1
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2025; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
2
|
Benseghir Y, Tsang MY, Schöfbeck F, Hetey D, Kitao T, Uemura T, Shiozawa H, Reithofer MR, Chin JM. Electric-field assisted spatioselective deposition of MIL-101(Cr) PEDOT to enhance electrical conductivity and humidity sensing performance. J Colloid Interface Sci 2025; 678:979-986. [PMID: 39226838 DOI: 10.1016/j.jcis.2024.08.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.
Collapse
Affiliation(s)
- Youven Benseghir
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Min Ying Tsang
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Flora Schöfbeck
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Daniel Hetey
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidetsugu Shiozawa
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jia Min Chin
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Yadav A, Gładysiak A, Song AY, Gan L, Simons CR, Alghoraibi NM, Alahmed AH, Younes M, Reimer JA, Huang H, Planas JG, Stylianou KC. Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture. JACS AU 2024; 4:4833-4843. [PMID: 39735925 PMCID: PMC11672129 DOI: 10.1021/jacsau.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
The capture of carbon dioxide (CO2) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called m CBMOF-1. After activation, m CBMOF-1 generates one-dimensional channels with square cross sections, featuring sets of four Cu(II) open metal sites spaced by 6.042 Å, allowing strong interactions with coordinating molecules. To investigate this capability, m CBMOF-1 was exposed to ammonia (NH3) gas, resulting in hysteretic NH3 isotherms indicative of strong interactions between Cu(II) and NH3. At 150 mbar and 298 K, the NH3-loaded (∼1 mmol/g) material exhibited a 106% increase in CO2 uptake compared to that of the pristine m CBMOF-1. Carbon-13 solid-state nuclear magnetic resonance spectra and density functional theory calculations confirmed that the sequential loading of NH3 followed by CO2 adsorption generated a copper-carbamic acid complex within the pores of m CBMOF-1. Our study highlights the effectiveness of sequential pore functionalization in MOFs as an attractive strategy for enhancing the interactions of MOFs with small molecules such as CO2.
Collapse
Affiliation(s)
- Ankit
K. Yadav
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Andrzej Gładysiak
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ah-Young Song
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Lei Gan
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
- School of
Chemistry and Materials Science, Nanjing
Normal University, Nanjing 210023, P. R. China
| | - Casey R. Simons
- Center
for
Advanced Materials Characterization in Oregon, University of Oregon, 1443 E, 13th Ave, Eugene, Oregon 97403, United States
| | - Nawal M. Alghoraibi
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Ammar H. Alahmed
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Mourad Younes
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Hongliang Huang
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, China
| | - José G. Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
| | - Kyriakos C. Stylianou
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
5
|
Carraro F, Aghito M, Dal Zilio S, Wolinski H, Doonan CJ, Nidetzky B, Falcaro P. Magnetically Responsive Enzyme and Hydrogen-Bonded Organic Framework Biocomposites for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407487. [PMID: 39580681 DOI: 10.1002/smll.202407487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 11/26/2024]
Abstract
The one-pot synthesis of multicomponent hydrogen-bonded organic framework (HOF) biocomposites is reported. The co-immoblization of enzymes and magnetic nanoparticles (MNPs) into the HOF crystals yielded biocatalysts (MNPs-enzyme@BioHOF-1) with dynamic localization properties. Using a permanent magnet, it is possible to separate the MNPs-enzyme@BioHOF-1 particles from a solution. Catalase (CAT) and glucose oxidase (GOx) show increased retention of their activity when coimmobilized with MNPs. MNPs-GOx@BioHOF-1 biocomposites are used to prepare a proof-of-concept glucose microfluidic biosensor, where a magnet allow to position and keep in place the biocomposite inside a microfluidic chip. The magnetic response of these biocatalysts can pave the way for new applications for the emerging HOF biocomposites.
Collapse
Affiliation(s)
- Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Margherita Aghito
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Simone Dal Zilio
- Instituto Officina dei Materiali, CNR, Basovizza, Edificio MM-SS, Trieste, 34149, Italy
| | - Heimo Wolinski
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Christian J Doonan
- Department of Chemistry and Centre for Advanced Nanosmaterials, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/1, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| |
Collapse
|
6
|
Jia Q, Yao Y, Zhu X, Wang J, Li Z, Ji L, Hu P. Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules 2024; 29:5602. [PMID: 39683759 DOI: 10.3390/molecules29235602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The design and synthesis of novel lanthanide-based coordination polymers (Ln-CPs) from flexible organic ligands is still attractive and challenging. In this work, two isostructural Ln-CPs with a unique 2D network, namely, [Ln2(H3L)2(DMF)]]n (Ln = Dy for 1, Tb for 2) based on a flexible polycarboxylic acid ligand hexakis(4-carboxylato-phenoxy)cyclotriphosphazene (H6L), have been solvothermally synthesized and structurally characterized. Significantly, it is the first observation of polycarboxylic acid ligands participating in coordination in the construction of coordination polymers in the form of semi-deprotonation. Magnetic measurements showed the presence of field-induced slow magnetic relaxation in complex 1. The luminescence property of 2 had been studied in the solid state at room temperature.
Collapse
Affiliation(s)
- Qi Jia
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yicheng Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaoming Zhu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zeyu Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Liudi Ji
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Peng Hu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Zhou Z, Wang W, Li W, Shao R, Wu X, Siddique A, Liu S, Xu Z. Synchronously Repairing Core/Surface Defects of Carbon Fibers by In Situ Growth of ZIF-8 and Uniquely Matched High-Energy Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53060-53071. [PMID: 39314205 DOI: 10.1021/acsami.4c13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Currently, the actual mechanical properties of carbon fibers (CF) differ significantly from the theoretical values. This is primarily attributed to significant limitations imposed by structural defects, greatly hindering the widespread application of CF. To solve this problem, we used in situ growth of zeolitic imidazolate framework-8 (ZIF-8) and γ rays to modulate the core-shell of CF in this study. For the surface structure of CF during the process of γ irradiation, the organic structure within ZIF-8 gradually degrades and forms a cross-linking structure with the surface defects of the CF. This process significantly enhances the binding strength between inorganic material from the postdecomposition of ZIF-8 and the carbon layer on the surface of CF, repairing the surface defects. For the internal structure of CF, γ irradiation can improve the orientation of the internal micropores of CF and increase the degree of internal graphitization of CF. In this paper, an in-depth analysis of CF before and after repair was conducted by using characterization techniques such as nanoindentation and ultrasmall angle X-ray scattering (USAXS). Compared to unmodified CF, its mechanical properties improved by approximately 19.99%, which exceeds that in approximately 95% of similar works in the field.
Collapse
Affiliation(s)
- Zhidong Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenli Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ruiqi Shao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xianyan Wu
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
| | - Amna Siddique
- Department of Textile Technology, National Textile University, Sheikhupura Road, 37610 Faisalabad, Pakistan
| | - Shengkai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
8
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
9
|
Allegretto JA, Dostalek J. Metal-Organic Frameworks in Surface Enhanced Raman Spectroscopy-Based Analysis of Volatile Organic Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401437. [PMID: 38868917 PMCID: PMC11321619 DOI: 10.1002/advs.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Volatile Organic Compounds (VOC) are a major class of environmental pollutants hazardous to human health, but also highly relevant in other fields including early disease diagnostics and organoleptic perception of aliments. Therefore, accurate analysis of VOC is essential, and a need for new analytical methods is witnessed for rapid on-site detection without complex sample preparation. Surface-Enhanced Raman Spectroscopy (SERS) offers a rapidly developing versatile analytical platform for the portable detection of chemical species. Nonetheless, the need for efficient docking of target analytes at the metallic surface significantly narrows the applicability of SERS. This limitation can be circumvented by interfacing the sensor surface with Metal-Organic Frameworks (MOF). These materials featuring chemical and structural versatility can efficiently pre-concentrate low molecular weight species such as VOC through their ordered porous structure. This review presents recent trends in the development of MOF-based SERS substrates with a focus on elucidating respective design rules for maximizing analytical performance. An overview of the status of the detection of harmful VOC is discussed in the context of industrial and environmental monitoring. In addition, a survey of the analysis of VOC biomarkers for medical diagnosis and emerging applications in aroma and flavor profiling is included.
Collapse
Affiliation(s)
- Juan A. Allegretto
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
| | - Jakub Dostalek
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and DentistryDanube Private UniversityKrems3500Austria
- FZU‐Institute of PhysicsCzech Academy of SciencesNa Slovance 2Prague82021Czech Republic
| |
Collapse
|
10
|
Koseki Y, Okada K, Hashimoto S, Hirouchi S, Fukatsu A, Takahashi M. Improved optical quality of heteroepitaxially grown metal-organic framework thin films by modulating the crystal growth. NANOSCALE 2024; 16:14101-14107. [PMID: 39007332 DOI: 10.1039/d4nr01885k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fabricating high-quality thin films of metal-organic frameworks (MOFs) is important for integrating MOFs in various applications. Specifically, optical/electrical devices require MOF thin films that are crystallographically oriented, with closely packed crystals and smooth surfaces. Although the heteroepitaxial growth approach of MOFs on metal hydroxides has been demonstrated to control the orientation of the three crystallographic axes, the fabrication of MOF thin films with both three-dimensional crystallographic orientation and smooth surfaces remains a challenge. In this study, we report the fabrication of high-quality thin films of MOFs with closely packed MOF crystals, smooth surfaces, optical transparency, and crystal alignment by modulating the crystal growth of MOFs using the heteroepitaxial growth approach. High-quality thin films of Cu-paddlewheel-based pillar-layered MOFs are fabricated on oriented Cu(OH)2 thin films via epitaxial growth using acetate ions as modulators to control the crystal morphology. Increasing the modulator concentration results in a uniform crystal shape with a relatively long one-dimensional pore direction and uniform heterogeneous nucleation over the entire film. The MOF thin films fabricated using the modulator exhibit high optical transparency. High-quality MOF thin films with dense and flat surfaces will pave the way for integrating MOFs into sophisticated optical and electrical devices.
Collapse
Affiliation(s)
- Yuka Koseki
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Shotaro Hashimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shun Hirouchi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
11
|
Zhan K, Kanj AB, Heinke L. Classification and Identification of Perfume Scents by an Enantioselective Colorimetric Sensor Array of Chiral Metal-Organic-Framework-Based Fabry-Pérot Films. Chemistry 2024; 30:e202400798. [PMID: 38623849 DOI: 10.1002/chem.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Many odors, like perfumes, are complex mixtures of chiral and achiral molecules where the cost-efficient (enantio-)selective sensing represents a major technical challenge. Here, we present a colorimetric sensor array of surface-mounted metal-organic-framework (SURMOF) films in Fabry-Pérot (FP) cavities. The optical properties of the FP-SURMOF films with different chiral and achiral structures are affected by the (enantio-)selective adsorption of the analytes in the SURMOF pores, resulting in different responses to the analyte molecules. The read-out of the sensor array is performed by the digital camera of a common smartphone, where the RGB values are determined. By analyzing the sensor array data with simple machine learning algorithms, the analytes are discriminated. After demonstrating the enantioselective response for a pair of pure chiral odor molecules, we apply the sensor array to detect and discriminate a large number (16) of common commercial perfumes and eau de toilettes. While our untrained human nose is not able to discriminate all perfumes, the presented colorimetric sensor array can classify all perfumes with great classification accuracy. Moreover, the sensor array was used to identify unlabeled samples correctly. We foresee such an FP-chiral-SURMOF-based sensor array as a powerful approach toward inexpensive selective odors sensing applications.
Collapse
Affiliation(s)
- Kuo Zhan
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, China
| | - Anemar Bruno Kanj
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
13
|
Yamaguchi S, Tsunekawa I, Furuta M, Anilkumar C, Liao Y, Shiga T, Kodama T, Shiomi J. Anisotropic Thermal Conductivity Enhancement of the Aligned Metal-Organic Framework under Water Vapor Adsorption. J Phys Chem Lett 2024; 15:6628-6633. [PMID: 38888265 DOI: 10.1021/acs.jpclett.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Metal-organic frameworks (MOFs) exhibit high adsorption and catalytic activities for various gas species. Because gas adsorption can cause a temperature increase in the MOF, which decreases the capacity and adsorption rate, a strict evaluation of its effect on the thermal conductivity of MOFs is essential. In this study, the thermal conductivity measurement of the MOF under water vapor adsorption was performed using an oriented film of copper tetrakis(4-carboxyphenyl)porphyrin (Cu-TCPP) MOF. A recently developed bidirectional 3ω method enabled the anisotropic thermal conductivity measurement of layered Cu-TCPP while maintaining its ordered structure. The water adsorption was found to increase the thermal conductivity in both in-plane and cross-plane directions with different trends and magnitudes, owing to the structural anisotropy. Molecular dynamics simulations suggest that additional vibrational modes provided by the adsorbed water molecules were the reason for the thermal conductivity enhancement.
Collapse
Affiliation(s)
- Shingi Yamaguchi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Issei Tsunekawa
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makito Furuta
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chirag Anilkumar
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuxuan Liao
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuma Shiga
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kodama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Likhonina AE, Mamardashvili GM, Mamardashvili NZ. Synthesis and Design of Metalloporphyrin Oligomers with Temperature-Assisted Spectral-Luminescent Properties. RUSS J INORG CHEM+ 2024. [DOI: 10.1134/s0036023624600138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 12/16/2024]
|
15
|
Araújo-Cordero AM, Caddeo F, Mahmoudi B, Bron M, Wouter Maijenburg A. Direct Electrochemical Synthesis of Metal-Organic Frameworks: Cu 3 (BTC) 2 and Cu(TCPP) on Copper Thin films and Copper-Based Microstructures. Chempluschem 2024; 89:e202300378. [PMID: 37997644 DOI: 10.1002/cplu.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Cu thin films and Cu2 O microstructures were partially converted to the Metal-Organic Frameworks (MOFs) Cu3 (BTC)2 or Cu(TCPP) using an electrochemical process with a higher control and at milder conditions compared to the traditional solvothermal MOF synthesis. Initially, either a Cu thin film was sputtered, or different kinds of Cu or Cu2 O microstructures were electrochemically deposited onto a conductive ITO glass substrate. Then, these Cu thin films or Cu-based microstructures were subsequently coated with a thin layer of either Cu3 (BTC)2 or Cu(TCPP) by controlled anodic dissolution of the Cu-based substrate at room temperature and in the presence of the desired organic linker molecules: 1,3,5-benzenetricarboxylic acid (BTC) or photoactive 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP) in the electrolyte. An increase in size of the Cu micro cubes with exposed planes [100] of 38,7 % for the Cu2 O@Cu3 (BTC)2 and a 68,9 % increase for the Cu2 O@Cu(TCPP) was roughly estimated. Finally, XRD, Raman spectroscopy and UV-vis absorption spectroscopy were used to characterize the initial Cu films or Cu-based microstructures, and the obtained core-shell Cu2 O@Cu(BTC) and Cu2 O@Cu(TCPP) microstructures.
Collapse
Affiliation(s)
- Ana María Araújo-Cordero
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
- Institut für Chemie, Technische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Francesco Caddeo
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
- Institute for Nanostructures and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Bld. 600, Room 2.59, 22761, Hamburg, Germany
| | - Behzad Mahmoudi
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
| | - Michael Bron
- Institut für Chemie, Technische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - A Wouter Maijenburg
- Center for Innovation Competence SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle, Germany
| |
Collapse
|
16
|
Rubio-Giménez V, Carraro F, Hofer S, Fratschko M, Stassin T, Rodríguez-Hermida S, Schrode B, Barba L, Resel R, Falcaro P, Ameloot R. Polymorphism and orientation control of copper-dicarboxylate metal-organic framework thin films through vapour- and liquid-phase growth. CrystEngComm 2024; 26:1071-1076. [PMID: 38384732 PMCID: PMC10877460 DOI: 10.1039/d3ce01296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Sebastian Hofer
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Mario Fratschko
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sabina Rodríguez-Hermida
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Benedikt Schrode
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Luisa Barba
- Istituto di Cristallografia - Sincrotrone Elettra, Consiglio Nazionale delle Ricerche Area Science Park 34142 Basovizza Italy
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
17
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
18
|
Mutlu S, Ortaç B, Ozbey DH, Durgun E, Savaskan Yılmaz S, Arsu N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers (Basel) 2024; 16:217. [PMID: 38257016 PMCID: PMC10820686 DOI: 10.3390/polym16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Saliha Mutlu
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Bülend Ortaç
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Dogukan Hazar Ozbey
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Engin Durgun
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Sevil Savaskan Yılmaz
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| |
Collapse
|
19
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
20
|
Brandner LA, Linares-Moreau M, Zhou G, Amenitsch H, Dal Zilio S, Huang Z, Doonan C, Falcaro P. Water sensitivity of heteroepitaxial Cu-MOF films: dissolution and re-crystallization of 3D-oriented MOF superstructures. Chem Sci 2023; 14:12056-12067. [PMID: 37969597 PMCID: PMC10631222 DOI: 10.1039/d3sc04135b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
3D-oriented metal-organic framework (MOF) films and patterns have recently emerged as promising platforms for sensing and photonic applications. These oriented polycrystalline materials are typically prepared by heteroepitaxial growth from aligned inorganic nanostructures and display anisotropic functional properties, such as guest molecule alignment and polarized fluorescence. However, to identify suitable conditions for the integration of these 3D-oriented MOF superstructures into functional devices, the effect of water (gaseous and liquid) on different frameworks should be determined. We note that the hydrolytic stability of these heteroepitaxially grown MOF films is currently unexplored. In this work, we present an in-depth analysis of the structural evolution of aligned 2D and 3D Cu-based MOFs grown from Cu(OH)2 coatings. Specifically, 3D-oriented Cu2L2 and Cu2L2DABCO films (L = 1,4-benzenedicarboxylate, BDC; biphenyl-4,4-dicarboxylate, BPDC; DABCO = 1,4-diazabicyclo[2.2.2]octane) were exposed to 50% relative humidity (RH), 80% RH and liquid water. The combined use of X-ray diffraction, infrared spectroscopy, and scanning electron microscopy shows that the sensitivity towards humid environments critically depends on the presence of the DABCO pillar ligand. While oriented films of 2D MOF layers stay intact upon exposure to all levels of humidity, hydrolysis of Cu2L2DABCO is observed. In addition, we report that in environments with high water content, 3D-oriented Cu2(BDC)2DABCO recrystallizes as 3D-oriented Cu2(BDC)2. The heteroepitaxial MOF-to-MOF transformation mechanism was studied with in situ synchrotron experiments, time-resolved AFM measurements, and electron diffraction. These findings provide valuable information on the stability of oriented MOF films for their application in functional devices and highlight the potential for the fabrication of 3D-oriented superstructures via MOF-to-MOF transformations.
Collapse
Affiliation(s)
- Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- CNR-IOM - Istituto Officina dei Materiali SS 14, km 163.5, Basovizza Trieste 34149 Italy
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm SE-106 91 Sweden
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
21
|
Nawaz H, Ibrahim M, Mahmood A, Kotchey GP, Sanchez DV. An efficient synthesis and characterization of La@MOF-808: A promising strategy for effective arsenic ion removal from water. Heliyon 2023; 9:e21572. [PMID: 38028016 PMCID: PMC10665691 DOI: 10.1016/j.heliyon.2023.e21572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Addressing serious waterborne arsenic issues, for the first time, lanthanum-doped MOF-808 (La@MOF-808) has been developed to remove total arsenic (Total As) and arsenite [As(III)] from water. This study involves the solvothermal synthesis of La@MOF-808, its characterization via FTIR, XRD, TGA, and SEM, in which distinct physicochemical attributes were identified, and the adsorption capacity of arsenic ions. The saturated adsorption capacity of La@MOF-808 for Total As and As(III) reached 282.9 mg g-1 and 283.5 mg g-1, as compared to 229.7 mg g-1 and 239.1 mg g-1 for pristine MOF-808, respectively. XRD and ATR-FTIR analyses underscored the central roles of electrostatic interactions and hydroxyl groups in the pollutant adsorption process. The impact of temperature, concentration, pH, and exposure duration times on adsorption performance was thoroughly investigated. The Langmuir model showed the maximum adsorption capacities (qmax) of La@MOF-808 was 307.7 mg g-1 for Total As and 325.7 mg g-1 for As(III), surpassing those of MOF-808 adsorbent, which suggests that monolayer adsorption occurred. Optimal adsorption was observed in a pH range of 2.0-7.0, and thermodynamic studies classified the process as spontaneous and endothermic. The adsorbent retains high capacity across repeated cycles, outperforming many standard adsorbents. Lanthanum doping markedly enhances MOF-808's arsenic removal, underscoring its potential for water treatment.
Collapse
Affiliation(s)
- Hassan Nawaz
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Gregg P. Kotchey
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - David V.P. Sanchez
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
- Mascaro Center for Sustainable Innovation, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| |
Collapse
|
22
|
Yu S, Guo Z, Zhou Y, Li C. Research progress of MOFs/carbon nanocomposites on promoting ORR in microbial fuel cell cathodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93422-93434. [PMID: 37561294 DOI: 10.1007/s11356-023-29169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
With the rapid development of the economy, energy demand is more urgent. Microbial fuel cells (MFCs) have the advantages of non-toxic, safety, and environmental protection, and are considered the ideal choice for the next generation of energy storage equipment. However, the slow kinetics of oxygen reduction reaction (ORR) on MFC air cathodes and the high cost of traditional platinum (Pt) catalysts hinder their practical application, so there is a need to develop efficient, low-cost, and stable electrocatalysts as alternatives. Recently, metal-organic framework (MOFs) has attracted wide attention in electrocatalysis. Electrocatalysts prepared by the nanocomposite of MOFs and carbon nanomaterials have multiple advantages, such as adjustable chemical properties, high specific surface area, and good electrical conductivity, which have been proven to be a promising electrocatalytic material. In this paper, the latest research progress of metal-organic frames (MOFs) and carbon nanocomposites is reviewed, and the preparation methods and modification of MOFs and carbon nanofibers, carbon nanotubes, and graphene composites are introduced, respectively, as well as their applications in MFC cathode. Finally, the main prospects of MOFs/carbon nanocomposite catalysts are put forward.
Collapse
Affiliation(s)
- Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Zhen Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Balloi V, Diaz-Perez MA, Lara-Angulo MA, Villalgordo-Hernández D, Narciso J, Ramos-Fernandez EV, Serrano-Ruiz JC. Metal-Organic Frameworks as Formose Reaction Catalysts with Enhanced Selectivity. Molecules 2023; 28:6095. [PMID: 37630347 PMCID: PMC10458508 DOI: 10.3390/molecules28166095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The formose reaction is an autocatalytic series of aldol condensations that allows one to obtain monosaccharides from formaldehyde. The formose reaction suffers from a lack of selectivity, which hinders practical applications at the industrial level. Over the years, many attempts have been made to overcome this selectivity issue, with modest results. Heterogeneous porous catalysts with acid-base properties, such as Metal-Organic Frameworks (MOFs), can offer advantages compared to homogeneous strong bases (e.g., calcium hydroxide) for increasing the selectivity of this important reaction. For the very first time, four different Zeolite Imidazolate Frameworks are presented in this work as catalysts for the formose reaction in liquid phase, and their catalytic performances were compared with those of the typical homogeneous catalyst (i.e., calcium hydroxide). The heterogeneous nature of the catalysis, the possible contribution of leached metal or linkers to the solution, and the stability of the materials were investigated. The porous structure of these solids and their mild basicity make them suitable for obtaining enhanced selectivity at 30% formaldehyde conversion. Most of the MOFs tested showed low structural stability under reaction conditions, thereby indicating the need to search for new MOF families with higher robustness. However, this important result opens the path for future research on porous heterogeneous basic catalysts for the formose reaction.
Collapse
Affiliation(s)
- Valentina Balloi
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - Manuel Antonio Diaz-Perez
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - Mayra Anabel Lara-Angulo
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| | - David Villalgordo-Hernández
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Javier Narciso
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Enrique V. Ramos-Fernandez
- Laboratory of Advanced Materials, Inorganic Chemistry Department, University Materials Institute of Alicante, University of Alicante, Apartado 99, 03080 Alicante, Spain; (D.V.-H.); (J.N.); (E.V.R.-F.)
| | - Juan Carlos Serrano-Ruiz
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avenida de las Universidades, s/n, 41704 Sevilla, Spain; (V.B.); (M.A.D.-P.); (M.A.L.-A.)
| |
Collapse
|
24
|
Eliwa AS, Hefnawy MA, Medany SS, Deghadi RG, Hosny WM, Mohamed GG. Synthesis and characterization of lead-based metal-organic framework nano-needles for effective water splitting application. Sci Rep 2023; 13:12531. [PMID: 37532800 PMCID: PMC10397286 DOI: 10.1038/s41598-023-39697-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
Metal organic frameworks (MOFs) are a class of porous materials characterized by robust linkages between organic ligands and metal ions. Metal-organic frameworks (MOFs) exhibit significant characteristics such as high porosity, extensive surface area, and exceptional chemical stability, provided the constituent components are meticulously selected. A metal-organic framework (MOF) containing lead and ligands derived from 4-aminobenzoic acid and 2-carboxybenzaldehyde has been synthesized using the sonochemical methodology. The crystals produced were subjected to various analytical techniques such as Fourier-transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), and thermal analysis. The BET analysis yielded results indicating a surface area was found to be 1304.27 m2 g-1. The total pore volume was estimated as 2.13 cm3 g-1 with an average pore size of 4.61 nm., rendering them highly advantageous for a diverse range of practical applications. The activity of the modified Pb-MOF electrode was employed toward water-splitting applications. The electrode reached the current density of 50 mA cm-2 at an overpotential of - 0.6 V (vs. RHE) for hydrogen evolution, and 50 mA cm-2 at an overpotential of 1.7 V (vs. RHE) for oxygen evolution.
Collapse
Affiliation(s)
- Ayman S Eliwa
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem G Deghadi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Wafaa M Hosny
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt.
| |
Collapse
|
25
|
Polash SA, Garlick-Trease K, Pyreddy S, Periasamy S, Bryant G, Shukla R. Amino Acid-Coated Zeolitic Imidazolate Framework for Delivery of Genetic Material in Prostate Cancer Cell. Molecules 2023; 28:4875. [PMID: 37375429 DOI: 10.3390/molecules28124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are currently under progressive development as a tool for non-viral biomolecule delivery. Biomolecules such as proteins, lipids, carbohydrates, and nucleic acids can be encapsulated in MOFs for therapeutic purposes. The favorable physicochemical properties of MOFs make them an attractive choice for delivering a wide range of biomolecules including nucleic acids. Herein, a green fluorescence protein (GFP)-expressing plasmid DNA (pDNA) is used as a representative of a biomolecule to encapsulate within a Zn-based metal-organic framework (MOF) called a zeolitic imidazolate framework (ZIF). The synthesized biocomposites are coated with positively charged amino acids (AA) to understand the effect of surface functionalization on the delivery of pDNA to prostate cancer (PC-3) cells. FTIR and zeta potential confirm the successful preparation of positively charged amino acid-functionalized derivatives of pDNA@ZIF (i.e., pDNA@ZIFAA). Moreover, XRD and SEM data show that the functionalized derivates retain the pristine crystallinity and morphology of pDNA@ZIF. The coated biocomposites provide enhanced uptake of genetic material by PC-3 human prostate cancer cells. The AA-modulated fine-tuning of the surface charge of biocomposites results in better interaction with the cell membrane and enhances cellular uptake. These results suggest that pDNA@ZIFAA can be a promising alternative tool for non-viral gene delivery.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | | | - Suneela Pyreddy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | - Selvakannan Periasamy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
26
|
Eliwa AS, Hefnawy MA, Medany SS, Deghadi RG, Hosny WM, Mohamed GG. Ultrasonic-assisted synthesis of nickel metal-organic framework for efficient urea removal and water splitting applications. SYNTHETIC METALS 2023; 294:117309. [DOI: 10.1016/j.synthmet.2023.117309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
27
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
28
|
Okada K, Mashita R, Fukatsu A, Takahashi M. Polarization-dependent plasmonic heating in epitaxially grown multilayered metal-organic framework thin films embedded with Ag nanoparticles. NANOSCALE ADVANCES 2023; 5:1795-1801. [PMID: 36926578 PMCID: PMC10012874 DOI: 10.1039/d2na00882c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of metal-organic framework (MOF) thin films with various functionalities has paved the way for research into a wide variety of applications. MOF-oriented thin films can exhibit anisotropic functionality in the not only out-of-plane but also in-plane directions, making it possible to utilize MOF thin films for more sophisticated applications. However, the functionality of oriented MOF thin films has not been fully exploited, and finding novel anisotropic functionality in oriented MOF thin films should be cultivated. In the present study, we report the first demonstration of polarization-dependent plasmonic heating in a MOF oriented film embedded with Ag nanoparticles (AgNPs), pioneering an anisotropic optical functionality in MOF thin films. Spherical AgNPs exhibit polarization-dependent plasmon-resonance absorption (anisotropic plasmon damping) when incorporated into an anisotropic lattice of MOFs. The anisotropic plasmon resonance results in a polarization-dependent plasmonic heating behavior; the highest elevated temperature was observed in case the polarization of incident light is parallel to the crystallographic axis of the host MOF lattice favorable for the larger plasmon resonance, resulting in polarization-controlled temperature regulation. Such spatially and polarization selective plasmonic heating offered by the use of oriented MOF thin films as a host can pave the way for applications such as efficient reactivation in MOF thin film sensors, partial catalytic reactions in MOF thin film devices, and soft microrobotics in composites with thermo-responsive materials.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Risa Mashita
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| |
Collapse
|
29
|
Li C, Schopmans H, Langer L, Marschner S, Chandresh A, Bürck J, Tsuchiya Y, Chihaya A, Wenzel W, Bräse S, Kozlowska M, Heinke L. Twisting of Porphyrin by Assembly in a Metal-Organic Framework yielding Chiral Photoconducting Films for Circularly-Polarized-Light Detection. Angew Chem Int Ed Engl 2023; 62:e202217377. [PMID: 36515401 DOI: 10.1002/anie.202217377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
While materials based on organic molecules usually have either superior optoelectronic or superior chiral properties, the combination of both is scarce. Here, a crystalline chiroptical film based on porphyrin with homochiral side groups is presented. While the dissolved molecule has a planar, thus, achiral porphyrin core, upon assembly in a metal-organic framework (MOF) film, the porphyrin core is twisted and chiral. The close packing and the crystalline order of the porphyrin cores in the MOF film also results in excellent optoelectronic properties. By exciting the Soret band of porphyrin, efficient photoconduction with a high On-Off-ratio is realized. More important, handedness-dependent circularly-polarized-light photoconduction with a dissymmetry factor g of 4.3×10-4 is obtained. We foresee the combination of such assembly-induced chirality with the rich porphyrin chemistry will enable a plethora of organic materials with exceptional chiral and optoelectronic properties.
Collapse
Affiliation(s)
- Chun Li
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Henrik Schopmans
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lukas Langer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Stefan Marschner
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPEA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Adachi Chihaya
- Center for Organic Photonics and Electronics Research (OPEA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Herman-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Mariana Kozlowska
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Likhonina AE, Mamardashvili GM, Khodov IA, Mamardashvili NZ. Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine. Polymers (Basel) 2023; 15:1055. [PMID: 36850338 PMCID: PMC9959591 DOI: 10.3390/polym15041055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, and their resistance to UV radiation and changes in solution temperature was studied. It was shown that the investigated polyporphyrin nanostructures are porous materials with predominance cylindrical mesopores. Density functional theory (DFT) was used to geometrically optimize the experimentally obtained supramolecular porphyrin polymers. The sizes of unit cells in porphyrin tubular structures were determined and coincided with the experimental data. The results obtained can be used to create highly porous materials for separation, storage, transportation, and controlled release of substrates of different nature, including highly volatile, explosive, and toxic gases.
Collapse
Affiliation(s)
| | | | | | - Nugzar Z. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St.1P, 153045 Ivanovo, Russia
| |
Collapse
|
31
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Li D, Jia Y, Li Z, Liu L, Wu N, Hu M. Identification of folic acid and sulfaquinoxaline using a heterometallic Zn-Eu MOF as a sensor. Dalton Trans 2023; 52:696-702. [PMID: 36545891 DOI: 10.1039/d2dt03446h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A d-f heterometallic MOF using the 2,2'-bipyridine-4,4'-dicarboxylic acid ligand (H2LZ) was obtained by solvothermal synthesis, namely [EuZn(LZ)2(HCOO)(H2O)3]n (1). The structure analysis shows that compound 1 comprises heterometallic Zn2+ and Eu3+ ions, which are connected by LZ2- and HCOO- anions to form a three-dimensional framework. MOF 1 exhibited high stability of fluorescence intensity in the scope of pH 2-11 in an aqueous solution. Furthermore, MOF 1 served as an excellent selective sensing material for the detection of folic acid in the presence of some imitating materials of the human body and discerned sulfaquinoxaline in sulfonamide drugs with high sensitivity, selectivity, and reusability. Moreover, we designed and manufactured a sensor paper based on MOF 1 as a portable device for the visual detection of folic acid and sulfaquinoxaline. More crucially, this is the first example in which luminescent MOF is used to identify sulfaquinoxaline molecules in an aqueous solution. In addition, the luminescence sensing mechanisms of MOF 1 for the detection of the above analytes were explored in detail.
Collapse
Affiliation(s)
- Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zhang Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Nan Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
33
|
Rubio-Giménez V, Arnauts G, Wang M, Oliveros Mata ES, Huang X, Lan T, Tietze ML, Kravchenko DE, Smets J, Wauteraerts N, Khadiev A, Novikov DV, Makarov D, Dong R, Ameloot R. Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film. J Am Chem Soc 2023; 145:152-159. [PMID: 36534059 DOI: 10.1021/jacs.2c09007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crystalline coordination polymers with high electrical conductivities and charge carrier mobilities might open new opportunities for electronic devices. However, current solvent-based synthesis methods hinder compatibility with microfabrication standards. Here, we describe a solvent-free chemical vapor deposition method to prepare high-quality films of the two-dimensional conjugated coordination polymer Cu-BHT (BHT = benzenehexanothiolate). This approach involves the conversion of a metal oxide precursor into Cu-BHT nanofilms with a controllable thickness (20-85 nm) and low roughness (<10 nm) through exposure to the vaporized organic linker. Moreover, the restricted metal ion mobility during the vapor-solid reaction enables high-resolution patterning via both bottom-up lithography, including the fabrication of micron-sized Hall bar and electrode patterns to accurately evaluate the conductivity and mobility values of the Cu-BHT films.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giel Arnauts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eduardo Sergio Oliveros Mata
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Xing Huang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Max L Tietze
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dmitry E Kravchenko
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jorid Smets
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nathalie Wauteraerts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Dmitri V Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
34
|
Preparation of ZIF-67@DTMS NPs/Epoxy composite coating and its anti-corrosion performance for Q235 carbon steel in 3.5 wt% NaCl solution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Samimi M, Zakeri M, Alobaid F, Aghel B. A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:60. [PMID: 36615970 PMCID: PMC9823661 DOI: 10.3390/nano13010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 05/25/2023]
Abstract
In nature, arsenic, a metalloid found in soil, is one of the most dangerous elements that can be combined with heavy metals. Industrial wastewater containing heavy metals is considered one of the most dangerous environmental pollutants, especially for microorganisms and human health. An overabundance of heavy metals primarily leads to disturbances in the fundamental reactions and synthesis of essential macromolecules in living organisms. Among these contaminants, the presence of arsenic in the aquatic environment has always been a global concern. As (V) and As (III) are the two most common oxidation states of inorganic arsenic ions. This research concentrates on the kinetics, isotherms, and thermodynamics of metal-organic frameworks (MOFs), which have been applied for arsenic ions uptake from aqueous solutions. This review provides an overview of the current capabilities and properties of MOFs used for arsenic removal, focusing on its kinetics and isotherms of adsorption, as well as its thermodynamic behavior in water and wastewater.
Collapse
Affiliation(s)
- Mohsen Samimi
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 6715685420, Iran
| | - Mozhgan Zakeri
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan 9816745639, Iran
| | - Falah Alobaid
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| | - Babak Aghel
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 6715685420, Iran
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|
36
|
Shen Y, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing. Chem Sci 2022; 13:13978-14007. [PMID: 36540831 PMCID: PMC9728564 DOI: 10.1039/d2sc04314a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 08/16/2023] Open
Abstract
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal-organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host-guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.
Collapse
Affiliation(s)
- Yuwei Shen
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
37
|
Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Oxalato as polyatomic coordination center and magnetic coupler in copper(II)-polypyrazole inverse polynuclear complexes and coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Xiong J, Wang W, Du H, Zhou Z, Zhao A, Mi L, Chen S. Directed molecular structure design of coordination polymers with different ligands for regulating output performance of triboelectric nanogenerators. RSC Adv 2022; 12:30051-30055. [PMID: 36329932 PMCID: PMC9583627 DOI: 10.1039/d2ra05537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A triboelectric nanogenerator (TENG) provides an effective method to harvest mechanical energy from the environment. The morphology and structure of frictional electrode materials of this type of device affect the output performance significantly. Metal-organic coordination polymers (CPs) with special structure advantages offer a vast pool of materials enabling high performances. Two Co-CPs based on terephthalic acid and 2,5-dihydroxyterephthalic acid ligands, respectively, were used to fabricate TENGs. Detailed electrical characterizations of the TENG devices revealed that the introduction of the substituent groups in the organic ligands leads to the structural changes of CPs, which ultimately leads to significant differences in the output performance.
Collapse
Affiliation(s)
- Jiabin Xiong
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Wenjie Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Huijun Du
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ziqing Zhou
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Aiwei Zhao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Liwei Mi
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology Zhengzhou 450007 China
| |
Collapse
|
40
|
Muzammil K, Solanki R, Alkaim AF, Romero Parra RM, Lafta HA, Jalil AT, Gupta R, Hammid AT, Mustafa YF. A novel approach based on the ultrasonic-assisted microwave method for the efficient synthesis of Sc-MOF@SiO2 core/shell nanostructures for H2S gas adsorption: A controllable systematic study for a green future. Front Chem 2022; 10:956104. [PMID: 36300018 PMCID: PMC9590105 DOI: 10.3389/fchem.2022.956104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, for the first time, novel Sc-MOF@SiO2 core/shell nanostructures have been synthesized under the optimal conditions of ultrasonic-assisted microwave routes. The final products showed small particle size distributions with homogeneous morphology (SEM results), high thermal stability (TG curve), high surface area (BET adsorption/desorption techniques), and significant porosity (BJH method). The final nanostructures of Sc-MOF@SiO2 core/shell with such distinct properties were used as a new compound for H2S adsorption. It was used with the systematic investigation based on a 2K−1 factorial design, which showed high-performance adsorption of about 5 mmol/g for these novel adsorbents; the optimal experimental conditions included pressure, 1.5 bar; contact time, 20 min; and temperature, 20°C. This study and its results promise a green future for the potential control of gas pollutants.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi
| | - Reena Solanki
- Department of Chemistry, Dr. A. P. J. Abdul Kalam University, Indore, Madhya Pradesh, India
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | - Ayad F. Alkaim
- Chemistry Department College of Science for Women University of Babylon, Hillah, Iraq
- *Correspondence: Reena Solanki, ; Ayad F. Alkaim,
| | | | - Holya A. Lafta
- Department of Pharmacy, Al Nisour University College, Baghdad, Iraq
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
41
|
François M, Sigot L, Vallières C. Impact of humidity on HKUST-1 performance for the removal of acetaldehyde in air: an experimental study. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Direct Ink 3D Printing of Porous Carbon Monoliths for Gas Separations. Molecules 2022; 27:molecules27175653. [PMID: 36080420 PMCID: PMC9457708 DOI: 10.3390/molecules27175653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Additive manufacturing or 3D printing is the advanced method of manufacturing monolithic adsorbent materials. Unlike beads or pellets, 3D monolithic adsorbents possess the advantages of widespread structural varieties, low heat and mass transfer resistance, and low channeling of fluids. Despite a large volume of research on 3D printing of adsorbents having been reported, such studies on porous carbons are highly limited. In this work, we have reported direct ink 3D printing of porous carbon; the ink consisted of commercial activated carbon, a gel of poly(4-vinylphenol) and Pluronic F127 as plasticizer, and bentonite as the binder. The 3D printing was performed in a commercial 3D printer that has been extensively modified in the lab. Upon 3D printing and carbonization, the resultant 3D printed porous carbon demonstrated a stable structure with a BET area of 400 m2/g and a total pore volume of 0.27 cm3/g. The isotherms of six pure-component gases, CO2, CH4, C2H6, N2, CO, and H2, were measured on this carbon monolith at 298 K and pressure up to 1 bar. The selectivity of four gas pairs, C2H6/CH4, CH4/N2, CO/H2, and CO2/N2, was calculated by Ideally Adsorbed Solution Theory (IAST) and reported. Ten continuous cycles of adsorption and desorption of CO2 on this carbon confirmed no loss of working capacity of the adsorbent.
Collapse
|
43
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
44
|
Kubo M, Matsumoto T, Shimada M. Spray synthesis of Pd nanoparticle incorporated HKUST-1, and its catalytic activity for 4-nitrophenol reduction. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
45
|
The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144529. [PMID: 35889401 PMCID: PMC9320690 DOI: 10.3390/molecules27144529] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal–organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to ‘house’ a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Collapse
|
46
|
Dorofeeva VN, Pavlishchuk AV, Kiskin MA, Efimov NN, Minin VV, Gavrilenko KS, Kolotilov SV, Pavlishchuk VV, Eremenko IL. Generation of Long-Lived Phenoxyl Radical in the Binuclear Copper(II) Pivalate Complex with 2,6-Di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422070041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Berned-Samatán V, Rubio C, Galán-González A, Muñoz E, Benito AM, Maser WK, Coronas J, Téllez C. