1
|
Ali SM, Sk S, Sarkar S, Das S, Sepay N, Molla MR. Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water. SOFT MATTER 2024; 20:8684-8691. [PMID: 39444369 DOI: 10.1039/d4sm00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The self-assembly of π conjugated systems in water has emerged as an efficient method for the development of functional materials for biological applications. But the process is more difficult to understand and to control in water compared to organic solvents due to hydrophobic effects. For π-conjugated molecules, self-assembly in solution generally occurs due to either an enthalpic or entropic gain, but designing π systems that undergo self-assembly via both an entropically and enthalpically favorable process is challenging. Herein, we elucidate in detail the self-assembly of a luminescent naphthalene monoamide-based dipolar π-bolaamphiphile appended with a primary amine and triethylene glycol monomethyl ether (NMI-W) side chain into a vesicular nanostructure. By utilizing a detailed isothermal titration calorimetry (ITC) experiment, we have calculated the thermodynamic parameters associated with the self-assembly of NMI-W in water. Interestingly, the NMI-W shows both entropically and enthalpically favorable robust self-assembly into a vesicular structure, which can encapsulate both hydrophilic and hydrophobic guest molecules. The synergistic effect of dipole-dipole, π-π stacking and hydrophobic interactions of the NMI chromophore is found to be very crucial in driving self-assembly in an aqueous medium as revealed by various experiments and molecular dynamics.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Shuvajyoti Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sayani Das
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, 700017, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Ehret E, Iacovache I, Langenegger SM, Zuber B, Häner R. Nanostructural diversity: self-assembly of isomeric pyrene-cholane amphiphiles into sheets, tubes, and worm-like morphologies. RSC Adv 2024; 14:31498-31501. [PMID: 39372046 PMCID: PMC11450553 DOI: 10.1039/d4ra06420h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Phosphodiester-linked cholane-pyrene-cholane trimers self-assemble into sheet-, tube- and worm-like nanostructures in aqueous conditions. The nanotubes and worm-like assemblies exist as single- or multi-walled objects.
Collapse
Affiliation(s)
- Edouard Ehret
- Department of Chemistry, Biochemistry, Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch/
| | - Ioan Iacovache
- Institute for Anatomy, University of Bern Baltzerstrasse 2 CH-3012 Bern Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry, Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch/
| | - Benoît Zuber
- Institute for Anatomy, University of Bern Baltzerstrasse 2 CH-3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry, Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch/
| |
Collapse
|
3
|
Khanra P, Rajdev P, Das A. Seed-Induced Living Two-Dimensional (2D) Supramolecular Polymerization in Water: Implications on Protein Adsorption and Enzyme Inhibition. Angew Chem Int Ed Engl 2024; 63:e202400486. [PMID: 38265331 DOI: 10.1002/anie.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
4
|
Ali SM, Sk S, Sepay N, Molla MR. Entropy-Enthalpy Compensation in Solvent Geometry Regulated Supramolecular Polymerization of Luminescent Napthalimide via a Non-Cooperative, Isodesmic Mechanism. Chemistry 2023:e202303587. [PMID: 38031526 DOI: 10.1002/chem.202303587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Supramolecular polymers of π-conjugated systems are an important class of materials with fascinating functions and properties originated from the dynamic behavior and highly ordered molecular organizations. Here, a donor-π-acceptor based functionalized luminescent napthalene monoimide (NMI) undergoes J-type self-assembly by non-covalent interactions via a non-cooperative, isodesmic mechanism to form supramolecular 1D nanowire. The fundamental insights into the thermodynamics regulating the supramolecular polymerization were derived through the fitting of the isodesmic model to variable temperature UV/Vis data in linear (dodecane) and nonliner hydrocarbon (decalin) based solvents. This shows a significant role of entropy-enthalpy compensation in solvent geometry-regulated formation and stabilization of supramolecular polymer. Furthermore, we have quantitively estimated the influence of solvent geometry and found that NMI forms stronger self-assembly and spontaneous gel in linear hydrocarbon based solvent compared to nonliner one and thereby substantially increases the degree of polymerization in linear hydrocarbon solvent (dodecane). This is accredited to the effective influence of the linear hydrocarbon solvent molecules in the polymerization process by favourable van der waals interactions with the peripheral alkyl chains of the NMI monomers in contrast to unfavourable interaction of nonliner hydrocarbon solvent due to geometry mismatch.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, India-, 700017
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Roy, Kolkata, India-, 700009
| |
Collapse
|
5
|
Fukaya N, Ogi S, Sotome H, Fujimoto KJ, Yanai T, Bäumer N, Fernández G, Miyasaka H, Yamaguchi S. Impact of Hydrophobic/Hydrophilic Balance on Aggregation Pathways, Morphologies, and Excited-State Dynamics of Amphiphilic Diketopyrrolopyrrole Dyes in Aqueous Media. J Am Chem Soc 2022; 144:22479-22492. [PMID: 36459436 DOI: 10.1021/jacs.2c07299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the thermodynamic and kinetic aqueous self-assembly of a series of amide-functionalized dithienyldiketopyrrolopyrroles (TDPPs) that bear various hydrophilic oligoethylene glycol (OEG) and hydrophobic alkyl chains. Spectroscopic and microscopic studies showed that the TDPP-based amphiphiles with an octyl group form sheet-like aggregates with J-type exciton coupling. The effect of the alkyl chains on the aggregated structure and the internal molecular orientation was examined via computational studies combining MD simulations and TD-DFT calculations. Furthermore, solvent and thermal denaturation experiments provided a state diagram that indicates the formation of unexpected nanoparticles during the self-assembly into nanosheets when longer OEG side chains are introduced. A kinetic analysis revealed that the nanoparticles were obtained selectively as an on-pathway intermediate state toward the formation of thermodynamically controlled nanosheets. The metastable aggregates were used for seed-initiated supramolecular assembly, which allowed establishing control over the assembly kinetics and the aggregate size. The sheet-like aggregates prepared using the seeding method exhibited coherent vibration in the excited state, indicating a well-ordered orientation of the TDPP units. These results underline the significance of fine tuning of the hydrophobic/hydrophilic balance in the molecular design to kinetically control the assembly of amphiphilic π-conjugated molecules into two-dimensional nanostructures in aqueous media.
