1
|
Mai E, Malakar P, Batignani G, Martinati M, Ruhman S, Scopigno T. Orchestrating Nuclear Dynamics in a Permanganate Doped Crystal with Chirped Pump-Probe Spectroscopy. J Phys Chem Lett 2024; 15:6634-6646. [PMID: 38888442 DOI: 10.1021/acs.jpclett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.
Collapse
Affiliation(s)
- Emanuele Mai
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giovanni Batignani
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Miles Martinati
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tullio Scopigno
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Graphene Laboratories, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
2
|
Mejlachowicz D, Lassiaz P, Zola M, Leclercq B, Gélizé E, Achiedo S, Zhao M, Rousseau A, Behar-Cohen F. Identification of Structures Labeled by Indocyanine Green in the Rat Choroid and Retina Can Guide Interpretation of Indocyanine Green Angiography. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38193758 PMCID: PMC10784846 DOI: 10.1167/iovs.65.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Indocyanine green (ICG) is an albumin and lipoprotein binding dye absorbing in the far red used in angiography to visualize choroidal vessels (ICG angiography [ICGA]). To guide interpretation, ICG transport in the choroid, RPE, and retina of rats was studied. Methods Two conditions were used: RPE/choroid organoculture, incubated for 45 minutes in DMEM medium, 1% fetal bovine serum containing 0.25 mg/mL ICG and RPE/choroid and neural retina flat-mounts at 1 and 6 hours after intravenous ICG injection. Early and late sequences of ICGA were recorded until 6 hours. Ultra-deep red confocal microscope was used to localize ICG in flat-mounts and immunohistochemistry was performed for caveolin-1, tryptase (mast cell marker), and tubulin β3 (a nerve marker). Results In the organoculture, ICG penetrated homogeneously in the cytoplasm and stained the membranes of the RPE. At 1 hour after intravenous injection, ICG appeared in fine granules in RPE, partly labeled with caveolin-1 and decreasing at 6 hours. At 1 hour and 6 hours, ICG was found in the retinal vessels, faintly in the inner retina, and in the photoreceptor outer segments at 6 hours. In the choroid, ICG colocalized with mast cells, immunostained with tryptase, and accumulated along the large tubulin β3-labeled nerve bundles. The hypothesis was raised on the interpretation of late ICGA infrared photography in case of transthyretin amyloidosis with neuropathy. Conclusions Beside being a vascular dye, ICG is transported from the vessels to the RPE toward the outer retina. It stains mast cells and large choroidal nerves. These observations could help the analysis of ICGA images.
Collapse
Affiliation(s)
- Dan Mejlachowicz
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Patricia Lassiaz
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Marta Zola
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
- Department of Ophthalmology, Hopital Foch, Suresnes, France
| | - Bastien Leclercq
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Emmanuelle Gélizé
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Seiki Achiedo
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
| | - Antoine Rousseau
- Department of Ophthalmology, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Paris-Saclay University, French Reference Center for hereditary transthyretin amyloidosis (NNERF), French Reference Network for rare Ophthalmic diseases (OPHTARA), Le Kremlin-Bicêtre, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Physiopathology of Ocular Diseases: Therapeutic Innovations, Paris, France
- Ophthalmopole Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, France
- Department of Ophthalmology, Hopital Foch, Suresnes, France
| |
Collapse
|
3
|
Lee C. Albumin hydrogels for repeated capture of drugs from the bloodstream and release into the tumor. J Control Release 2024; 365:384-397. [PMID: 38007193 DOI: 10.1016/j.jconrel.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Despite the efficacy of hydrogels for consistently delivering drugs to targeted areas (primarily tumors), these systems face challenges such as initial burst release, non-refillable drugs, and a lack of dosage control. To address these issues, a novel strategy has been developed to capture and release drugs from the bloodstream, thereby overcoming the limitations of traditional hydrogels. In this study, an innovative albumin hydrogel system was developed through a bioorthogonal reaction using azide-modified albumin and 4-arm PEG-DBCO. This system can repeatedly capture and release drugs over prolonged periods. Inspired by albumin-drug binding in vivo, this hydrogel can be injected intratumorally and acts as a reservoir for capturing drugs circulating in the bloodstream. Drugs captured in hydrogels are released slowly and effectively delivered to tumors through a "capture and release process." Both the in vitro and in vivo results indicated that the hydrogel effectively captured and released drugs, such as indocyanine green and doxorubicin, over repeated cycles without compromising the activity of the drugs. Moreover, implanting the hydrogel at surgical sites successfully inhibited tumor recurrence through its drug capture-release capability. These findings establish the albumin hydrogel system as a promising capture-release platform that leverages drug-binding affinity to effectively deliver drugs to tumors, offering potential advancements in cancer treatment and post-surgery recurrence prevention.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
4
|
Imaging of Indocyanine Green-Human Serum Albumin (ICG-HSA) Complex in Secreted Protein Acidic and Rich in Cysteine (SPARC)-Expressing Glioblastoma. Int J Mol Sci 2023; 24:ijms24010850. [PMID: 36614294 PMCID: PMC9821702 DOI: 10.3390/ijms24010850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.
