1
|
Kathyola TA, Keylock SJ, Ignatyev K, Filik J, Drnec J, Webb PB, Kroner AB, Diaz-Moreno S. A multi-modal high pressure and high temperature reaction cell for combined x-ray spectroscopy, scattering, and imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:105122. [PMID: 39441062 DOI: 10.1063/5.0230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
A free-standing and compact reaction cell for combined in situ/operando x-ray spectroscopy, scattering, and imaging measurements at high pressures and high temperatures is described. The cell permits measurements under realistic operating conditions (up to 50 bar and 1000 °C), under static and flow conditions (up to 100 ml/min), over a wide range of hard x-ray energies, variable detection modes (transmission, fluorescence, and scattering), and at all angles of rotation. An operando XAS, x-ray fluorescence, x-ray computed tomography, and x-ray diffraction computed tomography case study on the reduction of a heterogeneous catalyst is presented to illustrate the performance of the reaction cell.
Collapse
Affiliation(s)
| | | | | | - Jacob Filik
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jakub Drnec
- The European Synchrotron Radiation Facility, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Paul B Webb
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Anna B Kroner
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | | |
Collapse
|
2
|
Briois V, Itié JP, Polian A, King A, Traore AS, Marceau E, Ersen O, La Fontaine C, Barthe L, Beauvois A, Roudenko O, Belin S. Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1084-1104. [PMID: 39178140 PMCID: PMC11371034 DOI: 10.1107/s1600577524006581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/25/2024]
Abstract
Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK-SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed.
Collapse
Affiliation(s)
- Valérie Briois
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
- Centre National de la Recherche ScientifiqueUR1France
| | - Jean Paul Itié
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | - Alain Polian
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
- IMPMC, Sorbonne Université, CNRS-UMR 75904 Place Jussieu75005ParisFrance
| | - Andrew King
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | | | | | | | - Camille La Fontaine
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | - Laurent Barthe
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | - Anthony Beauvois
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | - Olga Roudenko
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| | - Stéphanie Belin
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190Saint-Aubin, France
| |
Collapse
|
3
|
Lang JT, Kulkarni D, Foster CW, Huang Y, Sepe MA, Shimpalee S, Parkinson DY, Zenyuk IV. X-ray Tomography Applied to Electrochemical Devices and Electrocatalysis. Chem Rev 2023; 123:9880-9914. [PMID: 37579025 PMCID: PMC10450694 DOI: 10.1021/acs.chemrev.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 08/16/2023]
Abstract
X-ray computed tomography (CT) is a nondestructive three-dimensional (3D) imaging technique used for studying morphological properties of porous and nonporous materials. In the field of electrocatalysis, X-ray CT is mainly used to quantify the morphology of electrodes and extract information such as porosity, tortuosity, pore-size distribution, and other relevant properties. For electrochemical systems such as fuel cells, electrolyzers, and redox flow batteries, X-ray CT gives the ability to study evolution of critical features of interest in ex situ, in situ, and operando environments. These include catalyst degradation, interface evolution under real conditions, formation of new phases (water and oxygen), and dynamics of transport processes. These studies enable more efficient device and electrode designs that will ultimately contribute to widespread decarbonization efforts.
Collapse
Affiliation(s)
- Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
| | - Devashish Kulkarni
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Collin W. Foster
- Department
of Aerospace Engineering, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Ying Huang
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Mitchell A. Sepe
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sirivatch Shimpalee
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dilworth Y. Parkinson
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| |
Collapse
|
4
|
Ding H, Dixon Wilkins MC, Mottram LM, Blackburn LR, Grolimund D, Tappero R, Nicholas SL, Sun S, Corkhill CL, Hyatt NC. Chemical state mapping of simulant Chernobyl lava-like fuel containing material using micro-focused synchrotron X-ray spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1672-1683. [PMID: 34738921 PMCID: PMC8570221 DOI: 10.1107/s1600577521007748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter.