Collapse
Affiliation(s)
- Natsumi Fukaya
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| | - Nils Bäumer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya464-8602, Japan
| |
Collapse
|
6
|
Khamrui R, Manna RN, Rajdev P, Paul A, Ghosh S. Impact of the Hydrogen-Bonding Functional Group on Hydrogelation of Amphiphilic Naphthalene-diimide Derivatives and Nonspecific Protein Adsorption. ACS APPLIED BIO MATERIALS 2022; 5:5410-5417. [PMID: 36251686 DOI: 10.1021/acsabm.2c00761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This manuscript reports the effect of hydrogen-bonding functionality on the supramolecular assembly of naphthalene-diimide (NDI)-derived amphiphilic building blocks in water. All the molecules contain a central NDI chromophore, functionalized with a hydrophilic oligo-oxyethylene (OE) wedge in one arm and a phenyl group on the opposite arm. They differ by a single H-bonding functionality, which links the NDI chromophore and the phenyl moiety. The H-bonding functionalities are amide, thioamide, urea, and urethane in NDI-A, NDI-TA, NDI-U, and NDI-UT, respectively. All of these molecules exhibit π-stacking in water, as evident from their distinct UV/vis absorption spectra when compared to that of the monomeric dye in THF. However, among these four, only NDI-A and NDI-TA show hydrogelation, while the other two precipitate out of the medium. The NDI-A hydrogel also exhibits transient stability and leads to a crystalline precipitate within ∼5 h. Only NDI-TA produces stable transparent hydrogel with the entangled fibrillar morphology that is typical for gelators. Both NDI-A and NDI-TA showed a thermoresponsive property with a lower critical solution temperature of about 41-42 °C. Powder XRD studies show a parallel orientation for NDI-A and an antiparallel orientation for NDI-TA. Computational studies support this experimental observation and indicate that the NDI-A assembly is highly stabilized by strong H-bonding among the amide groups and π-stacking interaction in the parallel orientation. On the other hand, due to weak H-bonding among the thioamide groups, the binding energy of the parallelly oriented NDI-TA was significantly lower and the optimized structure was disordered. Instead, its antiparallel orientation was more stable, with criss-cross aligned H-bonding interactions and π-π interactions between adjacent aromatic rings. The NDI-TA hydrogel with less ordered OE chains on the surface showed prominent adsorption of serum protein BSA. In sharp contrast, NDI-A did not exhibit any notable interaction with BSA, as evident from the ITC studies.
Collapse
Affiliation(s)
- Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Li J, Chen M, Zhou S, Li H, Hao J. Self-assembly of fullerene C 60-based amphiphiles in solutions. Chem Soc Rev 2022; 51:3226-3242. [PMID: 35348141 DOI: 10.1039/d1cs00958c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fullerene C60 is an all-carbon cage molecule with rich physicochemical properties. It is highly symmetric and hydrophobic, which can be used as a building block for the preparation of amphiphiles that self-assemble into diverse supramolecular structures in aqueous solutions. Meanwhile, C60 is also lipophobic, which is different from the alkyl chains in traditional surfactants. By attaching alkyl chains to the C60 sphere, a new type of lipophobic-lipophilic amphiphiles can be constructed which undergo self-assembly in n-alkanes. When inorganic clusters such as polyoxometalate are linked to the C60 sphere, organic-inorganic hybrids will be obtained which can self-assemble in polar organic solvents. Pristine C60 has also been modified by polar groups such as hydroxy and carboxy, which are linked to hydrophobic moieties and form a new class of amphiphiles. In this review, the self-assembly of C60-based amphiphiles in aqueous and nonaqueous solutions will be summarized. The characteristics exhibited by C60-based amphiphiles during the self-assembly will be discussed with close comparison to traditional surfactants, and the influences of the aggregate formation on the physicochemical properties of the C60 sphere will be described. Finally, a brief summary will be given together with a promising perspective in near future.
Collapse
Affiliation(s)
- Jinrui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Mengjun Chen
- School of Qilu Transportation, Shandong University, Jinan, 250002, China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
8
|
Rajak A, Das A. Programmed Macromolecular Assembly by Dipole-Dipole Interactions with Aggregation-Induced Enhanced Emission in Aqueous Medium. ACS POLYMERS AU 2022; 2:223-231. [PMID: 36855564 PMCID: PMC9954255 DOI: 10.1021/acspolymersau.1c00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling polymers by bioinspired directional supramolecular interactions currently hold great scientific and technological interests. Herein, we report an unorthodox strategy based on a dipole-dipole interaction-mediated extended antiparallel dipolar assembly of a model merocyanine (MC) dye for maneuvering the self-assembly of a highly water-soluble MC-functionalized block copolymer (P2). Unlike traditional amphiphilic block copolymers featuring distinct hydrophobic segments (flexible aliphatic hydrocarbon chains or rigid nonpolar aromatic scaffolds), P2 comprises polyethylene glycol monomethyl ether (PEG) as a hydrophilic block and an unconventional structure-directing acrylate block functionalized with polar MC-dyes in the side chains of every repeat unit. In the absence of any additional hydrophobic assistance, P2 spontaneously self-assembles in water through the continuous opposite alignment of its pendant MCs by multiple dipole-dipole interactions to cancel out their ground state dipole moments, which initially generates an H-aggregated species with ill-defined morphology (Aggregate 1). Upon thermal annealing, Aggregate 1 reorganizes into higher-order core-shell nanodisc-like structures (Aggregate 2) driven by the orthogonal π-stacking interactions of the rigid aromatic framework derived from the extended cofacial MC-stacks. The aromatic interiors of the nanodiscs gain colloidal stability from the externally decorated hydrophilic PEG chains. While the initially formed Aggregate 1, predominantly by dipole-dipole interactions, showed remarkable thermal stability due to the cooperative effect of the polymer chain, the hierarchical assembly guided by relatively weaker dispersion forces of the MC-stacked π-surfaces could be tailored by dilution or thermal treatment. Such organized packing of pendant MCs by the dual effect of dipole-dipole interactions and π-stacking conferred several exciting properties to the P2 assembly in water. Long-range ordered antiparallel stacking of the pendant MCs rendered outstanding aggregation-induced enhanced emission (AIEE) properties to the resultant nanostructures in water with increased fluorescence lifetime, quantum yield, and Stokes shift compared to nonaggregating P2 in CHCl3. The remarkable thermal and kinetic stability of the nanodiscs, their guest loading ability, and very low critical aggregation concentration (CAC) were demonstrated by Förster resonance energy transfer (FRET) studies with an encapsulated donor-acceptor dye pair.
