1
|
Conte A, Rosati A, Fantin M, Aliprandi A, Baron M, Bonacchi S, Antonello S. Advanced morphological control over Cu nanowires through a design of experiments approach. MATERIALS ADVANCES 2024; 5:8836-8846. [PMID: 39430622 PMCID: PMC11484170 DOI: 10.1039/d4ma00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Copper nanowires (CuNWs), featuring anisotropic highly conductive crystalline facets, represent an ideal nanostructure to fabricate on-demand materials as transparent electrodes and efficient electrocatalysts. The development of reliable and robust CuNWs requires achieving a full control over their synthesis and morphology growth, a challenge that continues to puzzle materials scientists. In this study, we systematically investigated the correlation between the critical synthetic parameters and the structural properties of nanowires using a design of experiments (DOE) approach. Multiparametric variation of experimental reaction conditions combined with orthogonal technical analysis allowed us to develop a sound predictive model that provides guidelines for designing CuNWs with controlled morphology and reaction yield. Beyond these synthetic achievements, voltammetric and electrocatalytic experiments were used to correlate the CuNWs morphology and structure to their catalytic activity and selectivity toward CO2 electroreduction, thus opening new avenues for further intersectoral actions.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Antonella Rosati
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Marco Baron
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Sara Bonacchi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| | - Sabrina Antonello
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1 35131 Padova Italy
| |
Collapse
|
2
|
Zhao W, Tan R, Yang Y, Yang H, Wang J, Yin X, Wu D, Zhang T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. SENSORS (BASEL, SWITZERLAND) 2024; 24:474. [PMID: 38257565 PMCID: PMC10819046 DOI: 10.3390/s24020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technology in trace analysis. However, the wide applications of SERS in practice are limited by the expensive substrate materials and the complicated preparation processes. Here we report a simple and economical galvanic-replacement-assisted synthesis route to prepare Ag nanoparticles on Cu(0) foil (nanoAg@Cu), which can be directly used as SERS substrate. The fabrication process is fast (ca. 10 min) and easily scaled up to centimeters or even larger. In addition, the morphology of the nanoAg@Cu (with Ag particles size from 30 nm to 160 nm) can be adjusted by various additives (e.g., amino-containing ligands). Finally, we show that the as-prepared nanoAg@Cu can be used for SERS characterization of two-dimensional polymers, and ca. 298 times relative enhancement of Raman intensity is achieved. This work offers a simple and economical strategy for the scalable fabrication of silver-based SERS substrate in thin film analysis.
Collapse
Affiliation(s)
- Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Ghosh Moulick R, Juneja S, Gupta J, Rana V, Bhattacharya J. Formation of Self-Assembled Nanowires from Copper Nanoparticles Synthesized by the Electro-Explosion of Wires Technique-Study of the Time-Dependent Structural and Functional Evolution. ACS OMEGA 2023; 8:46481-46489. [PMID: 38107910 PMCID: PMC10719912 DOI: 10.1021/acsomega.3c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
We report here the formation of Cu nanowires (CuNWs) from Cu nanoparticles (CuNPs) by a self-assembly process. The CuNPs were synthesized by the electro-explosion of wire (EEW) technique that included nonequilibrium processes for the synthesis. Structural evolution in terms of aggregation or nanowire formation in the samples was observed when the CuNPs were kept for a month after synthesis in a glass vial without the application of any external driving force. The emergence of tangled CuNWs was noticed at the bottom of the vials only when no agitation or aeration was allowed. The nanowires were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Thermal oxidation of the nanowire samples implied that they could convert into rod-shaped structures. Loss of functionality was also observed in the hemoglobin precipitation study conducted to compare the activity of freshly prepared CuNPs and CuNWs. From the above observations, we conclude that the CuNP, after synthesis, possesses a huge amount of energy, and attainment of equilibrium occurs through either aggregation (clustering) or ordered self-assembly, depending on the conditions applied.