Collapse
Affiliation(s)
- Hao Ding
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Malin C. Dixon Wilkins
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Lucy M. Mottram
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Lewis R. Blackburn
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Ryan Tappero
- Brookhaven National Laboratory, NSLS-II, Upton, NY 11973, USA
| | | | - Shikuan Sun
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
- School of Material Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Claire L. Corkhill
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Neil C. Hyatt
- NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Iglesias‐Juez A, Chiarello GL, Patience GS, Guerrero‐Pérez MO. Experimental methods in chemical engineering:
X
‐ray absorption spectroscopy—
XAS
,
XANES
,
EXAFS. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Bossers KW, Valadian R, Garrevoet J, van Malderen S, Chan R, Friederichs N, Severn J, Wilbers A, Zanoni S, Jongkind MK, Weckhuysen BM, Meirer F. Heterogeneity in the Fragmentation of Ziegler Catalyst Particles during Ethylene Polymerization Quantified by X-ray Nanotomography. JACS AU 2021; 1:852-864. [PMID: 34240080 PMCID: PMC8243319 DOI: 10.1021/jacsau.1c00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 05/03/2023]
Abstract
Ziegler-type catalysts are the grand old workhorse of the polyolefin industry, yet their hierarchically complex nature complicates polymerization activity-catalyst structure relationships. In this work, the degree of catalyst framework fragmentation of a high-density polyethylene (HDPE) Ziegler-type catalyst was studied using ptychography X-ray-computed nanotomography (PXCT) in the early stages of ethylene polymerization under mild reaction conditions. An ensemble consisting of 434 fully reconstructed ethylene prepolymerized Ziegler catalyst particles prepared at a polymer yield of 3.4 g HDPE/g catalyst was imaged. This enabled a statistical route to study the heterogeneity in the degree of particle fragmentation and therefore local polymerization activity at an achieved 3-D spatial resolution of 74 nm without requiring invasive imaging tools. To study the degree of catalyst fragmentation within the ensemble, a fragmentation parameter was constructed based on a k-means clustering algorithm that relates the quantity of polyethylene formed to the average size of the spatially resolved catalyst fragments. With this classification method, we have identified particles that exhibit weak, moderate, and strong degrees of catalyst fragmentation, showing that there is a strong heterogeneity in the overall catalyst particle fragmentation and thus polymerization activity within the entire ensemble. This hints toward local mass transfer limitations or other deactivation phenomena. The methodology used here can be applied to all polyolefin catalysts, including metallocene and the Phillips catalysts to gain statistically relevant fundamental insights in the fragmentation behavior of an ensemble of catalyst particles.
Collapse
Affiliation(s)
- Koen W. Bossers
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Roozbeh Valadian
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jan Garrevoet
- Photon
Science at Deutsches Elektronen-Synchrotron DESY, Hamburg 22603, Germany
| | - Stijn van Malderen
- Photon
Science at Deutsches Elektronen-Synchrotron DESY, Hamburg 22603, Germany
| | - Robert Chan
- SABIC, P.O. Box 319, 6160
AH Geleen, The Netherlands
| | | | - John Severn
- DSM
Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Arnold Wilbers
- DSM
Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Silvia Zanoni
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Maarten K. Jongkind
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7
|
Gao Z, Odstrcil M, Böcklein S, Palagin D, Holler M, Ferreira Sanchez D, Krumeich F, Menzel A, Stampanoni M, Mestl G, van Bokhoven JA, Guizar-Sicairos M, Ihli J. Sparse ab initio x-ray transmission spectrotomography for nanoscopic compositional analysis of functional materials. SCIENCE ADVANCES 2021; 7:7/24/eabf6971. [PMID: 34108209 PMCID: PMC8189584 DOI: 10.1126/sciadv.abf6971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques. The method allows the acquisition of quantitative multimodal tomograms of representative sample volumes at sub-30 nm half-period spatial resolution within practical acquisition times, which enables local structure refinements in complex geometries. To demonstrate the method's capabilities, we investigated the transformation of vanadium phosphorus oxide catalysts with industrial use. We observe changes from the micrometer to the atomic level and the formation of a location-specific defect so far only theorized. These results led to a reevaluation of these catalysts used in the production of plastics.