Collapse
|
9
|
Servis MJ, Sadhu B, Soderholm L, Clark AE. Amphiphile conformation impacts aggregate morphology and solution structure across multiple lengthscales. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sikder A, Xie Y, Thomas M, Derry MJ, O'Reilly RK. Precise control over supramolecular nanostructures via manipulation of H-bonding in π-amphiphiles. NANOSCALE 2021; 13:20111-20118. [PMID: 34846491 DOI: 10.1039/d1nr04882a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled supramolecular architectures are ubiquitous in nature. A synchronized combination of dynamic noncovalent interactions is the major driving force in forming unique structures with high-precision control over the self-assembly of supramolecular materials. Herein, we have achieved programmable nanostructures by introducing single/multiple H-bonding units in a supramolecular building block. A diverse range of nanostructures can be generated in aqueous medium by subtly tuning the structure of π-amphiphiles. 1D-cylindrical micelles, 2D-nanoribbons and hollow nanotubes are produced by systematically varying the number of H-bonding units (0-2) in structurally near identical π-amphiphiles. Spectroscopic measurements revealed the decisive role of H-bonding units for different modes of molecular packing. We have demonstrated that a competitive self-assembled state (a kinetically controlled aggregation state and a thermodynamically controlled aggregation state) can be generated by fine tuning the number of noncovalent forces present in the supramolecular building blocks. The luminescence properties of conjugated dithiomaleimide (DTM) provided insight into the relative hydrophobicity of the core in these nanostructures. In addition, fluorescence turn-off in the presence of thiophenol enabled us to probe the accessibility of the hydrophobic core in these assembled systems toward guest molecules. Therefore the DTM group provides an efficient tool to determine the relative hydrophobicity and accessibility of the core of various nanostructures which is very rarely studied in supramolecular assemblies.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| |
Collapse
|
11
|
Supramolecular biomaterials for bio-imaging and imaging-guided therapy. Eur J Nucl Med Mol Imaging 2021; 49:1200-1210. [PMID: 34816296 DOI: 10.1007/s00259-021-05622-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Benefiting from their unique advantages, including reversibly switchable structures, good biocompatibility, facile functionalization, and sensitive response to biological stimuli, supramolecular biomaterials have been widely applied in biomedicine. In this review, the representative achievements and trends in the design of supramolecular biomaterials (mainly those derived from biomacromolecules) with specific macromolecules including peptides, deoxyribonucleic acid, and polysaccharides, as well as their applications in bio-imaging and imaging-guided therapy are summarized. This review will serve as an important summary and "go for" reference for explorations of the applications of supramolecular biomaterials in bio-imaging and image-guided therapy, and will promote the development of supramolecular chemistry as an emerging interdisciplinary research area.
Collapse
|
12
|
Sui P, Li Q, Yu H, Yu M, Zhang Z, Li A, Wang W, Sun X. The construction and modulation of responsive fluorescent materials and nano-assembly with luminescence in solid state. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Pathway and Length Control of Supramolecular Polymers in Aqueous Media via a Hydrogen Bonding Lock. Angew Chem Int Ed Engl 2021; 60:4368-4376. [PMID: 33152151 PMCID: PMC7898687 DOI: 10.1002/anie.202012710] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Programming the organization of π-conjugated systems into nanostructures of defined dimensions is a requirement for the preparation of functional materials. Herein, we have achieved high-precision control over the self-assembly pathways and fiber length of an amphiphilic BODIPY dye in aqueous media by exploiting a programmable hydrogen bonding lock. The presence of a (2-hydroxyethyl)amide group in the target BODIPY enables different types of intra- vs. intermolecular hydrogen bonding, leading to a competition between kinetically controlled discoidal H-type aggregates and thermodynamically controlled 1D J-type fibers in water. The high stability of the kinetic state, which is dominated by the hydrophobic effect, is reflected in the slow transformation to the thermodynamic product (several weeks at room temperature). However, this lag time can be suppressed by the addition of seeds from the thermodynamic species, enabling us to obtain supramolecular polymers of tuneable length in water for multiple cycles.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| | - Goutam Ghosh
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Lehrstuhl für SystemverfahrenstechnikTechnical University of Munich (TUM)Gregor-Mendel-Strasse 485354FreisingGermany
| | - Gustavo Fernández
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| |
Collapse
|
14
|
Mukhopadhyay A, Paulino V, Liu K, Donley CL, Bernard B, Shomar A, Liu C, Olivier JH. Leveraging the Assembly of a Rylene Dye to Tune the Semiconducting Properties of Functionalized n-Type, Hybrid Si Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4665-4675. [PMID: 33443396 DOI: 10.1021/acsami.0c18222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The functionalization of silicon electrodes with π-conjugated chromophores opens new avenues to engineer hybrid semiconducting interfaces relevant to information storage and processing. Notably, molecularly dissolved π-conjugated units, such as ferrocene derivatives, are traditionally exploited as building blocks to construct well-defined interfaces that establish electrochemically addressable platforms with which to investigate electron transfer properties and charge storage capabilities. In contrast, planar π-conjugated building blocks such as naphthalene diimide (NDI) cores enable the formation of solvated aggregates equipped with emergent electronic structures not manifested by the parent, molecularly dissolved building blocks. To interrogate the extent to which the aggregated states of π-conjugated chromophores can be leveraged to regulate the n-type semiconducting properties of functionalized electrodes, we have devised an amphiphilic rylene core (NDI) that demonstrates a non-negligible degree of aggregation in an aqueous medium. Characterization of the electronic structures of the NDI-derived aggregates using a combination of electrochemistry, reductive titration experiments, and spectroelectrochemistry unveils the existence of π-anion stacks, the formation of which is contingent on the initial concentration of NDI building blocks. We show that grafting n-doped NDI aggregates on silicon electrode precursors equipped with a high density of anchoring groups by means of "click" reaction enables the formation of the hybrid Si-NDI electrode (Si-NDI-15@1) that facilitates electron injection by more than 400 mV when compared to Si interfaces constructed from molecularly dissolved NDI units. Furthermore, the engineering of a Si precursor surface characterized by a low density of anchoring groups provides additional proof to highlight that the potentiometric properties recorded for Si-NDI-15@1 originate from NDI units, evidencing a non-negligible degree of aggregation. The present work delivers tools to manipulate the potentiometric properties of functionalized electrodes by leveraging on the electronic structures of aggregated, π-conjugated precursors.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, Department of Applied Physical Sciences, University of North Carolina, 243 Chapman Hall, Chapel Hill, North Carolina 27599, United States
| | - Brianna Bernard
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Alfred Shomar
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Chuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
15
|
Chamorro PB, Aparicio F, Chamorro R, Bilbao N, Casado S, González-Rodríguez D. Exploring the tubular self-assembly landscape of dinucleobase amphiphiles in water. Org Chem Front 2021. [DOI: 10.1039/d0qo01110j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tubular aqueous assembly of dinucleobase amphiphilic monomers endowed with anionic, neutral or cationic groups is investigated under diverse conditions.
