérieure—PSL Research University, UPMC Univ Paris 06, CNRS 24 rue Lhomond 75005 Paris France
- Laboratoire des Biomolécules (LBM)Sorbonne Universités, UPMC, Univ Paris 06, Ecole Normale Supérieure, CNRS France
| |
Collapse
|
20
|
Halse ME, Procacci B, Henshaw SL, Perutz RN, Duckett SB. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 278:25-38. [PMID: 28347906 DOI: 10.1016/j.jmr.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales.
Collapse
Affiliation(s)
- Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Barbara Procacci
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Sarah-Louise Henshaw
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
21
|
Pravdivtsev AN, Kiryutin AS, Yurkovskaya AV, Vieth HM, Ivanov KL. Robust conversion of singlet spin order in coupled spin-1/2 pairs by adiabatically ramped RF-fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:56-64. [PMID: 27750072 DOI: 10.1016/j.jmr.2016.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
We propose a robust and highly efficient NMR technique to create singlet spin order from longitudinal spin magnetization in coupled spin-½ pairs and to perform backward conversion (singlet order)→magnetization. In this method we exploit adiabatic ramping of an RF-field in order to drive transitions between the singlet state and the T± triplet states of a spin pair under study. We demonstrate that the method works perfectly for both strongly and weakly coupled spin pairs, providing a conversion efficiency between the singlet spin order and magnetization, which is equal to the theoretical maximum. We anticipate that the proposed technique is useful for generating long-lived singlet order, for preserving spin hyperpolarization and for analyzing singlet spin order in nearly equivalent spin pairs in specially designed molecules and in low-field NMR studies.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3A, Novosibirsk 630090, Russia; Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
22
|
Roy SS, Rayner PJ, Norcott P, Green GGR, Duckett SB. Long-lived states to sustain SABRE hyperpolarised magnetisation. Phys Chem Chem Phys 2016; 18:24905-24911. [PMID: 27711398 PMCID: PMC5436088 DOI: 10.1039/c6cp02844f] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022]
Abstract
The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4% net 1H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the future.
Collapse
Affiliation(s)
- Soumya S Roy
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Peter J Rayner
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Philip Norcott
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Gary G R Green
- York Neuroimaging Centre, The Biocentre, York Science Park, Innovation Way, Heslington, York, YO10 5DD, UK
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
23
|
Pravdivtsev AN. SABRE Hyperpolarization of Bipyridine Stabilized Ir-Complex at High, Low and Ultralow Magnetic Fields. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A strong limitation of nuclear magnetic resonance is its low inherent sensitivity that can be overcome by using an appropriate hyperpolarization technique. Presently, dynamic nuclear polarization and spin-exchange optical pumping are the only hyperpolarization techniques that are used in applied medicine. However, both are relatively complex in use and expensive. Here we present a modification of the signal amplification by reversible exchange (SABRE) hyperpolarization method – SABRE on stabilized Ir-complexes. A stabilized Ir-complex (here we used bipyridine for stabilization) can be hyperpolarized in a wide range of magnetic fields from a few μT upto 10 T with 15N polarization of about 1–3%. Moreover, the investigated complex can be incorporated into biomolecules or other bulky molecules; in this situation exchange with para-hydrogen will allow one to continuously generate hyperpolarization.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- International Tomography Center, Institutskaya 3A, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia , Tel.: +7(383)330-8868, Fax: +7(383)333-1399
| |
Collapse
|
24
|
Coffey AM, Shchepin RV, Truong ML, Wilkens K, Pham W, Chekmenev EY. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents. Anal Chem 2016; 88:8279-88. [PMID: 27478927 PMCID: PMC4991553 DOI: 10.1021/acs.analchem.6b02130] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
An
open-source hyperpolarizer producing 13C hyperpolarized
contrast agents using parahydrogen induced polarization (PHIP) for
biomedical and other applications is presented. This PHIP hyperpolarizer
utilizes an Arduino microcontroller in conjunction with a readily
modified graphical user interface written in the open-source processing
software environment to completely control the PHIP hyperpolarization
process including remotely triggering an NMR spectrometer for efficient
production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization.
Key advantages of this hyperpolarizer include: (i) use of open-source
software and hardware seamlessly allowing for replication and further
improvement as well as readily customizable integration with other
NMR spectrometers or MRI scanners (i.e., this is a multiplatform design),
(ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance
is demonstrated by production of a dose (∼2–3 mL) of
hyperpolarized 13C-succinate with %P13C ∼ 28% and 30 mM concentration and 13C-phospholactate
at %P13C ∼ 15% and 25 mM concentration
in aqueous medium. These contrast agents are used for ultrafast molecular
imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion
of hyperpolarized 13C-phospholactate to 13C-lactate in vivo is used here to demonstrate the feasibility of ultrafast
multislice 13C MRI after tail vein injection of hyperpolarized 13C-phospholactate in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Eduard Y Chekmenev
- Russian Academy of Sciences , Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
25
|
DeVience SJ, Walsworth RL, Rosen MS. Probing scalar coupling differences via long-lived singlet states. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:42-49. [PMID: 26717036 DOI: 10.1016/j.jmr.2015.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 05/03/2023]
Abstract
We probe small scalar coupling differences via the coherent interactions between two nuclear spin singlet states in organic molecules. We show that the spin-lock induced crossing (SLIC) technique enables the coherent transfer of singlet order between one spin pair and another. The transfer is mediated by the difference in syn and anti vicinal or long-range J couplings among the spins. By measuring the transfer rate, we calculate a J coupling difference of 8±2mHz in phenylalanine-glycine-glycine and 2.57±0.04Hz in glutamate. We also characterize a coherence between two singlet states in glutamate, which may enable the creation of a long-lived quantum memory.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA
| | - Ronald L Walsworth
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA.
