1
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
2
|
Zhang GC, Song K, Wang XF, He Z, Du J, Sun JL, Xu RC, Liu ZY, Wang F, Qi ZR, Yu XN, Miao Y, Dong L, Weng SQ, Shen XZ, Liu TT, Li Y, Zhu JM. Bismuth-based mesoporous nanoball carrying sorafenib for synergistic photothermal and molecularly-targeted therapy in an orthotopic hepatocellular carcinoma xenograft mouse model. Colloids Surf B Biointerfaces 2024; 245:114279. [PMID: 39368423 DOI: 10.1016/j.colsurfb.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Sorafenib (SOR), a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), has limited clinical application due to severe side effects and drug resistance. To overcome these challenges, we developed a bismuth-based nanomaterial (BOS) for thermal injury-assisted continuous targeted therapy in HCC. Initially, the mesoporous nanomaterial was loaded with SOR, forming the BOS@SOR nano-carrier system for drug delivery and controlled release. Notably, compared to targeted or photothermal therapy alone, the combination therapy using this nano-carrier system significantly impaired cell proliferation and increased apoptosis. In vivo efficacy evaluations demonstrated that BOS@SOR exhibited excellent biocompatibility, confirmed through hemolysis and biochemical analyses. Additionally, BOS@SOR enhanced contrast in computed tomography, aiding in the precise identification of HCC size and location. The photothermal therapeutic properties of bismuth further contributed to the synergistic anti-tumor activity of BOS@SOR, significantly reducing tumor growth in an orthotopic xenograft HCC model. Taken together, encapsulating SOR within a bismuth-based mesoporous nanomaterial creates a multifunctional and environmentally stable nanocomposite (BOS@SOR), enhancing the therapeutic effect of SOR and presenting an effective strategy for HCC treatment.
Collapse
Affiliation(s)
- Guang-Cong Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Kang Song
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao-Fan Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhuo-Ran Qi
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China; Department of Gastroenterology and Hepatology, Shanghai Geriatric Medical Center, Shanghai, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China.
| |
Collapse
|
3
|
Liguori F, Pellicciotta N, Milanetti E, Xi Windemuth S, Ruocco G, Di Leonardo R, Danino T. Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy. BIODESIGN RESEARCH 2024; 6:0049. [PMID: 39301524 PMCID: PMC11411163 DOI: 10.34133/bdr.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic Escherichia coli expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the pfo gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.
Collapse
Affiliation(s)
- Filippo Liguori
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nicola Pellicciotta
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sophia Xi Windemuth
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Roberto Di Leonardo
- Department of Physics, Sapienza University of Rome, Rome, Italy
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Rome, Italy
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Kaur N, Gautam P, Nanda D, Meena AS, Shanavas A, Prasad R. Lipid Nanoparticles for Brain Tumor Theranostics: Challenges and Status. Bioconjug Chem 2024; 35:1283-1299. [PMID: 39207940 DOI: 10.1021/acs.bioconjchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid nanoparticles have been recognized as a powerful weapon for delivering various imaging and therapeutic agents to the localized solid tumors, especially brain tumors individually or in combination. Promisingly, lipid-based nanosystems have been considered as safe delivery systems which are even approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). One recent spotlight of lipid nanoparticles as COVID-19 mRNA vaccines where lipid nanoparticles play an important role in effectively protecting and delivering mRNA to the desired cells. As of now, successive progress in lipid-based nanocarriers, viz., nanoliposomes, solid lipid nanoparticles, ionizable lipid nanostructures, etc., with better biochemical and biophysical stabilities, has been noticed and reported. Moreover, lipid nanostructures have been considered as versatile therapeutics platforms for a variety of diseases due to their biocompatibility, ability to protect and deliver therapeutics to the localized site, and better reproducibility and reliability. However, lipid nanoparticles still face morphological and biochemical changes upon their in vivo administration. These changes alter the specific biological and pathological response of lipid nanoparticles during their personalized brain tumor theranostics. Second, lipid nanomedicine still faces major challenges of zero premature leakage of loaded cargo, long-term colloidal stability, and off targeting. Herein, various lipid-based nanomedicines for brain tumor imaging and therapeutics "theranostics" have been reviewed and summarized considering major aspects of preclinical and clinical studies. On the other hand, engineering and biological challenges of lipid theranostics systems with relevant advantages and guidelines for clinical practice for different brain tumors have also been discussed. This review provides in-depth knowledge of lipid nanoparticle-based theranostics agents for brain tumor imaging and therapeutics.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Priyadarshi Gautam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dibyani Nanda
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Avtar Singh Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Jin J, Chen Y, Li H, Xu Y, Wang L. Loading polyaniline (PANI) nanoparticles to mesoporous hydroxyapatite (HAp) spheres for near infrared (NIR) induced doxorubicin (DOX) drug delivery and colon cancer treatment. Phys Chem Chem Phys 2024; 26:23277-23287. [PMID: 39196348 DOI: 10.1039/d4cp02509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In response to the pressing need for more efficient and targeted cancer therapies, this study presents the development of biodegradable hydroxyapatite/polyaniline (HAp/PANI) nanocomposite drug carriers for near-infrared (NIR)-induced drug delivery. The synthesis involved loading polyaniline onto mesoporous hydroxyapatite spheres, resulting in high drug loading capacity and tunable NIR responsiveness. The HAp/PANI spheres exhibited superior photothermal properties compared to pristine HAp under NIR irradiation, along with excellent biocompatibility. Importantly, the drug release behavior could be precisely controlled by adjusting NIR power and irradiation time, leading to enhanced anticancer efficacy against HCT-116 colorectal cancer cells. These findings highlight the potential of HAp/PANI mesoporous spheres as promising drug carriers for NIR-responsive cancer therapy.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yujing Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Houzhong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
| | - Liyan Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
| |
Collapse
|
6
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
7
|
Tang H, Zhang X, Bao Y, Shen H, Fan M, Wang Y, Xiang S, Ran X. Nucleic acid-functionalized gold nanoparticles as intelligent photothermal therapy agents for precise cancer treatment. NANOTECHNOLOGY 2024; 35:465101. [PMID: 39146957 DOI: 10.1088/1361-6528/ad6fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Collapse