Collapse
Affiliation(s)
- Paula B. Chamorro
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Fatima Aparicio
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Raquel Chamorro
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Nerea Bilbao
- Department of Chemistry
- Division of Molecular Imaging and Photonics
- KU Leuven
- B-3001 Leuven
- Belgium
| | | | - David González-Rodríguez
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
16
|
Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Pfad‐ und Längenkontrolle von supramolekularen Polymeren im wässrigen Medium mittels eines Wasserstoffbrückenschlosses. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Goutam Ghosh
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Rodrigo Q. Albuquerque
- Lehrstuhl für Systemverfahrenstechnik Technische Universität München (TUM) Gregor-Mendel-Straße 4 85354 Freising Deutschland
| | - Gustavo Fernández
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| |
Collapse
|
17
|
Song N, Zhang Z, Liu P, Yang YW, Wang L, Wang D, Tang BZ. Nanomaterials with Supramolecular Assembly Based on AIE Luminogens for Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004208. [PMID: 33150632 DOI: 10.1002/adma.202004208] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Indexed: 05/29/2023]
Abstract
One of the major pursuits of biomedical science is to develop advanced strategies for theranostics, which is expected to be an effective approach for achieving the transition from conventional medicine to precision medicine. Supramolecular assembly can serve as a powerful tool in the development of nanotheranostics with accurate imaging of tumors and real-time monitoring of the therapeutic process upon the incorporation of aggregation-induced emission (AIE) ability. AIE luminogens (AIEgens) will not only enable fluorescence imaging but will also aid in improving the efficacy of therapies. Furthermore, the fluorescent signals and therapeutic performance of these nanomaterials can be manipulated precisely owing to the reversible and stimuli-responsive characteristics of the supramolecular systems. Inspired by rapid advances in this field, recent research conducted on nanotheranostics with the AIE effect based on supramolecular assembly is summarized. Here, three representative strategies for supramolecular nanomaterials are presented as follows: a) supramolecular self-assembly of AIEgens, b) the loading of AIEgens within nanocarriers with supramolecular assembly, and c) supramolecular macrocycle-guided assembly via host-guest interactions. Meanwhile, the diverse applications of such nanomaterials in diagnostics and therapeutics have also been discussed in detail. Finally, the challenges of this field are listed in this review.
Collapse
Affiliation(s)
- Nan Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Peiying Liu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
18
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
19
|
Mukherjee A, Sakurai T, Seki S, Ghosh S. Ultrathin Two Dimensional (2D) Supramolecular Assembly and Anisotropic Conductivity of an Amphiphilic Naphthalene-Diimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13096-13103. [PMID: 33103440 DOI: 10.1021/acs.langmuir.0c02604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D)-supramolecular assemblies of π-conjugated chromophores are relatively less common compared to a large number of recent examples on their low dimensional (0D or 1D) assemblies or 3D architectures. This article reports a rational design for the 2D supramolecular assembly of an amphiphilic core-substituted naphthalene-diimide derivative (cNDI-1). The building block contains a naphthalene-diimide (NDI) chromophore, symmetrically substituted with two dodecyl chains from the aromatic core while the imide positions are functionalized with two hydrophilic wedges containing oligo-oxyethylene chains. In water, it exhibits entropically favorable self-assembly with a critical aggregation concentration of 1.5 × 10-5 M and a lower critical solution temperature of 55 °C. The UV/vis absorption spectrum in water shows bathochromically shifted absorption bands compared to that of the monomeric dye in THF, indicating offset π-stacking among the NDI chromophores. C-H symmetric and asymmetric stretching frequencies in the FT-IR spectrum support the presence of organized hydrocarbon chains in trans conformation in the self-assembled state, similar to that in the crystalline n-alkanes, which is further supported by studying the general polarization (GP) values of a noncovalently entrapped Laurdan dye. The atomic force microscopy (AFM) image shows the formation of ultrathin (height < 2.0 nm) ribbons for the spontaneously assembled sample which eventually produces a large-area 2D nanosheet by the lateral organization. The powder X-ray diffraction pattern of the drop-casted film, prepared from the preformed aggregates, reveals sharp peaks that indicate a crystalline lamellar packing along the direction of the 2D growth. Differential scanning calorimetry trace shows the melting of the crystalline alkyl chain domain at T > 75 °C, which destroys the 2D assembly. Local-scale photoconductivity of the ordered 2D assembly, studied by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) technique, reveals an anisotropic conductivity with ∼3 times larger conductivity along the parallel direction compared to that along the perpendicular one.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
20
|
Dünnebacke T, Kartha KK, Wiest JM, Albuquerque RQ, Fernández G. Solvent-controlled E/ Z isomerization vs. [2 + 2] photocycloaddition mediated by supramolecular polymerization. Chem Sci 2020; 11:10405-10413. [PMID: 34094301 PMCID: PMC8162386 DOI: 10.1039/d0sc03442h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 11/21/2022] Open
Abstract
Control over the photochemical outcome of photochromic molecules in solution represents a major challenge, as photoexcitation often leads to multiple competing photochemical and/or supramolecular pathways resulting in complex product mixtures. Herein, we demonstrate precise and efficient control over the photochemical behaviour of cyanostilbenes in solution using a straightforward solvent-controlled approach based on supramolecular polymerization. To this end, we designed a π-extended cyanostilbene bolaamphiphile that exhibits tuneable solvent-dependent photochemical behaviour. Photoirradiation of the system in a monomeric state (in organic solvents) exclusively leads to a highly reversible and efficient E/Z photoisomerization, whereas a nearly quantitative [2 + 2] photocycloaddition into a single cyclobutane (anti head-to-tail) occurs in aqueous solutions. These results can be rationalized by a highly regular and preorganized antiparallel J-type arrangement of the cyanostilbene units that is driven by aqueous supramolecular polymerization. The presented concept demonstrates a novel approach towards solvent-selective and environmentally friendly photochemical transformations, which is expected to broaden the scope of supramolecular polymerization.
Collapse
Affiliation(s)
- Torsten Dünnebacke
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Johannes M Wiest
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Rodrigo Q Albuquerque
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| |
Collapse
|
21
|
Dey P, Rajdev P, Pramanik P, Haag R, Ghosh S. Synthesis of a Cylindrical Micelle from Hydrophilic Polymers Connected with a Single Supramolecular Structure-Directing Unit. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | |
Collapse
|
22
|
Syamala PPN, Würthner F. Modulation of the Self-Assembly of π-Amphiphiles in Water from Enthalpy- to Entropy-Driven by Enwrapping Substituents. Chemistry 2020; 26:8426-8434. [PMID: 32364616 PMCID: PMC7384034 DOI: 10.1002/chem.202000995] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/29/2020] [Indexed: 12/22/2022]
Abstract
Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π-cores of amphiphilic naphthalene and perylene bisimide dyes, self-assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π-cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π-cores are strongly sequestered by the OEG chains. These molecules self-assemble at elevated temperatures in an entropy-driven process according to temperature- and concentration-dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self-assembly originates upon cooling in an enthalpy-driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of "high energy water" from the hydrophobic π-surfaces as well as dispersion interactions between the π-scaffolds which drive the self-assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen-bonded water molecules from OEG units it is in particular the increase in conformational entropy of back-folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self-assembly of amphiphilic dyes in water from enthalpy- to entropy-driven.
Collapse
Affiliation(s)
- Pradeep P N Syamala
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
23
|
Li ZY, Li C, Li P, Zuo Y, Liu X, Xu S, Zou L, Zhuang Q, Gao S, Liu X, Zhang S. Amphiphilic Organic Cages: Self-Assembly into Nanotubes and Enhanced Anion-π Interactions. Chempluschem 2020; 85:906-909. [PMID: 32401409 DOI: 10.1002/cplu.202000143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Abstract
An amphiphilic organic cage was synthesized and used as self-assembly synthon for the fabrication of novel functional supramolecular structures in solution. The transmission electron microscopy (TEM) results showed that this amphiphilic cage self-assembled in aqueous solution into unilamellar nanotubes with a diameter of 29±4 nm at a concentration of 0.05 mg mL-1 . Interestingly, the self-assembly of this cage significantly enhanced the anion-π interactions as indicated by a remarkable increasement of association constant (Ka ) between Cl- and this amphiphilic cage after self-assembly. In specific, Ka was increased from 223 M-1 for discrete cages in methanol to 6800 M-1 for aggregated cages after self-assembly in water at the same concentration of 2.26×10-5 M. A mechanism based on a synergistic effect was proposed in order to explain this self-assembly process through enhanced anion-π interactions.
Collapse
Affiliation(s)
- Zi-Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chuanlong Li
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Pan Li
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yong Zuo
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoning Liu
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lingyi Zou
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qixin Zhuang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People Hospital South Campus, Shanghai, 200240, P. R. China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Shaodong Zhang
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Jamadar A, Karan CK, Roy L, Das A. Structurally Tunable pH-Responsive Luminescent Assemblies from Halogen Bonded Supra-π-amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3089-3095. [PMID: 32164411 DOI: 10.1021/acs.langmuir.0c00443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supra-amphiphiles constituted of noncovalent bonds have emerged as attractive systems for fabrication of stimuli-responsive self-assembled nanostructures. A unique supramolecular strategy utilizing halogen (X)-bonding interaction has been demonstrated for constructing emissive supra-π-amphiphiles in water from a hydrophobic pyridyl functionalized naphthalene monoimide (NMI-Py) based X-bond acceptor and hydrophilic iodotetrafluorophenyl functionalized polyethylene glycol (PEG-I) or triethylene glycol (TEG-I) based X-bond donors, while their luminescent higher ordered assemblies were governed by orthogonal dipole-dipole interaction and π-stacking of the NMI-Py fluorophore as probed by SCXRD and DFT calculations. Control molecules lacking iodotetrafluorophenyl moiety at the polyethylene glycol chain end failed to create any defined morphology from the NMI-Py, suggesting X-bonding is prerequisite for the nanostructure formation. Variation in the chain length of the X-bond donors leads to different morphologies (fiber vs vesicle) for PEG-I and TEG-I. Acid triggered denaturing of the X-bonds caused pH responsive disassembly of the thermally robust nanostructures. This strategy paves the way for facile fabrication of structurally diverse smart and adaptive luminescent functional materials with tunable morphology.
Collapse
Affiliation(s)
- Akshoy Jamadar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Chandan Kumar Karan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar-751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
25
|
Helmers I, Shen B, Kartha KK, Albuquerque RQ, Lee M, Fernández G. Impact of Positional Isomerism on Pathway Complexity in Aqueous Media. Angew Chem Int Ed Engl 2020; 59:5675-5682. [PMID: 31849157 PMCID: PMC7154731 DOI: 10.1002/anie.201911531] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Indexed: 11/11/2022]
Abstract
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self-assembly. We compare the self-assembly of two carboxyl-functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2-position enables efficient pairwise H-bonding interactions into a single thermodynamic species, whereas meso-substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self-assembly.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Bowen Shen
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Kalathil K. Kartha
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
26
|
Helmers I, Shen B, Kartha KK, Albuquerque RQ, Lee M, Fernández G. Impact of Positional Isomerism on Pathway Complexity in Aqueous Media. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Bowen Shen
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
27
|
Mukherjee A, Pal DS, Kar H, Ghosh S. Confined supramolecular polymers in water with exceptional stability, photoluminescence and chiroptical properties. Polym Chem 2020. [DOI: 10.1039/d0py01329c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-encased chiral supramolecular polymer nanorods (SPNRs), synthesized by the nanoprecipitation method in water from a hydrophobic naphthalene-diimide derivative, exhibit excellent thermal stability, intense fluorescence and strong CPL.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Deep Sankar Pal
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Haridas Kar
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
28
|
Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun (Camb) 2020; 56:6757-6769. [DOI: 10.1039/d0cc02787a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Externally-initiated controlled supramolecular polymerization of the kinetically trapped aggregated state in a chain growth mechanism can produce well-defined living supramolecular polymers and copolymers.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| |
Collapse
|
29
|
Chakraborty S, Barman R, Ghosh S. Tunable nanostructures by directional assembly of donor–acceptor supramolecular copolymers and antibacterial activity. J Mater Chem B 2020; 8:2909-2917. [DOI: 10.1039/c9tb02772f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This manuscript reports supramolecular copolymerization of amphiphilic donor (D) and acceptor (A) units and their antibacterial activity.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
30
|
Zhang J, Xu J, Wen L, Zhang F, Zhang L. The self-assembly behavior of polymer brushes induced by the orientational ordering of rod backbones: a dissipative particle dynamics study. Phys Chem Chem Phys 2020; 22:5229-5241. [DOI: 10.1039/d0cp00235f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work proposed the “rod–coil competitive mechanism” for the self-assembly of polymer brushes with rod–coil backbones.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Jianchang Xu
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Liyang Wen
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Fusheng Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
31
|
Li M, Bai H, Shao L, Hua B. A Multifunctional Hybrid[4]arene-Based Macrocyclic Amphiphile: Self-Assembly, Tunable LCST Behavior, and Construction of Fluorescent Nanoparticles for Cell Imaging. Org Lett 2019; 21:8943-8947. [PMID: 31657580 DOI: 10.1021/acs.orglett.9b03258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel macrocyclic amphiphile based on hybrid[4]arene containing tri(ethylene glycol) chains as the hydrophilic part and benzene rings as the hydrophobic part was synthesized. It self-assembled to produce nanoparticles and showed lower critical solution temperature behavior that was affected by its concentration and K+. Moreover, amphiphilic H can encapsulate dye G to form host-guest complexes H⊃G, accompanied by significant fluorescence enhancement. H⊃G can further self-assemble to form fluorescent nanoparticles that can be applied in cell imaging.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Hongzhen Bai
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Li Shao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Bin Hua
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
32
|
Syamala PPN, Soberats B, Görl D, Gekle S, Würthner F. Thermodynamic insights into the entropically driven self-assembly of amphiphilic dyes in water. Chem Sci 2019; 10:9358-9366. [PMID: 32110300 PMCID: PMC7017873 DOI: 10.1039/c9sc03103k] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023] Open
Abstract
Self-assembly of amphiphilic dyes and π-systems are more difficult to understand and to control in water compared to organic solvents due to the hydrophobic effect. Herein, we elucidate in detail the self-assembly of a series of archetype bolaamphiphiles bearing a naphthalene bisimide (NBI) π-core with appended oligoethylene glycol (OEG) dendrons of different size. By utilizing temperature-dependent UV-vis spectroscopy and isothermal titration calorimetry (ITC), we have dissected the enthalpic and entropic parameters pertaining to the molecules' self-assembly. All investigated compounds show an enthalpically disfavored aggregation process leading to aggregate growth and eventually precipitation at elevated temperature, which is attributed to the dehydration of oligoethylene glycol units and their concomitant conformational changes. Back-folded conformation of the side chains plays a major role, as revealed by molecular dynamics (MD) and two dimensional NMR (2D NMR) studies, in directing the association. The sterical effect imparted by the jacketing of monomers and dimers also changes the aggregation mechanism from isodesmic to weakly anti-cooperative.