| | - Matthew S Rosen
- Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; A.A. Martinos Center for Biomedical Imaging, 149 Thirteenth St., Charlestown, MA 02129, USA
| |
Collapse
|
26
|
Kiryutin AS, Yurkovskaya AV, Lukzen NN, Vieth HM, Ivanov KL. Exploiting adiabatically switched RF-field for manipulating spin hyperpolarization induced by parahydrogen. J Chem Phys 2015; 143:234203. [DOI: 10.1063/1.4937392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Nikita N. Lukzen
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Konstantin L. Ivanov
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
27
|
Mance D, Gast P, Huber M, Baldus M, Ivanov KL. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J Chem Phys 2015; 142:234201. [DOI: 10.1063/1.4922219] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Peter Gast
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Pirogova 2, Novosibirsk 63009, Russia
| |
Collapse
|
28
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields. J Phys Chem B 2015; 119:13619-29. [DOI: 10.1021/acs.jpcb.5b03032] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Andrey N. Pravdivtsev
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- Institut
für Experimentalphysik, Freie Universität of Berlin, Arnimallee
14, Berlin, 14195, Germany
| | - Konstantin L. Ivanov
- International
Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk, 630090, Russia
| |
Collapse
|
29
|
Truong M, Theis T, Coffey AM, Shchepin RV, Waddell KW, Shi F, Goodson BM, Warren W, Chekmenev EY. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:8786-8797. [PMID: 25960823 PMCID: PMC4419867 DOI: 10.1021/acs.jpcc.5b01799] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/28/2015] [Indexed: 05/14/2023]
Abstract
NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy.
Collapse
Affiliation(s)
- Milton
L. Truong
- Institute of Imaging Science, Department of Radiology, Department of Biomedical
Engineering, Department of Physics and Astronomy, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Thomas Theis
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Aaron M. Coffey
- Institute of Imaging Science, Department of Radiology, Department of Biomedical
Engineering, Department of Physics and Astronomy, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Roman V. Shchepin
- Institute of Imaging Science, Department of Radiology, Department of Biomedical
Engineering, Department of Physics and Astronomy, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kevin W. Waddell
- Institute of Imaging Science, Department of Radiology, Department of Biomedical
Engineering, Department of Physics and Astronomy, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Fan Shi
- Department of Chemistry and Biochemistry and Materials Technology
Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry and Materials Technology
Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Warren
S. Warren
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Eduard Y. Chekmenev
- Institute of Imaging Science, Department of Radiology, Department of Biomedical
Engineering, Department of Physics and Astronomy, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- E-mail:
| |
Collapse
|
30
|
Theis T, Truong M, Coffey AM, Chekmenev EY, Warren WS. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:23-6. [PMID: 25299767 PMCID: PMC6097635 DOI: 10.1016/j.jmr.2014.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 05/05/2023]
Abstract
Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.
Collapse
Affiliation(s)
- Thomas Theis
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Milton Truong
- Department of Radiology, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave South MCN AA-1105, Nashville, TN 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave South MCN AA-1105, Nashville, TN 37232, USA
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave South MCN AA-1105, Nashville, TN 37232, USA; Departments of Biochemistry and Biomedical Engineering, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave South MCN AA-1105, Nashville, TN 37232, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; Departments of Radiology, Biomedical Engineering and Physics, Duke University, 124 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
31
|
Pravdivtsev AN, Yurkovskaya AV, Lukzen NN, Ivanov KL, Vieth HM. Highly Efficient Polarization of Spin-1/2 Insensitive NMR Nuclei by Adiabatic Passage through Level Anticrossings. J Phys Chem Lett 2014; 5:3421-3426. [PMID: 26278456 DOI: 10.1021/jz501754j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A method is proposed to transfer spin order from para-hydrogen, that is, the H2 molecule in its singlet state, to spin-1/2 heteronuclei of a substrate molecule. The method is based on adiabatic passage through nuclear spin level anticrossings (LACs) in the doubly rotating frame of reference; the LAC conditions are fulfilled by applying resonant RF excitation at the NMR frequencies of protons and the heteronuclei. Efficient conversion of the para-hydrogen-induced polarization into net polarization of the heteronuclei is demonstrated; the achieved signal enhancements are about 6400 for (13)C nuclei at natural abundance. The theory behind the technique is described; advantages of the method are discussed in detail.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Nikita N Lukzen
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- †International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
- ‡Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- §Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
32
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible. Phys Chem Chem Phys 2014; 16:24672-5. [DOI: 10.1039/c4cp03765k] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| | - Hans-Martin Vieth
- Institut für Experimentalphysik
- Freie Universität Berlin
- Berlin, Germany
| | - Konstantin L. Ivanov
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk, Russia
- Novosibirsk State University
- Novosibirsk, Russia
| |
Collapse
|