Collapse
Affiliation(s)
- Ranjita Ghosh Moulick
- Amity
Institute of Biotechnology/Amity Institute of Integrative Sciences
and Health, Amity University Haryana, Gurugram 122413, Haryana, India
| | - Subhavna Juneja
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jagriti Gupta
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Vaishali Rana
- Amity
Institute of Biotechnology/Amity Institute of Integrative Sciences
and Health, Amity University Haryana, Gurugram 122413, Haryana, India
| | | |
Collapse
|
4
|
Li B, Liu X, Lei B, Luo H, Liu X, Liu H, Gu Q, Ma J, Cheng P. Ultrastable Cu-Based Dual-Channel Heterowire for the Switchable Electro-/Photocatalytic Reduction of CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302881. [PMID: 37394727 PMCID: PMC10502641 DOI: 10.1002/advs.202302881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Indexed: 07/04/2023]
Abstract
Catalytic conversion of CO2 into high value-added chemicals using renewable energy is an attractive strategy for the management of CO2 . However, achieving both efficiency and product selectivity remains a great challenge. Herein, a brand-new family of 1D dual-channel heterowires, Cu NWs@MOFs are constructed by coating metal-organic frameworks (MOFs) on Cu nanowires (Cu NWs) for electro-/photocatalytic CO2 reductions, where Cu NWs act as an electron channel to directionally transmit electrons, and the MOF cover acts as a molecule/photon channel to control the products and/or undertake photoelectric conversion. Through changing the type of MOF cover, the 1D heterowire is switched between electrocatalyst and photocatalyst for the reduction of CO2 with excellent selectivity, adjustable products, and the highest stability among the Cu-based CO2 RR catalysts, which leads to heterometallic MOF covered 1D composite, and especially the first 1D/1D-type Mott-Schottky heterojunction. Considering the diversity of MOF materials, the ultrastable heterowires offer a highly promising and feasible solution for CO2 reduction.
Collapse
Affiliation(s)
- Bo Li
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Xiao Liu
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Bin Lei
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Haiqiang Luo
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Xize Liu
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Hengzhi Liu
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinfen Gu
- Australian Nuclear Science and Technology Organization (ANSTO)Melbourne, Australia, 800 Blackburn RdClaytonVIC3168Australia
| | - Jian‐Gong Ma
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Peng Cheng
- Department of ChemistryKey Laboratory of Advanced Energy Material Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST)College of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
5
|
Kumar DR, Koshy AM, Sharma N, Thomas N, Swaminathan P. Room Temperature Curable Copper Nanowire-Based Transparent Heater. ACS OMEGA 2023; 8:21107-21112. [PMID: 37332811 PMCID: PMC10269267 DOI: 10.1021/acsomega.3c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Copper nanowires (Cu NWs) are a promising alternative to silver NWs to develop transparent conducting films (TCFs) due to their comparable electrical conductivity and relative abundance. Postsynthetic modifications of the ink and high-temperature postannealing processes for obtaining conducting films are significant challenges that need to be addressed before commercial deployment of these materials. In this work, we have developed an annealing-free (room temperature curable) TCF with Cu NW ink that requires minimal postsynthetic modifications. Organic acid pretreated Cu NW ink is used for spin-coating to obtain a TCF with a sheet resistance of 9.4 Ω/sq. and optical transparency of 67.4% at 550 nm. For oxidation protection, the Cu NW TCF is encapsulated with polydimethylsiloxane (PDMS). The encapsulated film is tested as a transparent heater at various voltages and shows good repeatability. These results demonstrate the potential of Cu NW-based TCFs as a replacement for Ag-NW based TCFs for a variety of optoelectronic applications, such as transparent heaters, touch screens, and photovoltaics.
Collapse
Affiliation(s)
- Darbha
V. Ravi Kumar
- Department
of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641 112, India
| | - Aarju Mathew Koshy
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Neha Sharma
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Neethu Thomas
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Parasuraman Swaminathan
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
- Centre
of Excellence in Ceramics Technologies for Futuristic Mobility, IIT Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
6
|
Zhang Y, Si Z, Du H, Deng Y, Zhang Q, Wang Z, Yu Q, Xu H. Selective CO 2 Reduction to Ethylene Over a Wide Potential Window by Copper Nanowires with High Density of Defects. Inorg Chem 2022; 61:20666-20673. [DOI: 10.1021/acs.inorgchem.2c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhanbo Si
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Huishuang Du
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yilin Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Qiankang Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhaolong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Hui Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| |
Collapse
|
7
|
Band-Gap Engineering of Layered Perovskites by Cu Spacer Insertion as Photocatalysts for Depollution Reaction. Catalysts 2022. [DOI: 10.3390/catal12121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A multi-step ion-exchange methodology was developed for the fabrication of Cu(LaTa2O7)2 lamellar architectures capable of wastewater depollution. The (001) diffraction line of RbLaTa2O7 depended on the guest species hosted by the starting material. SEM and TEM images confirmed the well-preserved lamellar structure for all intercalated layered perovskites. The UV–Vis, XPS, and photocurrent spectroscopies proved that Cu intercalation induces a red-shift band gap compared to the perovskite host. Moreover, the UV–Vis spectroscopy elucidated the copper ions environment in the Cu-modified layered perovskites. H2-TPR results confirmed that Cu species located on the surface are reduced at a lower temperature while those from the interlayer occur at higher temperature ranges. The photocatalytic degradation of phenol under simulated solar irradiation was used as a model reaction to assess the performances of the studied catalysts. Increased photocatalytic activity was observed for Cu-modified layered perovskites compared to RbLaTa2O7 pristine. This behavior resulted from the efficient separation of photogenerated charge carriers and light absorption induced by copper spacer insertion.
Collapse
|
8
|
One-pot multi-step synthesis of high-aspect-ratio Cu nanowires based on an environment-friendly manner for low-cost and high-performance transparent conductive films. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lu PW, Jaihao C, Pan LC, Tsai PW, Huang CS, Brangule A, Zarkov A, Kareiva A, Wang HT, Yang JC. The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites. Polymers (Basel) 2022; 14:polym14163369. [PMID: 36015625 PMCID: PMC9414673 DOI: 10.3390/polym14163369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρo (V − Vc)−t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 107 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.
Collapse
Affiliation(s)
- Po-Wen Lu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd., Zhonghe, Taipei 23561, Taiwan or
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan
| | - Chonlachat Jaihao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan
| | - Li-Chern Pan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110-31, Taiwan
| | - Po-Wei Tsai
- Institute of Organic & Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ching-Shuan Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110-31, Taiwan
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Hsin-Ta Wang
- Institute of Organic & Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jen-Chang Yang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110-31, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110-31, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 110-31, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110-31, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 5124); Fax: +886-2-2736-2295
| |
Collapse
|
10
|
Pereira HJ, Killalea CE, Amabilino DB. Low-Temperature Sintering of l-Alanine-Functionalized Metallic Copper Particles Affording Conductive Films with Excellent Oxidative Stability. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:2502-2515. [PMID: 35647554 PMCID: PMC9134346 DOI: 10.1021/acsaelm.2c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Here, the alpha amino acid l-alanine is employed as both a capping and stabilizing agent in the aqueous synthesis of submicron-sized metallic copper particles under ambient atmospheric conditions. The reduction of the copper(II) precursor is achieved using l-ascorbic acid (vitamin C) as the reducing agent. The nature of the complex formed between l-alanine and the copper(II) precursor, pH of the medium, temperature, and the relative proportion of capping agent are found to play a significant role in determining the size, shape, and oxidative stability of the resulting particles. The adsorbed l-alanine is shown to act as a barrier imparting excellent thermal stability to capped copper particles, delaying the onset of temperature-induced aerial oxidation. The stability of the particles is complemented by highly favorable sintering conditions, rendering the formation of conductive copper films at significantly lower temperatures (T ≤ 120 °C) compared to alternative preparation methods. The resulting copper films are well-passivated by residual surface l-alanine molecules, promoting long-term stability without hindering the surface chemistry of the copper film as evidenced by the catalytic activity. Contrary to the popular belief that ligands with long carbon chains are best for providing stability, these findings demonstrate that very small ligands can provide highly effective stability to copper without significantly deteriorating its functionality while facilitating low-temperature sintering, which is a key requirement for emerging flexible electronic applications.
Collapse
|
11
|
Impact of iodide ions in the transformation of Cu nanostructures from one-dimensional nanowires to two-dimensional microplates. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Zheng ALT, Boonyuen S, Li GY, Ngee LH, Andou Y. Design of reduced graphene hydrogel with alkylamine surface functionalization through immersion/agitation method and its adsorption mechanism. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Chen Z, Fichthorn KA. Adsorption of ethylenediamine on Cu surfaces: attributes of a successful capping molecule using first-principles calculations. NANOSCALE 2021; 13:13529-13537. [PMID: 34477757 DOI: 10.1039/d1nr03173b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The shape-controlled synthesis of Cu nanocrystals can benefit a wide range of applications, though challenges exist in achieving high and selective yields to a particular shape. Capping agents play a pivotal role in controlling shape, but their exact role remains ambiguous. In this study, the adsorption of ethylenediamine (EDA) on Cu(100) and Cu(111) was investigated with quantum density functional theory (DFT) to reveal the complex roles of EDA in promoting penta-twinned Cu nanowire growth. We find EDA has stronger binding on Cu(100) than on Cu(111), which agrees the general expectation that penta-twinned Cu nanowires express facets with stronger capping-molecule binding. Despite this stronger binding, ab initio thermodynamics reveals the surface energy of EDA-covered Cu(111) is lower than that EDA-covered Cu(100) at all solution-phase EDA chemical potentials, so there is no thermodynamic driving force for penta-twinned nanowires. We also investigated the capability of EDA to protect Cu surfaces from oxidation in water by quantifying energy barriers for a water molecule to diffuse through EDA layers on Cu(100) and Cu(111). The energy barrier on Cu(100) is significantly lower, which supports observations of faster oxidation of Cu(100) in electrochemical experiments. Thus, we elucidate another possible function of a capping agent - to enable selective oxidation of crystal facets. This finding adds to the general understanding of successful attributes of capping agents for shape-selective nanocrystal growth.