Collapse
Affiliation(s)
- Pradeep P N Syamala
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Bartolome Soberats
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Daniel Görl
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Stephan Gekle
- Universität Bayreuth , Biofluid Simulation and Modeling, Theoretische Physik VI & Bavarian Polymer Institute (BPI) , 95440 Bayreuth , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
33
|
Pashirova T, Bogdanov A, Zaripova I, Burilova E, Vandyukov A, Sapunova A, Vandyukova I, Voloshina A, Mironov V, Zakharova L. Tunable amphiphilic π-systems based on isatin derivatives containing a quaternary ammonium moiety: The role of alkyl chain length in biological activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Sikder A, Sarkar J, Barman R, Ghosh S. Directional Supramolecular Assembly of π-Amphiphiles with Tunable Surface Functionality and Impact on the Antimicrobial Activity. J Phys Chem B 2019; 123:7169-7177. [DOI: 10.1021/acs.jpcb.9b05193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Sikder
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Jayita Sarkar
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
35
|
Mushtaq I, Akhter Z, Shah FU. Tunable Self-Assembled Nanostructures of Electroactive PEGylated Tetra(Aniline) Based ABA Triblock Structures in Aqueous Medium. Front Chem 2019; 7:518. [PMID: 31403042 PMCID: PMC6669400 DOI: 10.3389/fchem.2019.00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023] Open
Abstract
PEGylated tetra(aniline) ABA triblock structure PEG-TANI-PEG (2) consisting of tetra(aniline) (TANI) and polyethylene glycol (PEG) was synthesized by coupling the tosylated-PEG to boc-protected NH2/NH2 TANI (1) through a simple nucleophilic substitution reaction. Deprotection of 2 resulted in a leucoemeraldine base state of TANI (2-LEB), which was oxidized to stable emeraldine base (2-EB) state. 2-EB was doped with 1 M HCl to emeraldine salt (2-ES) state. FTIR, 1H and 13C NMR and UV-Vis-NIR spectroscopy, and MS (ESI) was used for structural characterization. The synthesized triblock structure exhibited good electroactivity as confirmed by CV and UV-Vis-NIR spectroscopy. Self-assembling of the triblock structure in aqueous medium was assessed by DLS, TEM, and SEM. Spherical aggregates were observed with variable sizes depicting the effect of concentration and oxidation of 2-LEB. Further, the aggregates showed acid/base sensitivity as evaluated by doping and dedoping of 2-EB with 1 M HCl and 1 M NH4OH, respectively. Future applications in drug delivery and sensors are envisaged for such tunable self-assembled nanostructures in aqueous media.
Collapse
Affiliation(s)
- Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
36
|
Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TFA, Hansen MR, Fernández G. Pathway Control in Cooperative vs. Anti-Cooperative Supramolecular Polymers. Angew Chem Int Ed Engl 2019; 58:11344-11349. [PMID: 31119831 DOI: 10.1002/anie.201905064] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/07/2022]
Abstract
Controlling the nanoscale morphology in assemblies of π-conjugated molecules is key to developing supramolecular functional materials. Here, we report an unsymmetrically substituted amphiphilic PtII complex 1 that shows unique self-assembly behavior in nonpolar media, providing two competing anti-cooperative and cooperative pathways with distinct molecular arrangement (long- vs. medium-slipped, respectively) and nanoscale morphology (discs vs. fibers, respectively). With a thermodynamic model, we unravel the competition between the anti-cooperative and cooperative pathways: buffering of monomers into small-sized, anti-cooperative species affects the formation of elongated assemblies, which might open up new strategies for pathway control in self-assembly. Our findings reveal that side-chain immiscibility is an efficient method to control anti-cooperative assemblies and pathway complexity in general.
Collapse
Affiliation(s)
- Lorena Herkert
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jörn Droste
- Institut für Physikalische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Tom F A de Greef
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands.,Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Michael Ryan Hansen
- Institut für Physikalische Chemie, Westfälische-Wilhelms Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
37
|
Herkert L, Droste J, Kartha KK, Korevaar PA, de Greef TFA, Hansen MR, Fernández G. Pathway Control in Cooperative vs. Anti‐Cooperative Supramolecular Polymers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lorena Herkert
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Jörn Droste
- Institut für Physikalische ChemieWestfälische-Wilhelms Universität Münster Corrensstraße 28/30 48149 Münster Germany
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tom F. A. de Greef
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of Technology The Netherlands
| | - Michael Ryan Hansen
- Institut für Physikalische ChemieWestfälische-Wilhelms Universität Münster Corrensstraße 28/30 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
38
|
Hupfer ML, Kaufmann M, May S, Preiß J, Weiß D, Dietzek B, Beckert R, Presselt M. Enhancing the supramolecular stability of monolayers by combining dipolar with amphiphilic motifs: a case of amphiphilic push-pull-thiazole. Phys Chem Chem Phys 2019; 21:13241-13247. [PMID: 31180395 DOI: 10.1039/c9cp02013f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Equipping a thiazole dye with push and pull moieties adds dipolar intermolecular interactions and two hydrophilic anchors to a centrally anchored π-stacking and otherwise mono-amphiphilic dye. We show that, despite the resulting irregular shape of the tripodal amphiphile, the enhanced intermolecular interactions and amphiphilicity yield smooth and stable thin films. Furthermore, we present a first approach for deriving supramolecular binding energies from the Langmuir-Blodgett hysteresis data.