Collapse
Affiliation(s)
- Zirui Gao
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
- ETH and University of Zürich, Institute for Biomedical Engineering, 8092 Zürich, Switzerland
| | - Michal Odstrcil
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Carl Zeiss SMT GmbH, 73447 Oberkochen, Germany
| | | | | | - Mirko Holler
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Frank Krumeich
- ETH Zürich, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| | | | - Marco Stampanoni
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- ETH and University of Zürich, Institute for Biomedical Engineering, 8092 Zürich, Switzerland
| | | | - Jeroen Anton van Bokhoven
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- ETH Zürich, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| | | | - Johannes Ihli
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
8
|
Sample Environment for Operando Hard X-ray Tomography—An Enabling Technology for Multimodal Characterization in Heterogeneous Catalysis. Catalysts 2021. [DOI: 10.3390/catal11040459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Structure–activity relations in heterogeneous catalysis can be revealed through in situ and operando measurements of catalysts in their active state. While hard X-ray tomography is an ideal method for non-invasive, multimodal 3D structural characterization on the micron to nm scale, performing tomography under controlled gas and temperature conditions is challenging. Here, we present a flexible sample environment for operando hard X-ray tomography at synchrotron radiation sources. The setup features are discussed, with demonstrations of operando powder X-ray diffraction tomography (XRD-CT) and energy-dispersive tomographic X-ray absorption spectroscopy (ED-XAS-CT). Catalysts for CO2 methanation and partial oxidation of methane are shown as case studies. The setup can be adapted for different hard X-ray microscopy, spectroscopy, or scattering synchrotron radiation beamlines, is compatible with absorption, diffraction, fluorescence, and phase-contrast imaging, and can operate with scanning focused beam or full-field acquisition mode. We present an accessible methodology for operando hard X-ray tomography studies, which offer a unique source of 3D spatially resolved characterization data unavailable to contemporary methods.
Collapse
|
9
|
Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Pogue BW, Zhang R, Cao X, Jia JM, Petusseau A, Bruza P, Vinogradov SA. Review of in vivo optical molecular imaging and sensing from x-ray excitation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200308VR. [PMID: 33386709 PMCID: PMC7778455 DOI: 10.1117/1.jbo.26.1.010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Deep-tissue penetration by x-rays to induce optical responses of specific molecular reporters is a new way to sense and image features of tissue function in vivo. Advances in this field are emerging, as biocompatible probes are invented along with innovations in how to optimally utilize x-ray sources. AIM A comprehensive review is provided of the many tools and techniques developed for x-ray-induced optical molecular sensing, covering topics ranging from foundations of x-ray fluorescence imaging and x-ray tomography to the adaptation of these methods for sensing and imaging in vivo. APPROACH The ways in which x-rays can interact with molecules and lead to their optical luminescence are reviewed, including temporal methods based on gated acquisition and multipoint scanning for improved lateral or axial resolution. RESULTS While some known probes can generate light upon x-ray scintillation, there has been an emergent recognition that excitation of molecular probes by x-ray-induced Cherenkov light is also possible. Emission of Cherenkov radiation requires a threshold energy of x-rays in the high kV or MV range, but has the advantage of being able to excite a broad range of optical molecular probes. In comparison, most scintillating agents are more readily activated by lower keV x-ray energies but are composed of crystalline inorganic constituents, although some organic biocompatible agents have been designed as well. Methods to create high-resolution structured x-ray-optical images are now available, based upon unique scanning approaches and/or a priori knowledge of the scanned x-ray beam geometry. Further improvements in spatial resolution can be achieved by careful system design and algorithm optimization. Current applications of these hybrid x-ray-optical approaches include imaging of tissue oxygenation and pH as well as of certain fluorescent proteins. CONCLUSIONS Discovery of x-ray-excited reporters combined with optimized x-ray scan sequences can improve imaging resolution and sensitivity.