Affiliation(s)
- Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yuyan Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Huazhen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Minglan Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Yangchen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Siyun Xiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
8
|
Zhong J, Zhu M, Guo J, Chen X, Long R, Körte F, Wang S, Chen H, Xiong X, Liu Y. Enhancing tumor photodynamic synergistic therapy efficacy through generation of carbon radicals by Prussian blue nanomedicine. Regen Biomater 2024; 11:rbae103. [PMID: 39346686 PMCID: PMC11434160 DOI: 10.1093/rb/rbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 10/01/2024] Open
Abstract
Significant progress has been achieved in tumor therapies utilizing nano-enzymes which could convert hydrogen peroxide into reactive oxygen species (ROS). However, the ROS generated by these enzymes possess a short half-life and exhibit limited diffusion within cells, making it challenging to inflict substantial damage on major organelles for effective tumor therapy. Therefore, it becomes crucial to develop a novel nanoplatform that could extend radicals half-life. Artesunate (ATS) is a Fe (II)-dependent drug, while the limited availability of iron (II), coupled with the poor aqueous solubility of ATS, limits its application. Here, Prussian blue (PB) was selected as a nano-carrier to release Fe (II), thus constructing a hollow Prussian blue/artesunate/methylene blue (HPB/ATS/MB) nanoplatform. HPB degraded and released iron(III), ATS and MB, under the combined effects of NIR irradiation and the unique tumor microenvironment. Moreover, Fe (III) exploited GSH to formation of Fe (II), disturbing the redox homeostasis of tumor cells and Fe (II) reacted with H2O2 and ATS to generate carbon radicals with a long half-life in situ. Furthermore, MB generates 1O2 under laser irradiation conditions. In vitro and in vivo experiments have demonstrated that the HPB/ATS/MB NPs exhibit a synergistic therapeutic effect through photothermal therapy, photodynamic therapy and radical therapy.
Collapse
Affiliation(s)
- Jun Zhong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Mingzhi Zhu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiaqi Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xinyu Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Fabian Körte
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Hao Chen
- Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| |
Collapse
|
9
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
10
|
Cao Y, Xu R, Liang Y, Tan J, Guo X, Fang J, Wang S, Xu L. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy. NANOSCALE 2024; 16:13718-13754. [PMID: 38954406 DOI: 10.1039/d4nr01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaotang Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
11
|
Kim M, Hwang JE, Lee JS, Park J, Oh C, Lee S, Yu J, Zhang W, Im HJ. Development of Indocyanine Green/Methyl-β-cyclodextrin Complex-Loaded Liposomes for Enhanced Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32945-32956. [PMID: 38912948 DOI: 10.1021/acsami.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-β-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.
Collapse
Affiliation(s)
- MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Yu
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wang Zhang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Zhang Y, Sun C. Current status, challenges and prospects of antifouling materials for oncology applications. Front Oncol 2024; 14:1391293. [PMID: 38779096 PMCID: PMC11109453 DOI: 10.3389/fonc.2024.1391293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Targeted therapy has become crucial to modern translational science, offering a remedy to conventional drug delivery challenges. Conventional drug delivery systems encountered challenges related to solubility, prolonged release, and inadequate drug penetration at the target region, such as a tumor. Several formulations, such as liposomes, polymers, and dendrimers, have been successful in advancing to clinical trials with the goal of improving the drug's pharmacokinetics and biodistribution. Various stealth coatings, including hydrophilic polymers such as PEG, chitosan, and polyacrylamides, can form a protective layer over nanoparticles, preventing aggregation, opsonization, and immune system detection. As a result, they are classified under the Generally Recognized as Safe (GRAS) category. Serum, a biological sample, has a complex composition. Non-specific adsorption of chemicals onto an electrode can lead to fouling, impacting the sensitivity and accuracy of focused diagnostics and therapies. Various anti-fouling materials and procedures have been developed to minimize the impact of fouling on specific diagnoses and therapies, leading to significant advancements in recent decades. This study provides a detailed analysis of current methodologies using surface modifications that leverage the antifouling properties of polymers, peptides, proteins, and cell membranes for advanced targeted diagnostics and therapy in cancer treatment. In conclusion, we examine the significant obstacles encountered by present technologies and the possible avenues for future study and development.
Collapse
Affiliation(s)
| | - Congcong Sun
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Jaswal R, Kumar D, Rezk AI, Kaliannagounder VK, Park CH, Min KH. Nanographene-Au fine-tuning to intensify plasmonic-resonance of polymeric hybrid bionanosystem for synergistic phototherapy and nerve photobiomodulation. Colloids Surf B Biointerfaces 2024; 237:113820. [PMID: 38502975 DOI: 10.1016/j.colsurfb.2024.113820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Here, we report the multi-photo-bioactivity of the plasmonic-nano graphitic coordinated polycaprolactone-based aligned nanofibrous scaffolds-based bionanosystem for photothermal breast and colon cancer therapies and peripheral nerve photobiomodulation. The size-optimized colloidal reduced graphene oxide (nRGO, 180 nm) nanosheets, for enhanced photothermal impact, were surface-functionalized with gold nanospheres (AuNPs) to prepare the nRGO@AuNP monodispersed nano-composite and then doped 2.0 mg of nRGO@AuNP in biocompatible and biodegradable polymer polycaprolactone (PCL) to fabricate the nRGO@AuNP-PCL (2.0 mg) plasmonic aligned nanofibrous scaffolds. More than 90% of cancer cells, breast cancer (MCF-7) as well as colon cancer (CT-26), ablated after 5 min of low NIR (808 nm) laser power (0.72 W/cm2) illumination with nRGO@AuNP-PCL (2.0 mg) aligned nanofibrous scaffolds. Besides, the nRGO@AuNP-PCL (2.0 mg) provided an extraordinary microenvironment for adhesion, nerve growth, proliferation, and differentiation of PC12 and S42 cells which mimics the natural extracellular matrix. The 2.5-fold increase in neurite length was observed with NIR illumination after 3 days whereas 1.7-fold was found without NIR illumination after 7 days in comparison to PCL (pure). The current findings will be useful to provide a new crucial approach for preparing biocompatible multifunctional composite plasmonic nanofibers as a highly efficient distinct platform for photothermal therapies and promising bioimplants to overcome the loss of sensation after cancer surgery through nerve photobiomodulation.
Collapse
Affiliation(s)
- Richa Jaswal
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea; School of Pharmacy, Jeonbuk National University, Jeonju 54896, South Korea
| | - Dinesh Kumar
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Abdelrahman I Rezk
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea; Department of Physiology, Jeonbuk National University Medical School, Jeonju-si 54907, South Korea
| | | | - Chan Hee Park
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Kyung Hyun Min
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, South Korea; Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
15
|
Sardaru MC, Rosca I, Ursu C, Dascalu IA, Ursu EL, Morariu S, Rotaru A. Photothermal Hydrogel Composites Featuring G4-Carbon Nanomaterial Networks for Staphylococcus aureus Inhibition. ACS OMEGA 2024; 9:15833-15844. [PMID: 38617624 PMCID: PMC11007816 DOI: 10.1021/acsomega.3c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Microbial infections represent a significant health risk, often leading to severe complications and, in some cases, even fatalities. As a result, there is an urgent need to explore innovative drug delivery systems and alternative therapeutic techniques. The photothermal therapy has emerged as a promising antibacterial approach and is the focus of this study. Herein, we report the successful synthesis of two distinct supramolecular composite hydrogels by incorporating graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) into guanosine quadruplex (G4) based hydrogels containing covalently bound β-cyclodextrin (β-CD). The G4 matrix was synthesized through a two-step process, establishing a robust network between G4 and β-CDs, followed by the encapsulation of either GO or SWNTs. Comprehensive characterization of these composite hydrogels were conducted using analytical techniques, including circular dichroism, Raman spectroscopy, rheological investigations, X-ray diffraction, and scanning electron microscopy. A notable discovery from the conducted research is the differential photothermal responses exhibited by the hydrogels when exposed to near-infrared laser irradiation. Specifically, SWNT-based hydrogels demonstrated superior photothermal performance, achieving a remarkable temperature increase of up to 52 °C, in contrast to GO-based hydrogels, which reached a maximum of 34 °C. These composite hydrogels showed good cytotoxicity evaluation results and displayed synergistic antibacterial activity against Staphylococcus aureus, positioning them as promising candidates for antibacterial photothermic platforms, particularly in the context of wound treatment. This study offers a valuable contribution to the development of advanced and combined therapeutic strategies for combating microbial infections and highlights the potential of carbon nanomaterial-enhanced supramolecular hydrogels in photothermal therapy applications.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- The
Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Cristian Ursu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Physics of Polymers and Polymeric Materials Laboratory, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ioan-Andrei Dascalu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Elena-Laura Ursu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Simona Morariu
- Natural
Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry,
Romanian Academy, Grigore
Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Alexandru Rotaru
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
16
|
Quartin E, Rosa S, Gonzalez-Anton S, Mosteo Lopez L, Francisco V, Duarte D, Lo Celso C, Pires das Neves R, Ferreira L. Nanoparticle-encapsulated retinoic acid for the modulation of bone marrow hematopoietic stem cell niche. Bioact Mater 2024; 34:311-325. [PMID: 38274293 PMCID: PMC10809008 DOI: 10.1016/j.bioactmat.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
More effective approaches are needed in the treatment of blood cancers, in particular acute myeloid leukemia (AML), that are able to eliminate resistant leukemia stem cells (LSCs) at the bone marrow (BM), after a chemotherapy session, and then enhance hematopoietic stem cell (HSC) engraftment for the re-establishment of the HSC compartment. Here, we investigate whether light-activatable nanoparticles (NPs) encapsulating all-trans-retinoic acid (RA+NPs) could solve both problems. Our in vitro results show that mouse AML cells transfected with RA+NPs differentiate towards antitumoral M1 macrophages through RIG.1 and OASL gene expression. Our in vivo results further show that mouse AML cells transfected with RA+NPs home at the BM after transplantation in an AML mouse model. The photo-disassembly of the NPs within the grafted cells by a blue laser enables their differentiation towards a macrophage lineage. This macrophage activation seems to have systemic anti-leukemic effect within the BM, with a significant reduction of leukemic cells in all BM compartments, of animals treated with RA+NPs, when compared with animals treated with empty NPs. In a separate group of experiments, we show for the first time that normal HSCs transfected with RA+NPs show superior engraftment at the BM niche than cells without treatment or treated with empty NPs. This is the first time that the activity of RA is tested in terms of long-term hematopoietic reconstitution after transplant using an in situ activation approach without any exogenous priming or genetic conditioning of the transplanted cells. Overall, the approach documented here has the potential to improve consolidation therapy in AML since it allows a dual intervention in the BM niche: to tackle resistant leukemia and improve HSC engraftment at the same time.
Collapse
Affiliation(s)
- Emanuel Quartin
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Rosa
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Sara Gonzalez-Anton
- Department of Life Sciences, Imperial College London, South Kensington Campus, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Laura Mosteo Lopez
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Vitor Francisco
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Delfim Duarte
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO)-Porto, Porto, Portugal
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, South Kensington Campus, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Ricardo Pires das Neves
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Lino Ferreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-517, Coimbra, Portugal
| |
Collapse
|
17
|
Wang SK, Zhang XT, Jiang XY, Geng BJ, Qing TL, Li L, Chen Y, Li JF, Zhang XF, Xu SG, Zhu JB, Zhu YP, Wang MT, Chen JK. Activation of Piezo1 increases the sensitivity of breast cancer to hyperthermia therapy. Open Med (Wars) 2024; 19:20240898. [PMID: 38463518 PMCID: PMC10921451 DOI: 10.1515/med-2024-0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 03/12/2024] Open
Abstract
Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Shao-Kang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Ting Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xuan-Yao Jiang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bi-Jiang Geng
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Hainan, China
- Heatstroke Treatment and Research Center of PLA, Hainan, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Shuo-Gui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yu-Ping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, No 800, Xiangyin Road, Shanghai, 200433, China
| | - Mei-Tang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
18
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
19
|
Xue K, Zhao Y, Sun S, Li Y, Qi Z. A near-infrared aggregation-induced emission photosensitizer targeting mitochondria for depleting Cu 2+ to trigger light-activated cancer cells oncosis. Bioorg Chem 2024; 143:107020. [PMID: 38176374 DOI: 10.1016/j.bioorg.2023.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yuanhang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
20
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
21
|
Liu J, You Q, Liang F, Ma L, Zhu L, Wang C, Yang Y. Ultrasound-nanovesicles interplay for theranostics. Adv Drug Deliv Rev 2024; 205:115176. [PMID: 38199256 DOI: 10.1016/j.addr.2023.115176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Nanovesicles (NVs) are widely used in the treatment and diagnosis of diseases due to their excellent vascular permeability, good biocompatibility, high loading capacity, and easy functionalization. However, their yield and in vivo penetration depth limitations and their complex preparation processes still constrain their application and development. Ultrasound, as a fundamental external stimulus with deep tissue penetration, concentrated energy sources, and good safety, has been proven to be a patient-friendly and highly efficient strategy to overcome the restrictions of traditional clinical medicine. Recent research has shown that ultrasound can drive the generation of NVs, increase their yield, simplify their preparation process, and provide direct therapeutic effects and intelligent control to enhance the therapeutic effect of NVs. In addition, NVs, as excellent drug carriers, can enhance the targeting efficiency of ultrasound-based sonodynamic therapy or sonogenetic regulation and improve the accuracy of ultrasound imaging. This review provides a detailed introduction to the classification, generation, and modification strategies of NVs, emphasizing the impact of ultrasound on the formation of NVs and summarizing the enhanced treatment and diagnostic effects of NVs combined with ultrasound for various diseases.
Collapse
Affiliation(s)
- Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lilusi Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
23
|
Yang C, Zhang J, Chang M, Tan J, Yuan M, Bian Y, Liu B, Liu Z, Wang M, Ding B, Ma P, Lin J. NIR-Activatable Heterostructured Nanoadjuvant CoP/NiCoP Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy and Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308774. [PMID: 37917791 DOI: 10.1002/adma.202308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
24
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
25
|
Yu SH, Yoon I, Kim YJ. Ex vivo photothermal treatment-induced immunogenic cell death for anticancer vaccine development. Int Immunopharmacol 2024; 127:111450. [PMID: 38157695 DOI: 10.1016/j.intimp.2023.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Photothermal therapy is an anti-cancer strategy that induce cell death by converting light energy into heat energy. During photothermal therapy, cancer cells were treated with photothermal agents, such as indocyanine green, and irradiated with a laser. Heat stress in cancer cells results in cellular death and inflammatory responses. In the present study, we demonstrated how ex vivo photothermal (PT)-treated cells underwent immunogenic cell death. PT treatment caused significant expression of heat shock protein (HSP) 27, HSP70, and HSP90 in murine tumor cells. To evaluate the immunogenicity of heat-stressed cells, lysate from PT-treated tumor cells or water-based heated cells was pulsed to syngeneic bone-marrow-derived dendritic cells (DCs) to generate a DC-based vaccine. Administration with PT-treated tumor lysates-pulsed DC vaccine resulted in significant inhibition of tumor growth in BALB/c and C57BL/6 syngeneic tumor-bearing mice. The immunogenicity of PT-treated cancer cells was reduced in the presence of HSP inhibitors, J2, VER-155008 or 17-AAG. Our study elucidates how PT techniques have distinct mechanisms from water-based heating and might be a potentially robust and efficient solution to developing an anti-cancer vaccine.
Collapse
Affiliation(s)
- Su Hyun Yu
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeon-Jeong Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea; Inje Institute of Pharmaceutical Science and Research, Inje University, Republic of Korea; Smart Marine Therapeutic Center, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea.
| |
Collapse
|
26
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
27
|
Chen Z, Guan M, Bian Y, Yin X. Multifunctional Electrospun Nanofibers for Biosensing and Biomedical Engineering Applications. BIOSENSORS 2023; 14:13. [PMID: 38248390 PMCID: PMC10813457 DOI: 10.3390/bios14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Nanotechnology is experiencing unprecedented developments, leading to the advancement of functional nanomaterials. The properties that stand out include remarkable porosity, high-specific surface area, excellent loading capacity, easy modification, and low cost make electrospun nanofibers. In the biomedical field, especially in biosensors, they exhibit amazing potential. This review introduces the principle of electrospinning, describes several structures and biomaterials of electrospun nanofibers used for biomedicine, and summarizes the applications of this technology in biosensors and other biomedical applications. In addition, the technical challenges and limitations of electrospinning for biomedicine are discussed; however, more research work is needed to elucidate its full potential.
Collapse
Affiliation(s)
- Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China; (M.G.); (Y.B.); (X.Y.)
| | | | | | | |
Collapse
|
28
|
Raza F, Zafar H, Jiang L, Su J, Yuan W, Qiu M, Paiva-Santos AC. Progress of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. Biomater Sci 2023; 12:57-91. [PMID: 37902579 DOI: 10.1039/d3bm01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In recent years, considerable attention has been given to phototherapy, including photothermal and photodynamic therapy to kill tumor cells by producing heat or reactive oxygen species (ROS). It has the high merits of noninvasiveness and limited drug resistance. To fully utilize this therapy, an extraordinary nanovehicle is required to target phototherapeutic agents in the tumor cells. Nanovesicles embody an ideal strategy for drug delivery applications. Cell membrane-derived biomimetic nanovesicles represent a developing type of nanocarrier. Combining this technique with cancer phototherapy could enable a novel strategy. Herein, efforts are made to describe a comprehensive overview of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. The description in this review is mainly based on representative examples of exosome-derived biomimetic nanomedicine research, ranging from their comparison with traditional nanocarriers to extensive applications in cancer phototherapy. Additionally, the challenges and future prospectives for translating these for clinical application are discussed.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Liangdi Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Weien Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
29
|
Ren L, Jiang C, Zhang Y, Li M, Zhang Y, Shi X, Wang Q, Zhang S, Song X. Construction of a Near-Infrared Photoswitched Nanomachine Powered by an Endogenous Trigger for Activatable Imaging of Intracellular MicroRNA and Amplified Photodynamic Therapy for Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044636 DOI: 10.1021/acsami.3c14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA nanomachines could initiate the cascade reaction in an autonomous mode under the drive of triggers, which achieve the signal amplification for the bioimaging of intracellular biomarkers. Compared with the "always-on" nanomachine that possibly produces false-positive signals, a controllable nanomachine with the on-site activation could be better for accurate tumor imaging and precise tumor therapy. Till now, the endogenous and exogenous triggers have been developed to design the controllable nanosensors. However, their combinations to develop feasible DNA nanomachines have been rarely studied. Herein, we constructed a near-infrared (NIR)-light-controlled DNA nanomachine that was first activated by the NIR light and then induced a target-triggered amplification process under the drive of an endogenous stimulus. Owing to adenosine-5'-triphosphate (ATP) having much higher concentration in cancer cells than that in healthy cells and the extracellular fluid, the obtained DNA nanomachine was selectively activated in cancer cells with inhibited interference signals from the surrounding healthy tissues. With obvious advantages including the exogenous NIR light initiation, the selective activation by the target microRNA, and the sensitive acceleration by the ATP-induced strand recycling reaction, the constructed nanomachine could be used to image the intracellular microRNA with increased sensitivity. Besides, after modifying the DNA sequence with the photosensitizer molecules, the obtained nanomachine could perform the selective photodynamic therapy on the tumor sections with the outstandingly decreased side effects. Thus, we hope the designed nanomachine could provide some important hints to design feasible nanomachines for accurate tumor diagnosis and precise tumor therapy.
Collapse
Affiliation(s)
- Linlin Ren
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Chengfang Jiang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yuqi Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Mengmeng Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xinli Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
30
|
Guo L, Zhao Q, Zheng LW, Wang M. Multifunctional Nanofibrous Scaffolds Capable of Localized Delivery of Theranostic Nanoparticles for Postoperative Cancer Management. Adv Healthc Mater 2023; 12:e2302484. [PMID: 37702133 DOI: 10.1002/adhm.202302484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 09/14/2023]
Abstract
Postoperative recovery of cancer patients can be affected by complications, such as tissue dysfunction or disability caused by tissue resection, and also cancer recurrence resulting from residual cancer cells. Despite impressive progress made for tissue engineering scaffolds that assist tissue regeneration for postoperative cancer patients, the majority of existing tissue engineering scaffolds still lack functions for monitoring and killing residual cancer cells, if there are any, upon their detection. In this study, multifunctional scaffolds that comprise biodegradable nanofibers and core-shell structured microspheres encapsulated with theranostic nanoparticles (NPs) are developed. The multifunctional scaffolds possess an extracellular matrix-like nanofibrous architecture and soft tissue-like mechanical properties, making them excellent tissue engineering patch candidates for assisting in the repair and regeneration of tissues at the cancerous sites after surgery. Furthermore, they are capable of localized delivery of theranostic NPs upon quick degradation of core-shell structured microspheres that contain theranostic NPs. Leveraging on folic acid-mediated ligand-receptor binding, surface-enhanced Raman scattering activity, and near-infrared-responsive photothermal effect of the theranostic gold NPs (AuNPs) delivered locally, the multifunctional scaffolds display excellent active targeting, diagnosis, and photothermal therapy functions for cancer cells, showing great promise for adaptive postoperative cancer management.
Collapse
Affiliation(s)
- Lin Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Qilong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Li-Wu Zheng
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
31
|
Guo X, Li L, Jia W, Zhang C, Ren W, Liu C, Tang Y. Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37975246 DOI: 10.1021/acsami.3c12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Phototherapies such as photodynamic therapy (PDT) and photothermal therapy (PTT) have attracted great attention in the field of cancer treatment. However, the individual PDT or PTT makes it difficult to achieve optimal antitumor effects compared to the PDT/PTT combined therapy. Also, the effect of PDT is usually limited by the penetration depth of the UV-vis light source. Herein, we designed and synthesized novel composite nanoparticles UCNPs-CPs, which are constructed from two conjugated polymers and upconversion nanoparticles β-NaYF4:Yb,Tm (UCNPs) via a coordination reaction. By virtue of the excellent spectral overlap between absorption of conjugated polymers and emission of UCNPs, the UCNPs can absorb NIR light and effectively excite conjugated polymers by energy transfer to produce massive reactive oxygen species under 980 nm excitation and heat energy under 808 nm laser irradiation, achieving photodynamic/photothermal synergistic therapy. The in vitro cellular investigation proves that the dual modal phototherapy exhibits enhanced antitumor ability compared to single PDT or PTT. Furthermore, UCNPs-CPs inhibit tumor growth 100% in a 4T1 breast tumor mice model with both NIR laser irradiation, indicating that UCNPs-CPs is an excellent platform for synergistic PDT/PTT treatment. Thus, this study provides a promising strategy for NIR-triggered dual modal phototherapy.
Collapse
Affiliation(s)
- Xueyuan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ling Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wenhua Jia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chen Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
32
|
Mi J, Cui D, Zhang Z, Mu G, Shi Y. NIR-II femtosecond laser ignites MXene as photoacoustic bomb for continuous high-precision tumor blasting. NANOSCALE 2023; 15:16539-16551. [PMID: 37791688 DOI: 10.1039/d3nr03665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recently, photoacoustic (PA) cavitation-mediated therapy has become the focus of research owing to its advantage of inhibiting drug or radiation resistance; however, its application is limited because it relies on nanodroplets with one-time action. Herein, we demonstrate a femtosecond-laser-pumped ultrafast PA cavitation technique for highly efficient shockwave theranostics using niobium carbide (Nb2C) coated with polyvinylpyrrolidone-40000 (PVP), producing sustainable PA cavitation with non-phase-change nanoprobes, which effectively gets rid of the dependence on nanodroplets, guaranteeing multiple treatments. Under femtosecond (fs) laser irradiation, given that the thermal confinement regime could be well satisfied, the Nb2C-PVP nanosheets (NSs) were quickly heated, forming localized overheated nanospots with the temperature exceeding the phase-transition threshold of the surroundings, leading to precise cavitation and explosion at the tumor sites. The experiments at the cellular level showed the significant anti-tumor effects of this method. Notably, the mouse model experiments showed a relative tumor volume inhibition rate of more than 90%, demonstrating the high precision and good efficacy of the proposed anti-tumor method. This method provides a sustainable and highly effective strategy for PA theranostics, indicating its great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Mi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Dandan Cui
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Gen Mu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
33
|
Hu B, Gao J, Lu Y, Wang Y. Applications of Degradable Hydrogels in Novel Approaches to Disease Treatment and New Modes of Drug Delivery. Pharmaceutics 2023; 15:2370. [PMID: 37896132 PMCID: PMC10610366 DOI: 10.3390/pharmaceutics15102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels are particularly suitable materials for loading drug delivery agents; their high water content provides a biocompatible environment for most biomolecules, and their cross-linked nature protects the loaded agents from damage. During delivery, the delivered substance usually needs to be released gradually over time, which can be achieved by degradable cross-linked chains. In recent years, biodegradable hydrogels have become a promising technology in new methods of disease treatment and drug delivery methods due to their many advantageous properties. This review briefly discusses the degradation mechanisms of different types of biodegradable hydrogel systems and introduces the specific applications of degradable hydrogels in several new methods of disease treatment and drug delivery methods.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Jinyuan Gao
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
34
|
Iwase H, Akamatsu M, Inamura Y, Sakaguchi Y, Kobayashi K, Sakai H. Time-Resolved Structural Analysis of Fast-Photoresponsive Surfactant Micelles by Stroboscopic Small-Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12357-12364. [PMID: 37610076 DOI: 10.1021/acs.langmuir.3c01456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Photoresponsive materials are garnering attention because of their applications toward building a sustainable society. A recently developed fast-photoresponsive amphiphilic lophine dimer (3TEG-LPD) responds rapidly to light, making it a promising candidate for drug-delivery systems. In this study, the mechanism of structural changes induced by ultraviolet (UV) irradiation in 3TEG-LPD micelles in an aqueous solution was investigated via an in situ time-resolved small-angle neutron scattering (SANS) technique. Since subsecond resolution was necessary to observe the structural changes in the 3TEG-LPD micelles, stroboscopic SANS analysis was employed to obtain scattering profiles with a time width of 0.5 s. The structural parameters were quantitatively determined by performing a model-fitting analysis of the SANS results. The stroboscopic SANS results showed that upon UV irradiation, the axial ratio and pseudo-aggregation number of the 3TEG-LPD micelles increased by 1.8 and 1.6 times, respectively, whereas the number of water molecules per surfactant molecule decreased. This finding suggested that the change in the shape of the micelles from spherical to ellipsoidal shape was accompanied by dehydration. Under the present UV irradiation conditions, this structural change of the micelle occurred rapidly during the first 30 s after the start of UV irradiation. Each structural parameter recovered exponentially and reversibly during the recovery process after the cessation of UV irradiation. The changes in these parameters were analyzed in terms of kinetics by comparing them with the changes in the molecular structure. We found that the change of the micelles proceeds approximately twice as fast as the association of the molecule. Furthermore, from the perspective of the critical packing parameter consideration, the SANS analysis revealed that the UV-induced changes in 3TEG-LPD micelles are dominated by the enthalpy contribution. This finding is expected to be useful for developing new materials for various applications.
Collapse
Affiliation(s)
- Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8552, Japan
| | - Yasuhiro Inamura
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Yoshifumi Sakaguchi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kazuki Kobayashi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
35
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
36
|
Zhao Y, Wang Y, Wang X, Qi R, Yuan H. Recent Progress of Photothermal Therapy Based on Conjugated Nanomaterials in Combating Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2269. [PMID: 37570588 PMCID: PMC10421263 DOI: 10.3390/nano13152269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to the choice of photothermal agent. Conjugated nanomaterials are potential candidates for photothermal agents because of their easy modification, excellent photothermal conversion efficiency, good photostability, and biodegradability. In this paper, the application of photothermal agents based on conjugated nanomaterials in photothermal antimicrobial treatment is reviewed, including conjugated small molecules, conjugated oligomers, conjugated polymers, and pseudo-conjugated polymers. At the same time, the application of conjugated nanomaterials in the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) is briefly introduced. Finally, the research status, limitations, and prospects of photothermal therapy using conjugated nanomaterials as photothermal agents are discussed.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
37
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
38
|
Xia HY, Li BY, Kankala RK, Chen AZ, Wang SB. Hybrid nanoarchitectonics of molybdenum dioxide (MoO 2) and doxorubicin (DOX) for synergistic chemo-photothermal-based breast carcinoma therapy. Colloids Surf B Biointerfaces 2023; 227:113387. [PMID: 37285669 DOI: 10.1016/j.colsurfb.2023.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Cancer has emerged as one of the severe ailments due to the uncontrolled proliferation rate of cells, accounting for millions of deaths annually. Despite the availability of various treatment strategies, including surgical interventions, radiation, and chemotherapy, tremendous advancements in the past two decades of research have evidenced the generation of different nanotherapeutic designs toward providing synergistic therapy. In this study, we demonstrate the assembly of a versatile nanoplatform based on the hyaluronic acid (HA)-coated molybdenum dioxide (MoO2) assemblies to act against breast carcinoma. The hydrothermal approach-assisted MoO2 constructs are immobilized with doxorubicin (DOX) molecules on the surface. Further, these MoO2-DOX hybrids are encapsulated with the HA polymeric framework. Furthermore, the versatile nanocomposites of HA-coated MoO2-DOX hybrids are systematically characterized using various characterization techniques, and explored biocompatibility in the mouse fibroblasts (L929 cell line), as well as synergistic photothermal (808-nm laser irradiation for 10 min, 1 W/cm2) and chemotherapeutic properties against breast carcinoma (4T1 cells). Finally, the mechanistic views concerning the apoptosis rate are explored using the JC-1 assay to measure the intracellular mitochondrial membrane potential (MMP) levels. In conclusion, these findings indicated excellent photothermal and chemotherapeutic efficacies, exploring the enormous potential of MoO2 composites against breast cancer.
Collapse
Affiliation(s)
- Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Bo-Yi Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, PR China.
| |
Collapse
|
39
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
40
|
Cheng F, Huang QF, Li YH, Huang ZJ, Wu QX, Wang W, Liu Y, Wang GH. Combined chemo and photo therapy of programmable prodrug carriers to overcome delivery barriers against nasopharyngeal carcinoma. BIOMATERIALS ADVANCES 2023; 151:213451. [PMID: 37150081 DOI: 10.1016/j.bioadv.2023.213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.
Collapse
Affiliation(s)
- Fan Cheng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zeng-Jin Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Quan-Xin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wei Wang
- Scientific Research Service Center, Guangdong Medical University, Dongguan 523808, China
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yet-Sen University, Guangzhou 510275, China.
| |
Collapse
|
41
|
Preparation Janus membrane via polytetrafluoroethylene membrane modification for enhanced performance of vacuum membrane distillation desalination. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
42
|
Jo G, Park Y, Park MH, Hyun H. Near-Infrared Fluorescent Hydroxyapatite Nanoparticles for Targeted Photothermal Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051374. [PMID: 37242617 DOI: 10.3390/pharmaceutics15051374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Near-infrared (NIR) fluorophores have attracted great attention due to their excellent optical and photothermal properties. Among them, a bone-targeted NIR fluorophore (named P800SO3) contains two phosphonate groups, which play important roles in binding with hydroxyapatite (HAP) as the main mineral component of bones. In this study, biocompatible and NIR fluorescent HAP nanoparticles functionalized with P800SO3 and polyethylene glycol (PEG) were readily prepared for tumor-targeted imaging and photothermal therapy (PTT). The PEGylated HAP nanoparticle (HAP800-PEG) demonstrated improved tumor targetability with high tumor-to-background ratios (TBR). Moreover, the HAP800-PEG also showed excellent photothermal properties, and the temperature of tumor tissue reached 52.3 °C under NIR laser irradiation, which could completely ablate the tumor tissue without recurrence. Therefore, this new type of HAP nanoparticle has great potential as a biocompatible and effective phototheranostic material, which enables the use of P800SO3 for targeted photothermal cancer treatment.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
43
|
Guan SX, Xu T, Zhang JY, Luo YG, Zhai X, Zhang N, Fang YZ, Ke QF. Cu-MOFs based photocatalyst triggered antibacterial platform for wound healing: 2D/2D Schottky junction and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131531. [PMID: 37146334 DOI: 10.1016/j.jhazmat.2023.131531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Herein, we developed a multimodal antibacterial nanoplatform via synergism effect including knife-effect, photothermal, photocatalytic induced reactive oxygen species (ROS), and Cu2+ inherent attribute. Typically, 0.8-TC/Cu-NS possesses higher photothermal property with the higher photothermal conversion efficiency of 24% and the moderate temperature up to 97 °C. Meanwhile, 0.8-TC/Cu-NS exhibits the more active ROS, 1O2 and ·O2-. Hence, 0.8-TC/Cu-NS possesses best antibacterial properties against S. aureus and E. coli in vitro with efficiency of 99.94%/99.97% under near-infrared (NIR) light, respectively. In the therapeutic practical use for wound healing of Kunming mice, this system exhibits outstanding curing capacity and good biocompatibility. Based on the electron configuration measurement and density functional theory (DFT) simulation, it is confirmed that the electrons on CB of Cu-TCPP flow fleetingly to MXene trough the interface, with redistribution of charge and band upward bending over Cu-TCPP. As a result, the self-assembled 2D/2D interfacial Schottky junction have made great favor to accelerate photogenerated charges mobility, hamper charge recombination, and increases the photothermal/photocatalytic activity. This work gives us a hint to mostly design the multimodal synergistic nanoplatform under NIR light in biological applications without drug resistance.