Collapse
Affiliation(s)
- M L Hupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Philips DS, Kartha KK, Politi AT, Krüger T, Albuquerque RQ, Fernández G. Interplay between H-Bonding and Preorganization in the Evolution of Self-Assembled Systems. Angew Chem Int Ed Engl 2019; 58:4732-4736. [PMID: 30618093 PMCID: PMC7646291 DOI: 10.1002/anie.201813955] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/21/2023]
Abstract
Cooperative π-π interactions and H-bonding are frequently exploited in supramolecular polymerization; however, close scrutiny of their mutual interplay has been largely unexplored. Herein, we compare the self-assembly behavior of a series of C2 - and C3 -symmetrical oligophenyleneethynylenes differing in their amide topology (N- or C-centered). This subtle structural modification brings about drastic changes in their photophysical and supramolecular properties, highlighting the reciprocal impact of H-bonding vs. preorganization on the evolution and final outcome of supramolecular systems.
Collapse
Affiliation(s)
- Divya S. Philips
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Kalathil K. Kartha
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Antiope T. Politi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University (LJMU)LiverpoolUK
| | - Timo Krüger
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University (LJMU)LiverpoolUK
- São Carlos Institute of ChemistryUniversity of São PauloBrazil
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
40
|
Philips DS, Kartha KK, Politi AT, Krüger T, Albuquerque RQ, Fernández G. Das Zusammenspiel zwischen Wasserstoffbrücken und Präorganisation in der Entwicklung von selbstassemblierenden Systemen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Divya S. Philips
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Antiope T. Politi
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University (LJMU) Liverpool Großbritannien
| | - Timo Krüger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Rodrigo Q. Albuquerque
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University (LJMU) Liverpool Großbritannien
- São Carlos Institute of Chemistry University of São Paulo Brasilien
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
41
|
Dorca Y, Naranjo C, Delgado-Martínez P, Gómez R, Sánchez L. Planarization of tetracarboxamides: tuning the self-assembly of polycyclic aromatic hydrocarbons. Chem Commun (Camb) 2019; 55:6070-6073. [DOI: 10.1039/c9cc02000d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometry-dependent self-assembling features of two PAHs, 1 and 2, is reported. The more planar 1 forms H-type supramolecular polymers, in a highly cooperative fashion by combination of H-bonding and π-stacking, with rod-like morphology. However, the highly distorted 2 interacts only by means of H-bonding yielding lamellar supramolecular structures.
Collapse
Affiliation(s)
- Yeray Dorca
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- 28040 Madrid
| | - Cristina Naranjo
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- 28040 Madrid
| | - Patricia Delgado-Martínez
- C. A. I. Difracción de Rayos X
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Rafael Gómez
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- 28040 Madrid
| | - Luis Sánchez
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Ciudad Universitaria s/n
- 28040 Madrid
| |
Collapse
|
42
|
Sikder A, Ray D, Aswal VK, Ghosh S. Hydrogen‐Bonding‐Regulated Supramolecular Nanostructures and Impact on Multivalent Binding. Angew Chem Int Ed Engl 2018; 58:1606-1611. [DOI: 10.1002/anie.201812217] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amrita Sikder
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata- 700032 India
| | - Debes Ray
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Vinod K. Aswal
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata- 700032 India
| |
Collapse
|
43
|
Sikder A, Ray D, Aswal VK, Ghosh S. Hydrogen‐Bonding‐Regulated Supramolecular Nanostructures and Impact on Multivalent Binding. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amrita Sikder
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata- 700032 India
| | - Debes Ray
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Vinod K. Aswal
- Solid State Physics DivisionBhabha Atomic Research Centre Mumbai- 400085 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata- 700032 India
| |
Collapse
|
44
|
Sampedro A, Ramos‐Torres Á, Schwöppe C, Mück‐Lichtenfeld C, Helmers I, Bort A, Díaz‐Laviada I, Fernández G. Hierarchical Self‐Assembly of BODIPY Dyes as a Tool to Improve the Antitumor Activity of Capsaicin in Prostate Cancer. Angew Chem Int Ed Engl 2018; 57:17235-17239. [DOI: 10.1002/anie.201804783] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Angel Sampedro
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| | - Ágata Ramos‐Torres
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
- Department of System Biology Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spain
| | - Christian Schwöppe
- Universitätsklinikum Münster Medizinische Klinik A Albert-Schweitzer-Campus 1/A15 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| | - Ingo Helmers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| | - Alicia Bort
- Department of System Biology Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spain
| | - Inés Díaz‐Laviada
- Department of System Biology Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spain
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstrasse 40 48149 Münster Germany
| |
Collapse
|
45
|
Sampedro A, Ramos‐Torres Á, Schwöppe C, Mück‐Lichtenfeld C, Helmers I, Bort A, Díaz‐Laviada I, Fernández G. Selbstanordnung von BODIPY‐Farbstoffen als Werkzeug, um die Antitumoraktivität von Capsaicin bei Prostatakrebs zu erhöhen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Angel Sampedro
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Ágata Ramos‐Torres
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
- Department of System Biology, Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spanien
| | - Christian Schwöppe
- Universitätsklinikum Münster Medizinische Klinik A Albert-Schweitzer-Campus 1/A15 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Ingo Helmers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Alicia Bort
- Department of System Biology, Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spanien
| | - Inés Díaz‐Laviada
- Department of System Biology, Biochemistry and Molecular Biology Unit School of Medicine and Chemical Research Institute “Andrés M. del Río” Alcalá University Alcalá de Henares 28871 Madrid Spanien
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| |
Collapse
|
46
|
Chakraborty S, Ray D, Aswal VK, Ghosh S. Multi-Stimuli-Responsive Directional Assembly of an Amphiphilic Donor-Acceptor Alternating Supramolecular Copolymer. Chemistry 2018; 24:16379-16387. [DOI: 10.1002/chem.201803170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Saptarshi Chakraborty
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Debes Ray
- Solid State Physics Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre; Trombay Mumbai 400085 India
| | - Suhrit Ghosh
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| |
Collapse
|
47
|
Grande V, Soberats B, Herbst S, Stepanenko V, Würthner F. Hydrogen-bonded perylene bisimide J-aggregate aqua material. Chem Sci 2018; 9:6904-6911. [PMID: 30210765 PMCID: PMC6124903 DOI: 10.1039/c8sc02409j] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
A water-soluble perylene bisimide dye self-assembles in aqueous media into thermoresponsive aqua materials with photoluminescence within the biological transparency window.