Collapse
|
5
|
Lahiri J, Sandhu S, Levine BG, Dantus M. Human Serum Albumin Dimerization Enhances the S 2 Emission of Bound Cyanine IR806. J Phys Chem Lett 2022; 13:1825-1832. [PMID: 35171617 DOI: 10.1021/acs.jpclett.1c03735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanine molecules are important phototheranostic compounds given their high fluorescence yield in the near-infrared region of the spectrum. We report on the frequency and time-resolved spectroscopy of the S2 state of IR806, which demonstrates enhanced emission upon binding to the hydrophobic pocket of human serum albumin (HSA). From excitation-emission matrix spectra and electronic structure calculations, we identify the emission as one associated with a state having the polymethine chain twisted out of plane by 103°. In addition, we find that this configuration is significantly stabilized as the concentration of HSA increases. Spectroscopic changes associated with the S1 and S2 states of IR806 as a function of HSA concentration, as well as anisotropy measurements, confirm the formation of HSA dimers at concentrations greater than 10 μM. These findings imply that the longer-lived S2 state configuration can lead to more efficient phototherapy agents, and cyanine S2 spectroscopy may be a useful tool to determine the oligomerization state of HSA.
Collapse
Affiliation(s)
- Jurick Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shawn Sandhu
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Clutter ED, Chen LL, Wang RR. Role of photobleaching process of indocyanine green for killing neuroblastoma cells. Biochem Biophys Res Commun 2022; 589:254-259. [PMID: 34933199 PMCID: PMC8748388 DOI: 10.1016/j.bbrc.2021.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/24/2023]
Abstract
Indocyanine green (ICG) is an FDA-approved near infrared (NIR) imaging agent for diagnosis and imaging guided surgery. It also exhibits phototoxicity under high-dose NIR irradiation, expanding its application as a photo-therapeutic agent. Since ICG's efficiency as a type II photosensitizer has been controversial due to its low triplet state yield, other mechanisms have been explored. While claims of toxic decomposition products, accompanied by irreversible ICG photobleaching, were proposed as the main mechanism, evidences from systemic studies are lacking. In this work, we aimed to unravel the factors affecting ICG photobleaching and the associated photo-killing effect on neuroblastoma, one of the most common pediatric tumors but often escapes therapy. Specifically, we examined how albumin-induced ICG stabilization affects the ICG photobleaching process, and the effect of photobleached ICG on cell proliferation and viability of neuroblastoma cells. It was found that ICG photobleaching was significant only under aerobic conditions and was more efficient in solutions with higher concentration ICG monomers, which were stabilized from aggregates by the presence of BSA while increasing photobleaching and associated oxygen consumption. Photobleached ICG inhibited cell proliferation, indicating another effect of tumor treatment by ICG. Taken together, while enhanced photobleaching by BSA-bound ICG monomers may reduce the photodynamic effect targeting cellular components, the photoproducts directly contribute to tumor growth inhibition and assist in a secondary mechanism to stop tumor growth.
Collapse
Affiliation(s)
- Elwin D. Clutter
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - Liaohai L. Chen
- Department of Surgery, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL 60607
| | - Rong R. Wang
- Department of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| |
Collapse
|
7
|
Khurana N, Yathavan B, Jedrzkiewicz J, Gill AS, Pulsipher A, Alt JA, Ghandehari H. Vascular permeability in chronic rhinosinusitis enhances accumulation and retention of nanoscale pegylated liposomes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 38:102453. [PMID: 34363985 PMCID: PMC10499165 DOI: 10.1016/j.nano.2021.102453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Chronic rhinosinusitis (CRS) is a debilitating inflammatory disorder of the sinonasal mucosa that substantially diminishes patient quality of life. Progress surrounding management of this disease has been crippled by a lack of therapeutic innovation. It has been posited that increased vascularity within the diseased sinuses of patients with CRS may allow for improved systemic drug delivery via nanoscale liposomal carriers. Such a system could enhance drug distribution, accumulation, and retention within the sinuses, ultimately leading to improved patient outcomes. PEGylated liposomes loaded with indocyanine green (ICG) were synthesized, characterized and systemically administered in a mouse model of CRS. Accumulation and retention of ICG in sinonasal tissue were evaluated. Compared to healthy controls, CRS mice showed significant sinonasal tissue accumulation and retention of PEGylated liposomal ICG for up to 21 days (P < 0.001). Conversely, free ICG was eliminated from the body after 24 h in both groups.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Bhuvanesh Yathavan
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | | | - Amarbir S Gill
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA; Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Wang J, Xie L, Shi Y, Ao L, Cai F, Yan F. Early Detection and Reversal of Cell Apoptosis Induced by Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ACS NANO 2021; 15:14509-14521. [PMID: 34405679 DOI: 10.1021/acsnano.1c04029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Focused ultrasound (FUS) combined with microbubbles (MBs) has recently emerged as a potential approach to open the blood-brain barrier (BBB) for delivering drugs into the brain. However, appropriate approaches are still lacking to monitor the sublethal damage during FUS-mediated BBB opening in vivo, especially the early stage cell apoptotic events. Here, we developed a kind of nanoprobe-loaded MBs (AV-ICG-NPs@MBs) which can monitor the apoptotic cells that occur during FUS-mediated BBB opening through encapsulating the annexin V-targeted nanoprobes AV-ICG-NPs into the cavity of lipid-PLGA hybrid MBs. When irradiated by FUS, AV-ICG-NPs@MBs in the cerebral blood vessels would produce cavitation, favoring the BBB opening. Meanwhile, AV-ICG-NPs@MBs would be destroyed and release their AV-ICG-NPs payload. These released AV-ICG-NPs can be further delivered into the brain via the destructed BBB and bind with the phosphatidylserine externalized on the membrane of apoptotic cells if this occurs, leading to the prolonged detention of fluorescent signals in the brain. Furthermore, we also provided an effective strategy to inhibit or reverse the possible damage to the brain from a FUS-mediated BBB opening technology, through developing AV-ICG-NPs/GAS@MBs that encapsulate the antioxidant gastrodin (GAS) into AV-ICG-NPs@MBs. Accompanied by FUS irradiation and bubble cavitation, GAS was released and delivered into the brain, where they scavenged the oxygen free radicals produced from cavitation, leading to significantly lower fluorescence signals in the brain due to the absence of externalized phosphatidylserine. In conclusion, our study provides an approach to monitor and inhibit cell apoptotic events during FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Jieqiong Wang
- School of Rehabilitation, Kunming Medical University, Kunming, 650106, People's Republic of China
| | - Liting Xie
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, People's Republic of China
| | - LiJuan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, 650106, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
9
|
Borlan R, Tatar AS, Soritau O, Maniu D, Marc G, Florea A, Focsan M, Astilean S. Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells. NANOTECHNOLOGY 2020; 31:315102. [PMID: 32315999 DOI: 10.1088/1361-6528/ab8b90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, extensive research is being carried out to find innovative solutions for the development of stable, reproductible, and highly efficient fluorescent contrast agents with the ability of targeting specific cells, which can be further implemented for fluorescent-guided surgery in a real clinical setting. The present study is focused on the development of fluorescent dye-loaded protein nanoparticles (NPs) to overcome the drawbacks of the standard administration of free organic fluorophores, such as cytotoxicity, aqueousinstability, and rapid photo-degradation. Precisely, human serum albumin (HSA) NPs loaded with two different FDA approved dyes, namely indocyanine green (ICG) and fluorescein isothiocyanate (FITC), with a fluorescence response in the near-infrared and visible spectral domains, respectively, have been successfully designed. Even though the diameter of fluorescent HSA NPs is around 30 nm as proven by dynamic light scattering and transmission electron microscopy investigations, they present good loading efficiencies of almost 50% for ICG, and over 30% for FITC and a high particle yield of over 75%. Molecular docking simulations of ICG and FITC within the structure of HSA confirmed that the dyes were loaded inside the NPs, and docked in Site I (subdomain IIA) of the HSA molecule. After the confirmation of their high fluorescence photostability, the NPs were covalently conjugated with folic acid (HSA-FA NPs) in order to bind specifically to the folate receptor alpha (FRα) protein overexpressed on NIH:OVCAR3 ovarian cancer cells. Finally, fluorescence microscopy imaging investigations validate the improved internalization of folate targeted HSA&FITC NPs compared to cells treated with untargeted ones. Furthermore, TEM examinations of the distribution of HSA NPs into the NIH:OVCAR3 cells revealed anincreased number of NP-containing vesicles for the cells treated with HSA-FA NPs, compared to the cells exposed to untargeted HAS NPs, upholding the enhanced cellular uptake through FRα-mediated potocytosis.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu Street, Cluj-Napoca 400084, Romania. Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurean Street, Cluj-Napoca 400271, Romania
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hart SM, Banal JL, Bathe M, Schlau-Cohen GS. Identification of Nonradiative Decay Pathways in Cy3. J Phys Chem Lett 2020; 11:5000-5007. [PMID: 32484350 DOI: 10.1021/acs.jpclett.0c01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoexcited fluorescent markers are extensively used in spectroscopy, imaging, and analysis of biological systems. The performance of fluorescent markers depends on high levels of emission, which are limited by competing nonradiative decay pathways. Small-molecule fluorescent dyes have been increasingly used as markers due to their high and stable emission. Despite their prevalence, the nonradiative decay pathways of these dyes have not been determined. Here, we investigate these pathways for a widely used indocarbocyanine dye, Cy3, using transient grating spectroscopy. We identify a nonradiative decay pathway via a previously unknown dark state formed within ∼1 ps of photoexcitation. Our experiments, in combination with electronic structure calculations, suggest that the generation of the dark state is mediated by picosecond vibrational mode coupling, likely via a conical intersection. We further identify the vibrational modes, and thus structural elements, responsible for the formation and dynamics of the dark state, providing insight into suppressing nonradiative decay pathways in fluorescent markers such as Cy3.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Attia M, Cao J, Chan R, Ling J, Ye JY. Optical properties of indocyanine green under ultrasound treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Jao ML, Wang YY, Wong HP, Bachhav S, Liu KC. Intracholecystic administration of indocyanine green for fluorescent cholangiography during laparoscopic cholecystectomy-A two-case report. Int J Surg Case Rep 2020; 68:193-197. [PMID: 32172195 PMCID: PMC7075798 DOI: 10.1016/j.ijscr.2020.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
It is difficult to visualize extra-hepatic biliary anatomy clearly because of long-presence of ICG in liver when administered intravenously. Intracholecystic ICG injection illuminates extra-hepatic biliary tree preferentially thus reducing background hepatic noise. Surgeons can experience more satisfaction with the use of fluorescent cholangiography during laparoscopic cholecystectomy when the intracystic route of ICG administration is utilized.
Introduction The utility of intracystic administration of indocyanine green for near-infrared fluorescent cholangiography in acute calculous cholecystitis initially treated with percutaneous transhepatic gallbladder drainage (PTGBD) was described in this report. Presentation of case Two cases who underwent near-infrared fluorescent cholangiography guided interval laparoscopic cholecystectomy two weeks post-PTGBD were studied retrospectively. Both patients were diagnosed with moderate acute calculous cholecystitis based on diagnostic criteria of the Tokyo guidelines. Two routes of indocyanine green administration were utilized during surgery, first through direct intracystic administration through PTGBD tube (5 ml of 12.5 mg ICG) to achieve critical view of safety and then intravenous administration (1 ml of 2.5 mg ICG) to visualize cystic artery. Discussion Both patients had critical view of safety visualized clearly with ICG with the operation time of 84 and 125 min in cases 1 and 2, respectively without any intra or postoperative complications. Conclusion In comparison with intravenous ICG administration, trans-PTGBD ICG route can provide better signal-to-noise ratio by avoiding hepatic fluorescence and thus increasing the bile duct to liver contrast. However, ICG may enter the lymphatic system through necrotic and inflammatory gallbladder mucosa, of which lymph spillage during gallbladder dissection can obscure the fluorescent view.
Collapse
Affiliation(s)
- Man-Ling Jao
- Department of Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yen-Yu Wang
- IRCAD/AITS-Asian Institute of TeleSurgery, Chang Bing Show Chwan Hospital, Changhua, Taiwan
| | - Hon Phin Wong
- Department of Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan.
| | - Sayali Bachhav
- IRCAD/AITS-Asian Institute of TeleSurgery, Chang Bing Show Chwan Hospital, Changhua, Taiwan
| | - Kai-Che Liu
- IRCAD/AITS-Asian Institute of TeleSurgery, Chang Bing Show Chwan Hospital, Changhua, Taiwan
| |
Collapse
|
13
|
Wu D, Xue D, Zhou J, Wang Y, Feng Z, Xu J, Lin H, Qian J, Cai X. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics 2020; 10:3636-3651. [PMID: 32206113 PMCID: PMC7069080 DOI: 10.7150/thno.41127] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Biliary tract injury remains the most dreaded complication during laparoscopic cholecystectomy. New intraoperative guidance technologies, including near-infrared (NIR) fluorescence cholangiography with indocyanine green (ICG), are under comprehensive evaluation. Previous studies had shown the limitations of traditional NIR light (NIR-I, 700-900 nm) in visualizing the biliary tract structures in specific clinical situations. The aim of this study was to evaluate the feasibility of performing the extrahepatic cholangiography in the second NIR window (NIR-II, 900-1700 nm) and compare it to the conventional NIR-I imaging. Methods: The absorption and emission spectra, as well as fluorescence intensity and photostability of ICG-bile solution in the NIR-II window were recorded and measured. In vitro intralipid® phantom imaging was performed to evaluate tissue penetrating depth in NIR-I and NIR-II window. Different clinical scenarios were modeled by broadening the penetration distance or generating bile duct injuries, and bile duct visualization and lesion site diagnosis in the NIR-II window were evaluated and compared with NIR-I imaging. Results: The fluorescence spectrum of ICG-bile solution extends well into the NIR-II region, exhibiting intense emission value and excellent photostability sufficient for NIR-II biliary tract imaging. Extrahepatic cholangiography using ICG in the NIR-II window obviously reduced background signal and enhanced penetration depth, providing more structural information and improved visualization of the bile duct or lesion location in simulated clinical scenarios, outperforming the NIR-I window imaging. Conclusions: The conventional clinically approved agent ICG is an excellent fluorophore for NIR-II bile duct imaging. Fluorescence cholangiography with ICG in the NIR-II window could provide adequate visualization of the biliary tract structures with increased resolution and penetration depth and might be a valid option to increase the safety of cholecystectomy in difficult cases.