Collapse
Affiliation(s)
- Zihao Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
16
|
Yan T, Fichthorn KA. Self-Assembly of a Linear Alkylamine Bilayer around a Cu Nanocrystal: Molecular Dynamics. J Phys Chem B 2021; 125:4178-4186. [PMID: 33872508 DOI: 10.1021/acs.jpcb.1c02043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper nanocrystals are often grown with the help of alkylamine capping agents, which direct the nanocrystal shape. However, the role of these molecules is still unclear. We characterized the assembly of aqueous tetradecylamine (TDA) around a Cu nanocrystal and found that TDA exhibits a temperature-dependent bilayer structure. The bilayer involves an inner layer, in which TDA binds to Cu via the amine group and tends to orient the alkyl tail perpendicular to the surface, and an outer layer whose structure depends on temperature. At low temperatures, alkylamines in the inner layer form bundles with no apparent relation to the crystal facets. Alkylamines in the outer layer tend to orient their long axes perpendicular to the Cu surfaces, with interdigitation into the inner layer. At high temperatures, alkylamines in the inner layer lose their bundle structure, and outer-layer alkylamines tend to orient themselves tangential to the Cu surfaces, forming a "web" above inner-layer TDA. TDA exhibits a rapid interlayer exchange at typical synthesis temperatures, consistent with experiment. The variety in the assemblies seen here and in other studies of alkanethiols around gold nanocrystals indicates a richness in the assemblies that can be achieved by modulating the interaction between the strongly binding end group and the surface.
Collapse
Affiliation(s)
- Tianyu Yan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Wang F, Chen S, Song C, Zhao B, Du H, Fang M. Solvent-Induced Growth of Free-Standing 2D Si Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005426. [PMID: 33205580 DOI: 10.1002/smll.202005426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Indexed: 06/11/2023]
Abstract
2D Si nanomaterials draw great interest owing to their fascinating properties and potential applications in electronic devices, catalysts, and energy storage and conversion devices. However, high-quality and large-scale synthesis of Si nanosheets remains a big challenge, despite the limited reports on their preparations via chemical exfoliation of layered Zintl silicide, magnesiothermic reduction of layered silicon oxide, and chemical vapor deposition. In this work, a facile, solution method to produce free-standing Si nanosheets in high yields and low cost, based on the reaction of commercial magnesium powder with trichlorosilane and tripropylamine in dichloromethane under mild conditions, is reported. The prepared Si nanosheets have an average thickness of ≈2 nm and show photoluminescence. Experiments demonstrate that the key to the formation of Si nanosheets is the use of dichloromethane as a solvent. This method can be used to prepare Si nanosheets in large scale for various potential applications and possibly Si crystals with specific crystal morphology.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Siyu Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Changsheng Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Baoxun Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Min Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China
| |
Collapse
|
18
|
Zhang T, Hsieh WY, Daneshvar F, Liu C, Rwei SP, Sue HJ. Copper(I)-alkylamine mediated synthesis of copper nanowires. NANOSCALE 2020; 12:17437-17449. [PMID: 32797131 DOI: 10.1039/d0nr04778c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Formation of a Cu(i)-alkylamine complex is found to be the key step for Cu(ii) ions to reduce to Cu(0) in the presence of glucose. Also, alkylamines in Cu nanowire synthesis serve triple roles as a reducing, complexation and capping agent. Alkylamines reduce Cu(ii) to Cu(i) at above 100 °C and protect the Cu(i) by forming a Cu ion-alkylamine coordination complex with a 1 : 2 ratio in an aqueous solution. With respect to the 1 : 2 complex ratio, the additional free alkylamines ensure a stable Cu(i)-alkylamine complex. After completion of Cu(i)-Cu(0) reduction by glucose, alkylamines remain on Cu(0) seeds to regulate the anisotropic growth of Cu nanocrystals. Long-chain (≥C16) alkylamines are found to help produce high-quality Cu nanowires, while short-chain (≤C12) alkylamines only produce CuO products. Furthermore, Cu nanowire synthesis is found to be sensitive to additional chemicals as they may destabilize Cu ion-alkylamine complexes. By comparing the Cu(i)-alkylamine and Maillard reaction mediated mechanism, the complete Cu nanowire synthesis process using glucose is revealed.