Collapse
Affiliation(s)
- Shi-Xian Guan
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Tao Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jian-Yong Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - You-Guo Luo
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xingwu Zhai
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Yong-Zheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai 200235, PR China.
| | - Qin-Fei Ke
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
44
|
Costa FJP, Nave M, Lima-Sousa R, Alves CG, Melo BL, Correia IJ, de Melo-Diogo D. Development of Thiol-Maleimide hydrogels incorporating graphene-based nanomaterials for cancer chemo-photothermal therapy. Int J Pharm 2023; 635:122713. [PMID: 36764414 DOI: 10.1016/j.ijpharm.2023.122713] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue. Particularly, hydrogels assembled using Thiol-Maleimide Michael type additions are emerging for this purpose due to their capacity to incorporate high nanoparticles' doses in a compact 3D structure as well as good chemical selectivity, biocompatibility, and straightforward preparation. Nevertheless, such hydrogels have been mostly prepared using synthetic polymers, which is not ideal due to their poor biodegradability. In this work, a novel natural polymer-based Thiol-Maleimide hydrogel was produced for application in breast cancer chemo-photothermal therapy. To obtain natural polymers compatible with this crosslinking chemistry, Hyaluronic acid was endowed with Thiol groups and deacetylated Chitosan was grafted with Maleimide groups. Parallelly, Doxorubicin loaded Dopamine-reduced graphene oxide (DOX/DOPA-rGO) was prepared for attaining Near Infrared (NIR) light responsive chemo-photothermal nanoagents. By simply mixing Hyaluronic Acid-Thiol, deacetylated Chitosan-Maleimide and DOX/DOPA-rGO, Thiol-Maleimide crosslinked hydrogels incorporating this nanomaterial could be assembled (DOX/DOPA-rGO@TMgel). When breast cancer cells were incubated with DOPA-rGO@TMgel and exposed to NIR light (photothermal therapy), their viability was reduced to about 59 %. On the other hand, DOX/DOPA-rGO@TMgel (chemotherapy) reduced cancer cells' viability to 50 %. In stark contrast, the combined action of DOX/DOPA-rGO@TMgel and NIR light decreased breast cancer cells' viability to just 21 %, highlighting its chemo-photothermal potential.
Collapse
Affiliation(s)
- Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
45
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
46
|
Wu Z, Wang J, Zhao L, Li C, Lu Y. A novel donor-acceptor structured diketopyrrolopyrrole-based conjugated polymer synthesized by direct arylation polycondensation (DArP) for highly efficient antimicrobial photothermal therapy. Biomater Sci 2023; 11:2151-2157. [PMID: 36729407 DOI: 10.1039/d2bm02024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel donor (D)-acceptor (A) structured conjugated polymer (PDPP-TP), which contains two alternating D-A pairs, namely thiophene (T)-diketopyrrolopyrrole (DPP) and thiophenen (T)-thieno[3,4-b]pyrazine (TP) along the main chain of the polymer, was synthesized by direct arylation polycondensation (DArP) for a highly efficient photothermal antibacterial treatment. The hydrophilic PDPP-TP-based nanoparticles (PTNPs) with a hydration diameter of about 120 nm were obtained by self-assembly using DSPE-mPEG2000 as the polymer matrix. PTNPs show strong near-infrared (NIR) absorbance with a λmax at 910 nm (ε = 2.25 × 104 L mol-1 cm-1) and NIR light-triggered photoactivity with a high photothermal conversion efficiency (PTCE) of 52.8% under 880 nm laser irradiation. Keeping the merits of excellent biocompatibility and photostability, PTNPs exhibited remarkable bacterial inhibition efficiency of almost 100% against Gram-negative E. coli and Gram-positive S. aureus with the help of an 880 nm laser (0.7 W cm-2, 6 min), demonstrating its great potential as photothermal materials with a broad spectrum of activity for the effective treatment of microbial infections.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
47
|
Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, Chen HY, Xu JJ. Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy. Angew Chem Int Ed Engl 2023; 62:e202213922. [PMID: 36585379 DOI: 10.1002/anie.202213922] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Xiang-Ling Li
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Bin K Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
48
|
Patel M, Corbett AL, Vardhan A, Jeon K, Andoy NMO, Sullan RMA. Laser-responsive sequential delivery of multiple antimicrobials using nanocomposite hydrogels. Biomater Sci 2023; 11:2330-2335. [PMID: 36892433 DOI: 10.1039/d2bm01471h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Precise control of antimicrobial delivery can prevent the adverse effects of antibiotics. By exploiting the photothermal activity of polydopamine nanoparticles along with the distinct transition temperatures of liposomes, a near-infrared (NIR) laser can be used to control the sequential delivery of an antibiotic and its adjuvant from a nanocomposite hydrogel-preventing bacterial growth.
Collapse
Affiliation(s)
- Meera Patel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Alexander L Corbett
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Aarushi Vardhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Keuna Jeon
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
49
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
50
|
Musaie K, Abbaszadeh S, Nosrati-Siahmazgi V, Qahremani M, Wang S, Eskandari MR, Niknezhad SV, Haghi F, Li Y, Xiao B, Shahbazi MA. Metal-coordination synthesis of a natural injectable photoactive hydrogel with antibacterial and blood-aggregating functions for cancer thermotherapy and mild-heating wound repair. Biomater Sci 2023; 11:2486-2503. [PMID: 36779258 DOI: 10.1039/d2bm01965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel. Herein, Bi2S3 nanorods (NRs) are employed as a photothermal agent and coated with hyaluronic acid to obtain BiH NRs with high colloidal stability. These NRs and allantoin are loaded into an injectable Fe3+-coordinated hydrogel composed of sodium alginate (Alg) and Farsi gum (FG), which is extracted from Amygdalus scoparia Spach. The hydrogel can be used for localized cancer therapy by high-temperature PTT, followed by wound repair through the combination of mild hyperthermia and allantoin-mediated induction of cell proliferation. In addition, an outstanding blood clotting effect is observed due to the water-absorbing ability and negative charge of FG and Alg as well as the porous structure of hydrogels. The hydrogels also eradicate infection owing to the local heat generation and intrinsic antimicrobial activity of the NRs. Lastly, in vivo studies reveal an efficient photothermal-based tumor eradication and accelerated wound healing by the hydrogel.
Collapse
Affiliation(s)
- Kiyan Musaie
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P.R. China
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Seyyed Vahid Niknezhad
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA 1, USA
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715 China.
| | - Mohammad-Ali Shahbazi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.,Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands. .,W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|