Collapse
Affiliation(s)
- Di Wu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Dingwei Xue
- Department of Urology, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hui Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, 310016, China
| |
Collapse
|
14
|
Margulis K, Honkala A, Kalashnikova I, Noll SE, Hill M, Zare RN, Smith BR. Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells. NANOSCALE 2020; 12:2752-2763. [PMID: 31956862 DOI: 10.1039/c9nr06494j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dysregulated myeloid cell activity underlies a variety of pathologies, including immunosuppression in malignant cancers. Current treatments to alter myeloid cell behavior also alter other immune cell subpopulations and nonimmune cell types with deleterious side effects. Therefore, improved selectivity of myeloid treatment is an urgent need. To meet this need, we demonstrate a novel, targeted nanoparticle system that achieves superior myeloid selectivity both in vitro and in vivo. This system comprises: (1) granulocyte-colony stimulating factor (G-CSF) as a targeting ligand to promote accumulation in myeloid cells, including immunosuppressive myeloid-derived suppressor cells (MDSCs); (2) albumin nanoparticles 100-120 nm in diameter that maintain morphology and drug payload in simulated physiological conditions; and (3) a fluorophore that enables nanoparticle tracking and models a therapeutic molecule. Here, we show that this strategy achieves high myeloid uptake in mixed primary immune cells and that nanoparticles successfully infiltrate the 4T1 triple-negative breast tumor murine microenvironment, where they preferentially accumulate in myeloid cells in a mouse model. Further development will realize diagnostic myeloid cell tracking applications and therapeutic delivery of myeloid-reprogramming drugs.
Collapse
Affiliation(s)
- Katherine Margulis
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA. and The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alexander Honkala
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA 94305, USA.
| | - Irina Kalashnikova
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Meghan Hill
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Bryan Ronain Smith
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA 94305, USA. and Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Mukherjee S, Ganorkar K, Kumar A, Sehra N, Ghosh SK. Switching of Trp-214 intrinsic rotamer population in human serum albumin: An insight into the aftermath of embracing therapeutic bioorganic luminophore azapodophyllotoxin into sudlow site I. Bioorg Chem 2019; 84:63-75. [DOI: 10.1016/j.bioorg.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/14/2023]
|
16
|
Huang SW, Ou JJ, Wong HP. The use of indocyanine green imaging technique in patient with hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018; 3:95. [PMID: 30603731 DOI: 10.21037/tgh.2018.10.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Near-infrared indocyanine green (ICG) fluorescence application in liver cancer surgery have been reported in the literature since 2008. To date, most reports emphasized not only to the safety, feasibility and reproducibility, but also the potential benefits of its clinical applications in term of demarcating segmentation for an anatomical resection, tumor identification to achieve tumor free resection margin, detection of small unidentifiable subcapsular nodules as well as extrahepatic metastatic lesions, and fluorescence cholangiography. The purpose of this review is to present the fundamental concept of the interpretation of fluorescence enhancement by different timing through intravascular ICG distribution to liver and biliary washout; to describe step-by-step technical aspects of its use in different purposes, and to expose the diagnostic and therapeutic perspectives of this innovative imaging technique in liver cancer surgery.
Collapse
Affiliation(s)
- Shih-Wei Huang
- Division of General Surgery, Department of Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan.,IRCAD/AITS-Asian Institute of TeleSurgery, Show Chwan Health Care System, Changhua, Taiwan
| | - Jing-Jim Ou
- Department of Surgery, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua, Taiwan
| | - Hon Phin Wong
- Division of General Surgery, Department of Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan.,IRCAD/AITS-Asian Institute of TeleSurgery, Show Chwan Health Care System, Changhua, Taiwan
| |
Collapse
|
17
|
Mac JT, Vankayala R, Patel DK, Wueste S, Anvari B. Erythrocyte-Derived Optical Nanoprobes Doped with Indocyanine Green-Bound Albumin: Material Characteristics and Evaluation for Cancer Cell Imaging. ACS Biomater Sci Eng 2018; 4:3055-3062. [PMID: 33435025 DOI: 10.1021/acsbiomaterials.8b00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosize structures activated by near-infrared (NIR) photoexcitation can provide an optical platform for the image-guided removal of small tumor nodules. We have engineered nanoparticles derived from erythrocytes that can be doped with NIR fluorophore indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-derived transducers (NETs). The objective of this study was to determine if ICG-bound albumin (IbA), as the doping material, could enhance the fluorescence emission of NETs, and evaluate the capability of these nanoprobes in imaging cancer cells. Erythrocytes were isolated from bovine whole blood and depleted of hemoglobin to form erythrocyte ghosts (EGs). EGs were then extruded through nanosize porous membranes in the presence of 10-100 μm ICG or Iba (1:1 molar ratio) to form ICG- or IbA-doped NETs. The resulting nanosize constructs were characterized for their diameters, zeta-potentials, absorption, and fluorescence emission spectra. We used fluorescence microscopic imaging to evaluate the capability of the constructs in imaging SKOV3 ovarian cancer cells. Based on dynamic light-scattering measurements, ICG- and IbA-doped NETs had similar diameter distributions (Z-average diameter of 236 and 238 nm, respectively) in phosphate-buffered saline supplemented with 10% fetal bovine serum, which remained nearly constant over the course of 2 h at 37 °C. Despite a much-lower loading efficiency of IbA (∼0.7-8%) as compared to ICG (10-45%), the integrated normalized fluorescence emission of IbA-NETs was 2- to 6-fold higher than ICG-doped NETs. IbA-NETs also demonstrated an enhanced capability in fluorescence imaging of SKOV3 ovarian cancer cells, and can serve as potentially effective nanoprobes for the fluorescence imaging of cancerous cells.
Collapse
|
18
|
Hu D, Sheng Z, Zhu M, Wang X, Yan F, Liu C, Song L, Qian M, Liu X, Zheng H. Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for In Situ Visualization of Cancer Photothermal Therapy. Am J Cancer Res 2018; 8:410-422. [PMID: 29290817 PMCID: PMC5743557 DOI: 10.7150/thno.22226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/08/2017] [Indexed: 11/05/2022] Open
Abstract
The visualization of the treatment process in situ could facilitate to accurately monitor cancer photothermal therapy (PTT), and dramatically decrease the risk of thermal damage to normal cells and tissues, which represents a major challenge for cancer precision therapy. Herein, we prepare theranostic nanoprobes (NPs) for Förster resonance energy transfer (FRET)-based dual-modal imaging-guided cancer PTT, and clear visualization of the therapeutic process. The FRET-based theranostic NPs exhibit high FRET efficiency (88.2%), good colloidal stability, and tumor-targeting ability. Tumor tissue and surrounding blood vessels are visualized clearly by FRET-based NIR fluorescence imaging with a high signal-to-background ratio (14.5) and photoacoustic imaging with an excellent resolution at 24 h post injection of NPs. Under the guidance of dual-modal imaging, the NPs-induced photothermal effect selectively destructs cancer cells, simultaneously decreasing the FRET efficiency and leading to fluorescence and photoacoustic signal changes. The sensitive self-feedback process enables the in situ visualization of therapeutic process and precision guidance of in vivo cancer PTT. A high therapeutic efficacy and minimum side effects are achieved in C6 tumor-bearing nude mice, holding great promise for precision therapy and cancer theranostics.
Collapse
|
19
|
Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One 2017; 12:e0187563. [PMID: 29121078 PMCID: PMC5679521 DOI: 10.1371/journal.pone.0187563] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called "NIR-I" window (700-900 nm). Recently, imaging in the "NIR-II" window (1000-1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology.
Collapse
Affiliation(s)
- Zbigniew Starosolski
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail: (ZS); (RB)
| | - Rohan Bhavane
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail: (ZS); (RB)
| | - Ketan B. Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Sanjeev A. Vasudevan
- Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander Kaay
- Avue LLC., Santa Barbara, California, United States of America
| | - Ananth Annapragada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
20
|
Nairat M, Webb M, Esch MP, Lozovoy VV, Levine BG, Dantus M. Time-resolved signatures across the intramolecular response in substituted cyanine dyes. Phys Chem Chem Phys 2017; 19:14085-14095. [PMID: 28518192 DOI: 10.1039/c7cp00119c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface. Here we track the initial excited state dynamics by measuring the fluorescence yield from the first excited state as a function of time delay between two color femtosecond pulses for several cyanine dyes having different substituents. We find that when the high frequency pulse precedes the low frequency one and for timescales up to 200 fs, the excited state population can be depleted through stimulated emission with efficiency that is dependent on the molecular electronic structure. A similar observation at even shorter times was made by scanning the chirp (frequencies ordering) of a femtosecond pulse. The changes in depletion reflect the rate at which the nuclear coordinates of the excited state leave the Franck-Condon (FC) region and progress towards achieving equilibrium. Through functional group substitution, we explore these dynamic changes as a function of dipolar change following photoexcitation. Density functional theory calculations were performed to provide greater insight into the experimental spectroscopic observations. Complete active space (CAS) self-consistent field and CAS second order perturbation theory calculated potential energy surfaces tracking twisting and pyramidalization confirm that the steeper potential at the FC region leads to the observation of faster wave packet dynamics.