Collapse
Affiliation(s)
- Tan Zhang
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Wen-Yi Hsieh
- Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Farhad Daneshvar
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Cong Liu
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Jue Sue
- Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Chang CJ, Lin SC, Chen HC, Wang J, Zheng KJ, Zhu Y, Chen HM. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. J Am Chem Soc 2020; 142:12119-12132. [DOI: 10.1021/jacs.0c01859] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chia-Jui Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sheng-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsiao-Chien Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jiali Wang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai Jen Zheng
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yanping Zhu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| |
Collapse
|
20
|
Kim MJ, Brown M, Wiley BJ. Electrochemical investigations of metal nanostructure growth with single crystals. NANOSCALE 2019; 11:21709-21723. [PMID: 31714552 DOI: 10.1039/c9nr05782j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth.
Collapse
Affiliation(s)
- Myung Jun Kim
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
21
|
Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires. Macromol Res 2019. [DOI: 10.1007/s13233-019-7155-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ding S, Tian Y. Recent progress of solution-processed Cu nanowires transparent electrodes and their applications. RSC Adv 2019; 9:26961-26980. [PMID: 35528598 PMCID: PMC9070619 DOI: 10.1039/c9ra04404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Research on next-generation transparent electrode (TE) materials to replace expensive and fragile indium tin oxide (ITO) is crucial for future electronics. Copper nanowires (Cu NWs) are considered as one of the most promising alternatives due to their excellent electrical properties and low-cost processing. This review summarizes the recent progress on the synthesis methods of long Cu NWs, and the fabrication techniques and protection measures for Cu NW TEs. Applications of Cu NW TEs in electronics, such as solar cells, touch screens, and light emitting diodes (LEDs), are discussed.
Collapse
Affiliation(s)
- Su Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University 310018 Hangzhou P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology Harbin 150001 China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
23
|
Zhang J, Li X, Liu D, Wang S, Yan J, Lu M, Xie X, Huang L, Huang W. Stirring revealed new functions of ethylenediamine and hydrazine in the morphology control of copper nanowires. NANOSCALE 2019; 11:11902-11909. [PMID: 31184692 DOI: 10.1039/c9nr01470e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cu nanowires, as promising candidates in many fields because of their merits, are commonly prepared by the solution phase based synthesis which is a simple and scalable method. However, precise control of the morphology, particularly surface roughness, of Cu nanowires is still challenging; and moreover, detailed formation mechanisms of Cu nanowires, in solution phase based synthesis, are still unclear. We here show the morphology manipulation of Cu nanowires by adjusting the stirring rate and the amounts of ethylenediamine and hydrazine (N2H4), yielding Cu nanowires with either smooth or rough surface. Importantly, according to our experimental results and theoretical investigation, new functions of ethylenediamine and N2H4 are found, and a growth process of Cu nanowires is proposed accordingly. In addition to typically accepted roles of ethylenediamine and N2H4, we find that ethylenediamine can facilitate the growth of Cu nanowires by etching Cu oxides and even Cu on the surface of Cu nanowires. Meanwhile, N2H4 molecules can modulate the growth of Cu nanowires as a capping agent, which can be easily influenced by stirring. Additionally, the as-synthesized Cu nanowires with different morphologies exhibit different optical and catalytic properties. This study provides new fundamental insights into the growth mechanism of Cu nanowires, and thus can facilitate controlled synthesis of Cu nanowires for further applications, including electronics, catalysis, and sensing.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shah KW, Xiong T. Multifunctional Metallic Nanowires in Advanced Building Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1731. [PMID: 31141962 PMCID: PMC6600729 DOI: 10.3390/ma12111731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Metallic nanowires (NWs) have attracted great attention in the frontiers of nanomaterial science due to their extraordinary properties, such as high thermal and electrical conductivity, high aspect ratio, good mechanical flexibility, and excellent optical transparency. The metallic NWs and their nanocomposites, as a promising alternative for conventional building materials, have been extensively studied recently, but review works on these novel versatile nanostructures and their various uses in the building and construction industry are still lacking. We present a comprehensive review on current state-of-the-art research and progress regarding multifunctional metallic NWs and their specific building applications, including thermal energy storage (TES), thermal transport, electrochromic windows (ECW), as well as photovoltaic (PV) cells. The nanosynthesis techniques and nanocharacterization of silver nanowires (AgNWs) and copper nanowires (CuNWs) are overviewed and compared with each other. In addition, the fundamentals of different NWs for advanced building applications are introduced. Further discussion is presented on the improved performance of base materials by using these nanostructures, highlighting the key factors exhibiting their superior performance. Finally, the key benefits and limitations of metallic NWs for new generation building materials are obtained.