A new twelvefold methoxy-triethyleneglycol-jacketed tetraphenoxy-perylene bisimide (MEG-PBI) amphiphile was synthesized that self-assembles into two types of supramolecular aggregates in water: red-coloured aggregates of low order and with weak exciton coupling among the PBIs and blue-coloured strongly coupled J-aggregates consisting of a highly ordered hydrogen-bonded triple helix of PBIs. At room temperature this PBI is miscible with water at any proportions which enables the development of robust dye aggregates in solution, in hydrogel states and in lyotropic liquid crystalline states. In the presence of 60–95 wt% water, self-standing coloured hydrogels exhibit colour changes from red to blue accompanied by a fluorescence light-up in the far-red region upon heating in the range of 30–50 °C. This phenomenon is triggered by an entropically driven temperature-induced hydrogen-bond-directed slipped stacking arrangement of the MEG-PBI chromophores within structurally well-defined J-aggregates. This versatile aqua material is the first example of a stable PBI J-aggregate in water. We anticipate that this study will open a new avenue for the development of biocompatible functional materials based on self-assembled dyes and inspire the construction of other hydrogen-bonded supramolecular materials in the highly competitive solvent water.
Collapse
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Bartolome Soberats
- Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Stefanie Herbst
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Vladimir Stepanenko
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Center for Nanosystems Chemistry , Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
48
|
Dey P, Rajdev P, Pramanik P, Ghosh S. Specific Supramolecular Interaction Regulated Entropically Favorable Assembly of Amphiphilic Macromolecules. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Basak S, Nandi N, Paul S, Banerjee A. Luminescent Naphthalene Diimide-Based Peptide in Aqueous Medium and in Solid State: Rewritable Fluorescent Color Code. ACS OMEGA 2018; 3:2174-2182. [PMID: 31458522 PMCID: PMC6641253 DOI: 10.1021/acsomega.7b01813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
This study convincingly demonstrates a unique example of the self-assembly of a naphthalene diimide (NDI)-appended peptide into a fluorescent J-aggregate in aqueous media. Moreover, this aggregated species shows a remarkable yellow fluorescence in solid state, an unusual phenomenon for NDI-based compounds. The aggregated species has been characterized using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, X-ray diffraction, time-correlated single proton counting (TCSPC), UV-vis, and photoluminescence studies. TEM images reveal cross-linked nanofibrillar morphology of this aggregated species in water (pH 7.4). TCSPC study clearly indicates that the aggregated species in water has a higher average lifetime compared to that of the non-aggregated species. Interestingly, this NDI-based peptide shows H+ ion concentration-dependent change in the emission property in water. The fluorescence output is erased completely in the presence of an alkali, and it reappears in the presence of an acid, indicating its erasing and rewritable property. This indicates its probable use in authentication tools for security purposes as a rewritable fluorescence color code. This NDI-appended peptide-based molecule can be used for encryption of information due to erasing and rewritable property of the molecule in the aggregated state in aqueous medium.
Collapse
Affiliation(s)
| | | | - Subir Paul
- Department of Biological
Chemistry, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Banerjee
- Department of Biological
Chemistry, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
50
|
Sikder A, Sarkar J, Sakurai T, Seki S, Ghosh S. Solvent switchable nanostructures and the function of a π-amphiphile. NANOSCALE 2018; 10:3272-3280. [PMID: 29384163 DOI: 10.1039/c7nr07989c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This manuscript reports solvent tunable functional nano-assemblies of an unsymmetrical bola-shaped π-amphiphile (NDI-PY) which consists of a hydrophobic naphthalene-diimide (NDI) chromophore connected to a non-ionic hydrophilic wedge and a pyridine group at its two opposite arms. Importantly, it contains a hydrazide group located at the hydrophobic domain between the NDI-chromophore and the hydrophilic-wedge to drive the supramolecular assembly by directional H-bonding. NDI-PY exhibits spontaneous assembly in water as well as in a highly non-polar solvent like tetra-chloroethylene (TCE) by the synergistic effect of H-bonding and π-stacking interaction. Spectroscopy studies reveal almost identical self-assembly features in water and TCE with critical aggregation concentrations in the range of 0.3 mM, which matches the values obtained from the isothermal calorimetry (ITC) dilution experiment. Differential scanning calorimetry (DSC) experiments reveal a single endothermic peak at 31 °C (ΔH = -12.3 kJ mol-1) and 40 °C (ΔH = -5.35 kJ mol-1) for water and TCE, respectively, indicating marginally higher thermal stability in TCE, which is consistent with the FT-IR data, suggesting stronger H-bonding in TCE. Although the molecular assembly features appear to be similar, NDI-PY produces distinctly different mesoscopic structures in water and TCE. In water, it forms vesicles (Dh = 150-180 nm) with the pyridine groups displayed at the outer surface, while in TCE it generates a transparent gel (CGC = 8.0 mM) with a nanotubular (width ∼50 nm, wall thickness ∼10 nm) morphology. Powder X-ray diffraction studies show clearly different packing structures; in water a single sharp peak at the low angle (d = 19.3 Å, a little shorter than the extended length of the molecule) suggests the formation of a monolayer membrane, while in TCE several sharp peaks appear with the d values maintaining a ratio of 1 : 1/√3 : 1/2 : 1/√7 : 1/3 : 1/√12, indicating the formation of a 2D hexagonal lattice. Photoconductivity measurements reveal moderate electronic conduction in both cases. However, it shows a remarkable enhancement of the life time of the charge-carriers for the nanotubular structure compared to the vesicular morphology. On the other hand, the vesicles in water display antimicrobial activity against Gram-positive S. aureus with a highly promising MICLB value of 29.4 μg mL-1. In contrast, it does not lyse human red blood cells even at as high a concentration as 2.5 mg mL-1 (HC50 > 2.5 mg mL-1), implying high selectivity of the NDI-PY vesicles towards bacterial cells over mammalian cells. Display of the pyridine groups at the outer surface of the membrane enables molecular recognition by complementary H-bonding with a carboxylic acid group and thereby facilitates uptake of the attached pyrene chromophores in the NDI-membrane by charge-transfer interaction between the NDI acceptor and the pyrene donor. In fact a Job's plot experiment reveals maximum uptake at a 1 : 1 ratio of the NDI-PY and the pyrene guest, indicating all the pyridine groups are accessible at the vesicular surface.
Collapse
Affiliation(s)
- Amrita Sikder
- Indian Association for the Cultivation of Science, Polymer Science Unit, 2A and 2B Raja S. C. Mullick Road, Kolkata-700032, India.
| | | | | | | | | |
Collapse
|