Collapse
Affiliation(s)
- Muath Nairat
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Ren H, Liu J, Su F, Ge S, Yuan A, Dai W, Wu J, Hu Y. Relighting Photosensitizers by Synergistic Integration of Albumin and Perfluorocarbon for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3463-3473. [PMID: 28067039 DOI: 10.1021/acsami.6b14885] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT) is hampered by poor water solubility and skin phototoxicity of photosensitizers (PSs). Incorporation of PSs into nanocarrier (Nano-PDT) has been designed to overcome these problems. However, self-quenching of PSs highly condensed in Nano-PDT significantly reduced singlet oxygen (1O2) generation, resulting in unsatisfactory PDT efficacy. Here, we developed a novel tripleffect Nano-PDT, which has a special core-shell nanostructure by synergistic integration of perfluorotributylamine (PFTBA) and human serum albumin (HSA) to improve PDT. It has three mechanisms to relight quenched PSs, thereby generating more 1O2. First, PSs uniformly dispersed in the shell, preventing self-quenching caused by π-π stacking. Second, HSA as nanocarrier extends the triplet-state lifetimes of PSs, increasing the amount of 1O2. Third, PFTBA as core dissolves and protects1 O2 to extend the duration time of action of 1O2. Compared with PS-encapsulated Nano-PDT, the self-quenching of PSs in tripleffect Nano-PDT can be effectively overcome. The fluorescence and 1O2 generation of PS are increased by approximately 100-fold and 15-fold, respectively. After intravenous injection into tumor-bearing mice, the tumor growth is significantly inhibited, while the PS-encapsulated Nano-PDT has almost no effect. The novel tripleffect Nano-PDT may guide improvement of existing clinical PDT and future PDT design.
Collapse
Affiliation(s)
- Hao Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
| | - Jiaqi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
| | - Fenhong Su
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
| | - Sizhan Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University , Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University , Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University , Nanjing 210093, China
| | - Weimin Dai
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University , Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University , Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University , Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University , Nanjing 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University , Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University , Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University , Nanjing 210093, China
| |
Collapse
|
22
|
Spectrometric study on the interaction of indocyanine green with human serum albumin. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Nairat M, Konar A, Lozovoy VV, Beck WF, Blanchard GJ, Dantus M. Controlling S2 Population in Cyanine Dyes Using Shaped Femtosecond Pulses. J Phys Chem A 2016; 120:1876-85. [PMID: 26935762 DOI: 10.1021/acs.jpca.6b01835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha's rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp. For the cyanine dyes with polar solvation response IR144 and meso-piperidine substituted IR806, increased S2 emission was observed when using transform limited pulses, whereas chirped pulses led to increased S1 emission. The nonpolar solvated cyanine IR806, on the other hand, did not show S2 emission. A theoretical model, based on a nonperturbative solution of the equation of motion for the density matrix, is offered to explain and simulate the anomalous chirp dependence. Our findings, which depend on pulse properties beyond peak intensity, offer a photonic method to control S2 population thereby opening the door for the exploration of photochemical processes initiated from higher excited states.
Collapse
Affiliation(s)
- Muath Nairat
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Arkaprabha Konar
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Konar A, Lozovoy VV, Dantus M. Stimulated Emission Enhancement Using Shaped Pulses. J Phys Chem A 2016; 120:2002-8. [DOI: 10.1021/acs.jpca.6b02010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arkaprabha Konar
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vadim V. Lozovoy
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry and ‡Department of
Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
25
|
Fang C, Wang K, Zeng C, Chi C, Shang W, Ye J, Mao Y, Fan Y, Yang J, Xiang N, Zeng N, Zhu W, Fang C, Tian J. Illuminating necrosis: From mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep 2016; 6:21013. [PMID: 26864116 PMCID: PMC4749996 DOI: 10.1038/srep21013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Chaoting Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinzuo Ye
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yamin Mao
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nan Xiang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ning Zeng
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| |
Collapse
|