Collapse
Affiliation(s)
- Kwok Wei Shah
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore.
| | - Teng Xiong
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore.
| |
Collapse
|
25
|
Sophorolipid induced hydrothermal synthesis of Cu nanowires and its modulating effect on Cu nanostructures. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Porta E, Cogliati S, Francisco M, Roldán MV, Mamana N, Grau R, Pellegri N. Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-01071-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders. METALS 2019. [DOI: 10.3390/met9010056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three different forms of Cu powder particles obtained by either galvanostatic electrolysis or a non-electrolytic method were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and particle size distribution (PSD). Electrolytic procedures were performed under different hydrogen evolution conditions, leading to the formation of either 3D branched dendrites or disperse cauliflower-like particles. The third type of particles were compact agglomerates of the Cu grains, whose structural characteristics indicated that they were formed by a non-electrolytic method. Unlike the sharp tips that characterize the usual form of Cu dendrites, the ends of both the trunk and branches were globules in the formed dendrites, indicating that a novel type of Cu dendrites was formed in this investigation. Although the macro structures of the particles were extremely varied, they had very similar micro structures because they were constructed by spherical grains. The Cu crystallites were randomly oriented in the dendrites and compact agglomerates of the Cu grains, while the disperse cauliflower-like particles showed (220) and (311) preferred orientation. This indicates that the applied current density affects not only the morphology of the particles, but also their crystal structure. The best performance, defined by the largest specific surface area and the smallest particle size, was by the galvanostatically produced powder consisting of disperse cauliflower-like particles.
Collapse
|
29
|
Kim K, Kwon HC, Ma S, Lee E, Yun SC, Jang G, Yang H, Moon J. All-Solution-Processed Thermally and Chemically Stable Copper-Nickel Core-Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30337-30347. [PMID: 30118211 DOI: 10.1021/acsami.8b09266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) have recently attracted tremendous attention because of their excellent efficiency and the advantage of a low-cost fabrication process. As a transparent electrode for PSCs, the application of copper nanowire (CuNW)-network was limited because of its thermal/chemical instability, despite its advantages in terms of high optical/electrical properties and low-cost production. Here, the copper-nickel core-shell nanowire (Cu@Ni NW)-based composite electrode is proposed as a bottom window electrode for PSCs, without the involvement of a high-cost precious metal and vacuum process. The dense and uniform Ni protective shell for CuNWs is attainable by simple electroless plating, and the resulting Cu@Ni NWs exhibit outstanding chemical stability as well as thermal stability compared with bare CuNWs. When the Ni layer with the optimal thickness is introduced, the Cu@Ni NW electrode shows a high transmittance of 80.5% AVT at 400-800 nm, and a sheet resistance of 49.3 ± 5 Ω sq-1. Using the highly stable Cu@Ni NWs, the composite electrode structure is fabricated with sol-gel-derived Al-doped zinc oxide (AZO) over-layer for better charge collection and additional protection against iodine ions from the perovskite. The PSCs fabricated with AZO/Cu@Ni NW-based composite electrode demonstrate a power conversion efficiency (PCE) of 12.2% and excellent long-term stability maintaining 91% of initial PCE after being stored for 500 h at room temperature. Experimental results demonstrate the potential of highly stable Cu@Ni NW-based electrodes as the cost-effective alternative transparent electrode, which can facilitate the commercialization of PSCs.
Collapse
Affiliation(s)
- Kyungmi Kim
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Hyeok-Chan Kwon
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Eunsong Lee
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Seong-Cheol Yun
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Hyunha Yang
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| |
Collapse
|
30
|
Deshmukh R, Calvo M, Schreck M, Tervoort E, Sologubenko AS, Niederberger M. Synthesis, Spray Deposition, and Hot-Press Transfer of Copper Nanowires for Flexible Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20748-20754. [PMID: 29786418 DOI: 10.1021/acsami.8b04007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper(II) chloride and copper(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product. A simple low-cost spray deposition method was used to fabricate Cu NW films on a glass substrate. Post-treatment under reducing gas (5% H2 + 95% N2) atmosphere resulted in Cu NW films with a low sheet resistance of 24.5 Ω/sq, a transmittance of T = 71% at 550 nm (including the glass substrate), and a high oxidation resistance. Moreover, the conducting Cu NW networks on a glass substrate can easily be transferred onto a polycarbonate substrate using a simple hot-press transfer method without compromising on the electrical performance. The resulting flexible transparent electrodes show excellent flexibility ( R/ Ro < 1.28) upon bending to curvatures of 1 mm radius.
Collapse
Affiliation(s)
- Rupali Deshmukh
- Laboratory for Multifunctional Materials, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Micha Calvo
- Laboratory for Multifunctional Materials, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Murielle Schreck
- Laboratory for Multifunctional Materials, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Elena Tervoort
- Laboratory for Multifunctional Materials, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Alla S Sologubenko
- Scientific Center of Optical and Electron Microscopy (ScopeM) , ETH Zurich , Auguste-Piccard-Hof 1, 8093 Zurich , Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| |
Collapse
|
31
|
Zhao S, Han F, Li J, Meng X, Huang W, Cao D, Zhang G, Sun R, Wong CP. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800047. [PMID: 29707894 DOI: 10.1002/smll.201800047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Copper nanowires (CuNWs) are attracting a myriad of attention due to their preponderant electric conductivity, optoelectronic and mechanical properties, high electrocatalytic efficiency, and large abundance. Recently, great endeavors are undertaken to develop controllable and facile approaches to synthesize CuNWs with high dispersibility, oxidation resistance, and zero defects for future large-scale nano-enabled materials. Herein, this work provides a comprehensive review of current remarkable advancements in CuNWs. The Review starts with a thorough overview of recently developed synthetic strategies and growth mechanisms to achieve single-crystalline CuNWs and fivefold twinned CuNWs by the reduction of Cu(I) and Cu(II) ions, respectively. Following is a discussion of CuNW purification and multidimensional assemblies comprising films, aerogels, and arrays. Next, several effective approaches to protect CuNWs from oxidation are highlighted. The emerging applications of CuNWs in diverse fields are then focused on, with particular emphasis on optoelectronics, energy storage/conversion, catalysis, wearable electronics, and thermal management, followed by a brief comment on the current challenges and future research directions. The central theme of the Review is to provide an intimate correlation among the synthesis, structure, properties, and applications of CuNWs.
Collapse
Affiliation(s)
- Songfang Zhao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Fei Han
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jinhui Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiangying Meng
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wangping Huang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Duxia Cao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Guoping Zhang
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
32
|
Hwang H, Ahn J, Lee E, Kim K, Kwon HC, Moon J. Enhanced compatibility between a copper nanowire-based transparent electrode and a hybrid perovskite absorber by poly(ethylenimine). NANOSCALE 2017; 9:17207-17211. [PMID: 29099135 DOI: 10.1039/c7nr04739h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Copper nanowires (CuNWs) have been applied to hybrid perovskite solar cells (PSCs) as a window electrode. By sandwiching the CuNW network between aluminum-doped zinc oxide and adopting a poly(ethylenimine) buffer layer, the compatibility between the CuNWs and the perovskite layer could be dramatically improved. PSCs containing the CuNW-based composite electrode exhibited an average power conversion efficiency of 8.65%.
Collapse
Affiliation(s)
- Hyewon Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Aziz A, Zhang T, Lin YH, Daneshvar F, Sue HJ, Welland ME. 1D copper nanowires for flexible printable electronics and high ampacity wires. NANOSCALE 2017; 9:13104-13111. [PMID: 28849856 DOI: 10.1039/c7nr02478a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This paper addresses the synthesis and a detailed electrical analysis of individual copper nanowires (CuNWs). One dimensional CuNWs are chemically grown using bromide ions (Br-) as a co-capping agent. By partially replacing alkyl amines with Br-, the isotropic growth on Cu seeds was suppressed during the synthesis. To study the electrical properties of individual CuNWs, a fabrication method is developed which does not require any e-beam lithography process. Chemically grown CuNWs have an ampacity of about 30 million amps per cm2, which is more than one order of magnitude larger than bulk Cu. These good quality, easy to synthesize CuNWs are excellent candidates for creating high ampacity wires and flexible printable electronics.
Collapse
Affiliation(s)
- Atif Aziz
- Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng W. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18925-18935. [PMID: 28471162 DOI: 10.1021/acsami.7b03339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanofluids are colloidal dispersions that exhibit enhanced thermal conductivity at low filler loadings and thus have been proposed for heat transfer applications. Here, we systematically investigate how particle shape determines the thermal conductivity of low-cost copper nanofluids using a range of distinct filler particle shapes: nanospheres, nanocubes, short nanowires, and long nanowires. To exclude the potential effects of surface capping ligands, all the filler particles are kept with uniform surface chemistry. We find that copper nanowires enhanced the thermal conductivity up to 40% at 0.25 vol % loadings; while the thermal conductivity was only 9.3% and 4.2% for the nanosphere- and nanocube-based nanofluids, respectively, at the same filler loading. This is consistent with a percolation mechanism in which a higher aspect ratio is beneficial for thermal conductivity enhancement. To overcome the surface oxidation of the copper nanomaterials and maintain the dispersion stability, we employed polyvinylpyrrolidone (PVP) as a dispersant and ascorbic acid as an antioxidant in the nanofluid formulations. The thermal performance of the optimized fluid formulations could be sustained for multiple heating-cooling cycles while retaining stability over 1000 h.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenlong Cheng
- Melbourne Centre for Nanofabrication , Wellington Road, Melbourne, Victoria 3800, Australia
| |
Collapse
|
35
|
Li H, Bai J, Wang J, Li C. Needle-like Cu0 anchored on acidified SAPO-34 via hydrothermal process for efficient use in catalyst reduction reaction of 4-nitrophenol. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1284112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hengyu Li
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, P. R. China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, P. R. China
| | - Junzhong Wang
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, P. R. China
| | - Chunping Li
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, P. R. China
| |
Collapse
|
36
|
Alkylamine-mediated synthesis and optical properties of copper nanopolyhedrons. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2793-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Tsao KC, Yang H. Continuous Production of Carbon-Supported Cubic and Octahedral Platinum-Based Catalysts Using Conveyor Transport System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4808-4814. [PMID: 27409992 DOI: 10.1002/smll.201601643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/16/2016] [Indexed: 06/06/2023]
Abstract
A conveyor transport system is developed for the continuous production of carbon-supported uniform Pt nanocubes, and Pt3 Ni nanocubes and octahedra in a single-reaction system under hot carbon monoxide environment. Oleylamine is critical for the high loading and even the dispersion of Pt nanocubes on a carbon support. The metal catalyst shows high performance in electrocatalytic oxidation of methanol.
Collapse
Affiliation(s)
- Kai-Chieh Tsao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
38
|
Mallikarjuna K, Hwang HJ, Chung WH, Kim HS. Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering. RSC Adv 2016. [DOI: 10.1039/c5ra25548a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A schematic representation of the white flash light welding process of a percolated Cu NW network electrode.
Collapse
Affiliation(s)
- K. Mallikarjuna
- Department of Mechanical Engineering
- Hanyang University
- Seoul 133-791
- South Korea
- Institute of Nano Science and Technology
| | - Hyun-Jun Hwang
- Department of Mechanical Engineering
- Hanyang University
- Seoul 133-791
- South Korea
| | - Wan-Ho Chung
- Department of Mechanical Engineering
- Hanyang University
- Seoul 133-791
- South Korea
| | - Hak-Sung Kim
- Department of Mechanical Engineering
- Hanyang University
- Seoul 133-791
- South Korea
- Institute of Nano Science and Technology
| |
Collapse
|
39
|
Qian F, Lan PC, Olson T, Zhu C, Duoss EB, Spadaccini CM, Han TYJ. Multiphase separation of copper nanowires. Chem Commun (Camb) 2016; 52:11627-11630. [DOI: 10.1039/c6cc06228h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new method to purify copper nanowires with nearly 100% yield from copper nanoparticle side-products formed during a batch copper nanowire synthesis is reported.
Collapse
Affiliation(s)
- Fang Qian
- Physics and Life Science Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Pui Ching Lan
- Physics and Life Science Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Tammy Olson
- Physics and Life Science Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Cheng Zhu
- Engineering Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | - Eric B. Duoss
- Engineering Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | | | - T. Yong-Jin Han
- Physics and Life Science Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| |
Collapse
|
40
|
Ravi Kumar DV, Woo K, Moon J. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. NANOSCALE 2015; 7:17195-17210. [PMID: 26439751 DOI: 10.1039/c5nr05138j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.
Collapse
Affiliation(s)
- D V Ravi Kumar
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 120-749, Republic of Korea.
| | | | | |
Collapse
|
41
|
|
42
|
Ding S, Jiu J, Tian Y, Sugahara T, Nagao S, Suganuma K. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys Chem Chem Phys 2015; 17:31110-6. [DOI: 10.1039/c5cp04582g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate copper nanowires into a highly conductive network.
Collapse
Affiliation(s)
- Su Ding
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin
- China
- The Institute of Scientific and Industrial Research (ISIR)
| | - Jinting Jiu
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Osaka
- Japan
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin
- China
| | - Tohru Sugahara
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Osaka
- Japan
| | - Shijo Nagao
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Osaka
- Japan
| | - Katsuaki Suganuma
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Osaka
- Japan
| |
Collapse
|