Collapse
Affiliation(s)
- Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Rongxiao Zhang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jeremy Mengyu Jia
- Stanford University School of Medicine, Department of Radiation Oncology, Palo Alto, California, United States
| | - Arthur Petusseau
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts of Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| |
Collapse
|
11
|
Becher J, Sanchez DF, Doronkin DE, Zengel D, Meira DM, Pascarelli S, Grunwaldt JD, Sheppard TL. Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nat Catal 2020. [DOI: 10.1038/s41929-020-00552-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Vamvakeros A, Coelho AA, Matras D, Dong H, Odarchenko Y, Price SWT, Butler KT, Gutowski O, Dippel AC, Zimmermann M, Martens I, Drnec J, Beale AM, Jacques SDM. DLSR: a solution to the parallax artefact in X-ray diffraction computed tomography data. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720013576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A new tomographic reconstruction algorithm is presented, termed direct least-squares reconstruction (DLSR), which solves the well known parallax problem in X-ray-scattering-based experiments. The parallax artefact arises from relatively large samples where X-rays, scattered from a scattering angle 2θ, arrive at multiple detector elements. This phenomenon leads to loss of physico-chemical information associated with diffraction peak shape and position (i.e. altering the calculated crystallite size and lattice parameter values, respectively) and is currently the major barrier to investigating samples and devices at the centimetre level (scale-up problem). The accuracy of the DLSR algorithm has been tested against simulated and experimental X-ray diffraction computed tomography data using the TOPAS software.
Collapse
|
13
|
Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bossers KW, Valadian R, Zanoni S, Smeets R, Friederichs N, Garrevoet J, Meirer F, Weckhuysen BM. Correlated X-ray Ptychography and Fluorescence Nano-Tomography on the Fragmentation Behavior of an Individual Catalyst Particle during the Early Stages of Olefin Polymerization. J Am Chem Soc 2020; 142:3691-3695. [PMID: 32040306 PMCID: PMC7047224 DOI: 10.1021/jacs.9b13485] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A combination of X-ray ptychography and X-ray fluorescence tomography (XRF) has been used to study the fragmentation behavior of an individual Ziegler-Natta catalyst particle, ∼40 μm in diameter, in the early stages of propylene polymerization with submicron spatial resolution. The electron density signal obtained from X-ray ptychography gives the composite phases of the Ziegler-Natta catalyst particle fragments and isotactic polypropylene, while 3-D XRF visualizes multiple isolated clusters, rich in Ti, of several microns in size. The radial distribution of Ti species throughout the polymer-catalyst composite particle shows that the continuous bisection fragmentation model is the main contributor to the fragmentation pathway of the catalyst particle as a whole. Furthermore, within the largest Ti clusters the fragmentation pathway was found to occur through both the continuous bisection and layer-by-layer models. The fragmentation behavior of polyolefin catalysts was for the first time visualized in 3-D by directly imaging and correlating the distribution of the Ti species to the polymer-catalyst composite phase.
Collapse
Affiliation(s)
- Koen W Bossers
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Roozbeh Valadian
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Silvia Zanoni
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Remy Smeets
- SABIC , P.O. Box 319, 6160 AH Geleen , Netherlands
| | | | - Jan Garrevoet
- Photon Science at Deutsches Elektronen-Synchrotron DESY , Hamburg , 22603 , Germany
| | - Florian Meirer
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry & Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
15
|
Timoshenko J, Frenkel AI. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03599] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
16
|
Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite. Sci Rep 2019; 9:1365. [PMID: 30718885 PMCID: PMC6362054 DOI: 10.1038/s41598-018-37875-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/15/2018] [Indexed: 11/27/2022] Open
Abstract
This study aims to highlight discrepancies between experimental and simulation linked to the mechanisms of Mo and V adsorption onto ferrihydrite (FHY) nanoparticles. We have measured adsorption capacities and uptake efficiencies and then fitted and compared these with outputs from various geochemical and adsorption models that were run as a function of pH, surface area (SA) and ferrihydrite particles size distributions. Our results revealed that the experimental data for the Mo system could be fitted very well, but this was not the case for the V system, when a model default value for the SA of FHY of 600 m2 g−1 was used. The discrepancy in the results for the V system can be explained by the lack of specific V species and/or associated constants in databases and variation in software versions, which change the outputted chemical species. Our comparative results also confirm that any experimental variables used as modelling inputs need to be checked carefully prior to any modelling exercises.
Collapse
|
17
|
Structural Evolution of Highly Active Multicomponent Catalysts for Selective Propylene Oxidation. Catalysts 2018. [DOI: 10.3390/catal8090356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multicomponent Bi-Mo-Fe-Co oxide catalysts prepared via flame spray pyrolysis were tested for selective propylene oxidation, showing high conversion (>70%) and selectivity (>85%) for acrolein and acrylic acid at temperatures of 330 °C. During extended time-on-stream tests (5–7 days), the catalysts retained high activity while undergoing diverse structural changes. This was evident on: (a) the atomic scale, using powder X-ray diffraction, Raman spectroscopy, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy; and (b) the microscopic scale, using synchrotron X-ray nanotomography, including full-field holotomography, scanning X-ray fluorescence, and absorption contrast imaging. On the atomic scale, sintering, coke formation, growth, and transformation of active and spectator components were observed. On the microscopic scale, the catalyst life cycle was studied at various stages through noninvasive imaging of a ~50-µm grain with 100-nm resolution. Variation of catalyst synthesis parameters led to the formation of notably different structural compositions after reaction. Mobile bismuth species formed agglomerates of several hundred nanometres and segregated within the catalyst interior. This appeared to facilitate the formation of different active phases and induce selectivity for acrolein and acrylic acid. The combined multiscale approach here is generally applicable for deconvolution of complex catalyst systems. This is an important step to bridge model two-component catalysts with more relevant but complex multicomponent catalysts.
Collapse
|
18
|
Beale AM, Jacques SDM, Di Michiel M, Mosselmans JFW, Price SWT, Senecal P, Vamvakeros A, Paterson J. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0057. [PMID: 29175905 PMCID: PMC5719219 DOI: 10.1098/rsta.2017.0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of 'multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Collapse
Affiliation(s)
- Andrew M Beale
- Department of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0FA, UK
| | - Simon D M Jacques
- Research Complex at Harwell, Harwell Science and Innovation Campus, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0FA, UK
- School of Materials, Manchester University, Oxford Road, Manchester M13 9PL, UK
| | | | | | - Stephen W T Price
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE, UK
| | - Pierre Senecal
- Department of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0FA, UK
| | - Antonios Vamvakeros
- Department of Chemistry, UCL, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0FA, UK
| | - James Paterson
- BP Chemicals, Conversion Technology Centre, HRTC-DL10 Saltend, Hedon, Hull HU12 8DS, UK
| |
Collapse
|
19
|
Nishiyama N, Yamazaki S. Effect of Mixed Valence States of Platinum Ion Dopants on the Photocatalytic Activity of Titanium Dioxide under Visible Light Irradiation. ACS OMEGA 2017; 2:9033-9039. [PMID: 31457426 PMCID: PMC6645471 DOI: 10.1021/acsomega.7b01393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 06/10/2023]
Abstract
Titanium dioxide doped with the Pt ion (Pt-TiO2) was synthesized by a sol-gel method using only water as the solvent and conducting dialysis. The photocatalytic activity for the degradation of 4-chlorophenol (4-CP) on Pt-TiO2 was not affected by the Brunauer-Emmett-Teller specific surface area under visible light (VL) irradiation. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure measurements revealed that only the Pt(IV) ion existed in the TiO2 bulk and both Pt(II) and Pt(IV) were present near the Pt-TiO2 surface. Pt(IV) is most likely substituted in the Ti(IV) site of the TiO2 lattice because of their similar ionic sizes. Quantitative analysis of Pt(II) was performed in the XPS measurements, indicating that the amount of Pt(II) on the surface increased with an increase in the doping amount from 0.2 to 1.0 atom %. We synthesized 0.5 atom % Pt-TiO2 with various Pt(II)/Pt(IV) ratios by changing the Ti(OC3H7)4 concentration used in the sol-gel synthesis. The 4-CP conversion on Pt-TiO2 increased linearly with an increase in the Pt(II)/Pt(IV) ratios. A similar relationship was obtained with Pt-TiO2, which was prepared by a conventional sol-gel method in ethanol-water mixed solvent. Therefore, the Pt(II)/Pt(IV) ratio is a key factor affecting the photocatalytic activity of Pt-TiO2 under VL irradiation. Our results indicate that controlling the mixed valence states of the doped metal ions is a new strategy to developing highly active metal-ion-doped TiO2 under VL irradiation.
Collapse
Affiliation(s)
- Naoto Nishiyama
- Division of Environmental Science
and Engineering, Graduate School
of Science and Engineering and Division of Earth Science, Biology, and Chemistry,
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Suzuko Yamazaki
- Division of Environmental Science
and Engineering, Graduate School
of Science and Engineering and Division of Earth Science, Biology, and Chemistry,
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
20
|
Sprenger P, Kleist W, Grunwaldt JD. Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01149] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Sprenger
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Wolfgang Kleist
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Baier S, Damsgaard CD, Klumpp M, Reinhardt J, Sheppard T, Balogh Z, Kasama T, Benzi F, Wagner JB, Schwieger W, Schroer CG, Grunwaldt JD. Stability of a Bifunctional Cu-Based Core@Zeolite Shell Catalyst for Dimethyl Ether Synthesis Under Redox Conditions Studied by Environmental Transmission Electron Microscopy and In Situ X-Ray Ptychography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:501-512. [PMID: 28376946 DOI: 10.1017/s1431927617000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
Collapse
Affiliation(s)
- Sina Baier
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Christian D Damsgaard
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Michael Klumpp
- 4Institute of Chemical Reaction Engineering,Friedrich-Alexander University Erlangen-Nürnberg (FAU),91058 Erlangen,Germany
| | - Juliane Reinhardt
- 5Deutsches Elektronen-Synchrotron DESY,Notkestr. 85,22607 Hamburg,Germany
| | - Thomas Sheppard
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Zoltan Balogh
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Takeshi Kasama
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Federico Benzi
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| | - Jakob B Wagner
- 2Center for Electron Nanoscopy,Technical University of Denmark,2800 Kgs. Lyngby,Denmark
| | - Wilhelm Schwieger
- 4Institute of Chemical Reaction Engineering,Friedrich-Alexander University Erlangen-Nürnberg (FAU),91058 Erlangen,Germany
| | | | - Jan-Dierk Grunwaldt
- 1Institute for Chemical Technology and Polymer Chemistry,Karlsruhe Institute of Technology,76131 Karlsruhe,Germany
| |
Collapse
|
22
|
Sheppard TL, Price SWT, Benzi F, Baier S, Klumpp M, Dittmeyer R, Schwieger W, Grunwaldt JD. In Situ Multimodal 3D Chemical Imaging of a Hierarchically Structured Core@Shell Catalyst. J Am Chem Soc 2017; 139:7855-7863. [DOI: 10.1021/jacs.7b02177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas L. Sheppard
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Stephen W. T. Price
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE, United Kingdom
| | - Federico Benzi
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Sina Baier
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Michael Klumpp
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | | | - Wilhelm Schwieger
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Price SWT, Martin DJ, Parsons AD, Sławiński WA, Vamvakeros A, Keylock SJ, Beale AM, Mosselmans JFW. Chemical imaging of Fischer-Tropsch catalysts under operating conditions. SCIENCE ADVANCES 2017; 3:e1602838. [PMID: 28345057 PMCID: PMC5357128 DOI: 10.1126/sciadv.1602838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/01/2017] [Indexed: 05/14/2023]
Abstract
Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas ("syngas": CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, "multimodal" tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized.
Collapse
Affiliation(s)
- Stephen W. T. Price
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
- Corresponding author. (S.W.T.P.); (A.M.B.)
| | - David J. Martin
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Aaron D. Parsons
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Wojciech A. Sławiński
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Antonios Vamvakeros
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Stephen J. Keylock
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Andrew M. Beale
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
- Finden Limited, The Workstation Merchant House, 5 East St. Helen Street, Abingdon, Oxfordshire OX14 5EG, U.K
- Corresponding author. (S.W.T.P.); (A.M.B.)
| | - J. Frederick W. Mosselmans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
24
|
Parsons AD, Price SWT, Wadeson N, Basham M, Beale AM, Ashton AW, Mosselmans JFW, Quinn PD. Automatic processing of multimodal tomography datasets. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:248-256. [PMID: 28009564 PMCID: PMC5182025 DOI: 10.1107/s1600577516017756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 05/27/2023]
Abstract
With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.
Collapse
Affiliation(s)
| | | | | | | | - Andrew M. Beale
- Research Complex at Harwell, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | |
Collapse
|
25
|
Han T, Li X, Lin C, Zhang H, Gao P, Zhao Y, Du F, Chen Y, Sun Y. 3 D Imaging and Structural Analysis of a Mesoporous-Silica-Body-Supported Eggshell Cobalt Catalyst for Fischer-Tropsch Synthesis. ChemCatChem 2016. [DOI: 10.1002/cctc.201600657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ting Han
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
- School of Physical Science and Technology; ShanghaiTech University; No.100 Haike Road Shanghai 201210 P.R. China
- University of Chinese Academy of Sciences; 19 A Yuquan Rd Beijing 100049 P.R. China
| | - Xiaopeng Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Chao Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Haojie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Peng Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Yonghui Zhao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Fuping Du
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Yuyun Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering; Shanghai Advanced Research Institute, Chinese Academy of Sciences; No.99 Haike Road Shanghai 201210 P.R. China
- School of Physical Science and Technology; ShanghaiTech University; No.100 Haike Road Shanghai 201210 P.R. China
| |
Collapse
|
26
|
de Winter DA, Meirer F, Weckhuysen BM. FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle. ACS Catal 2016; 6:3158-3167. [PMID: 27453799 PMCID: PMC4954740 DOI: 10.1021/acscatal.6b00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/02/2016] [Indexed: 11/30/2022]
Abstract
The overall performance of a catalyst particle strongly depends on the ability of mass transport through its pore space. Characterizing the three-dimensional structure of the macro- and mesopore space of a catalyst particle and establishing a correlation with transport efficiency is an essential step toward designing highly effective catalyst particles. In this work, a generally applicable workflow is presented to characterize the transport efficiency of individual catalyst particles. The developed workflow involves a multiscale characterization approach making use of a focused ion beam-scanning electron microscope (FIB-SEM). SEM imaging is performed on cross sections of 10.000 μm2, visualizing a set of catalyst particles, while FIB-SEM tomography visualized the pore space of a large number of 8 μm3 cubes (subvolumes) of individual catalyst particles. Geometrical parameters (porosity, pore connectivity, and heterogeneity) of the material were used to generate large numbers of virtual 3D volumes resembling the sample's pore space characteristics, while being suitable for computationally demanding transport simulations. The transport ability, defined as the ratio of unhindered flow over hindered flow, is then determined via transport simulations through the virtual volumes. The simulation results are used as input for an upscaling routine based on an analogy with electrical networks, taking into account the spatial heterogeneity of the pore space over greater length scales. This novel approach is demonstrated for two distinct types of industrially manufactured fluid catalytic cracking (FCC) particles with zeolite Y as the active cracking component. Differences in physicochemical and catalytic properties were found to relate to differences in heterogeneities in the spatial porosity distribution. In addition to the characterization of existing FCC particles, our method of correlating pore space with transport efficiency does also allow for an up-front evaluation of the transport efficiency of new designs of FCC catalyst particles.
Collapse
Affiliation(s)
- D. A.
Matthijs de Winter
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
27
|
|
28
|
Egan CK, Jacques SDM, Wilson MD, Veale MC, Seller P, Beale AM, Pattrick RAD, Withers PJ, Cernik RJ. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography. Sci Rep 2015; 5:15979. [PMID: 26514938 PMCID: PMC4626840 DOI: 10.1038/srep15979] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.
Collapse
Affiliation(s)
- C. K. Egan
- School of Materials, University of Manchester, Manchester, UK
| | - S. D. M. Jacques
- School of Materials, University of Manchester, Manchester, UK
- UK Catalysis Hub, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0FA, UK
| | - M. D. Wilson
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK
| | - M. C. Veale
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK
| | - P. Seller
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK
| | - A. M. Beale
- UK Catalysis Hub, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - R. A. D. Pattrick
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK
| | - P. J. Withers
- School of Materials, University of Manchester, Manchester, UK
| | - R. J. Cernik
- School of Materials, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Vamvakeros A, Jacques SDM, Middelkoop V, Di Michiel M, Egan CK, Ismagilov IZ, Vaughan GBM, Gallucci F, van Sint Annaland M, Shearing PR, Cernik RJ, Beale AM. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. Chem Commun (Camb) 2015; 51:12752-5. [PMID: 26041252 DOI: 10.1039/c5cc03208c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.
Collapse
Affiliation(s)
- A Vamvakeros
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kalirai S, Boesenberg U, Falkenberg G, Meirer F, Weckhuysen BM. X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes. ChemCatChem 2015; 7:3674-3682. [PMID: 26613011 PMCID: PMC4648052 DOI: 10.1002/cctc.201500710] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 11/18/2022]
Abstract
Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentration at the exterior of the FCC catalyst particle and are highly co-localized. As concentrations increase as a function of catalytic life-stage, the deposition profiles of Fe, Ni, and Ca do not change significantly. V has been shown to penetrate deeper into the particle with increasing catalytic age. Although it has been previously suggested that V is responsible for damaging the zeolite components of FCC particles, no spatial correlation was found for V and La, which was used as a marker for the embedded zeolite domains. This suggests that although V is known to be detrimental to zeolites in FCC particles, a preferential interaction does not exist between the two.
Collapse
Affiliation(s)
- Sam Kalirai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG, Utrecht (The Netherlands) E-mail:
| | - Ulrike Boesenberg
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85, 22607, Hamburg (Germany)
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85, 22607, Hamburg (Germany)
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG, Utrecht (The Netherlands) E-mail:
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99, 3584 CG, Utrecht (The Netherlands) E-mail:
| |
Collapse
|
31
|
Price SWT, Geraki K, Ignatyev K, Witte PT, Beale AM, Mosselmans JFW. In Situ Microfocus Chemical Computed Tomography of the Composition of a Single Catalyst Particle During Hydrogenation of Nitrobenzene in the Liquid Phase. Angew Chem Int Ed Engl 2015; 54:9886-9. [PMID: 26140613 PMCID: PMC4600245 DOI: 10.1002/anie.201504227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/24/2022]
Abstract
Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process which is rarely studied in situ. Using microfocus X-ray fluorescence and X-ray diffraction computed tomography (μ-XRF-CT, μ-XRD-CT) in combination with X-ray absorption near-edge spectroscopy (XANES), we have determined the active state of a Mo-promoted Pt/C catalyst (NanoSelect) for the liquid-phase hydrogenation of nitrobenzene under standard operating conditions. First, μ-XRF-CT and μ-XRD-CT reveal the active state of Pt catalyst to be reduced, noncrystalline, and evenly dispersed across the support surface. Second, imaging of the Pt and Mo distribution reveals they are highly stable on the support and not prone to leaching during the reaction. This study demonstrates the ability of chemical computed tomography to image the nature and spatial distribution of catalysts under reaction conditions.
Collapse
Affiliation(s)
- Stephen W T Price
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (UK).
| | - Kalotina Geraki
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (UK)
| | - Konstantin Ignatyev
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (UK)
| | - Peter T Witte
- Catalysis Research GCC/PB, BASF Nederland B.V. Strijkviertel 67, 3454 ZG, De Meern (The Netherlands)
| | - Andrew M Beale
- UK Catalysis Hub, Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, Didcot, Oxon, OX11 0FA (UK).
- University College London, Department of Chemistry, 20 Gordon Street, London, WC1H 0AJ (UK).
| | - J Fred W Mosselmans
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (UK)
| |
Collapse
|
32
|
Price SWT, Geraki K, Ignatyev K, Witte PT, Beale AM, Mosselmans JFW. In Situ Microfocus Chemical Computed Tomography of the Composition of a Single Catalyst Particle During Hydrogenation of Nitrobenzene in the Liquid Phase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Atwood RC, Bodey AJ, Price SWT, Basham M, Drakopoulos M. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0398. [PMID: 25939626 PMCID: PMC4424489 DOI: 10.1098/rsta.2014.0398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution.
Collapse
Affiliation(s)
- Robert C Atwood
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Andrew J Bodey
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Stephen W T Price
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Mark Basham
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Michael Drakopoulos
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| |
Collapse
|
34
|
Vilé G, Almora-Barrios N, López N, Pérez-Ramírez J. Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00885] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianvito Vilé
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Neyvis Almora-Barrios
- Institute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
35
|
Catlow CRA. Synchrotron radiation techniques in materials and environmental science. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2013.0162. [PMID: 25624522 DOI: 10.1098/rsta.2013.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- C Richard A Catlow
- Department of Chemistry, University College London, 21 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|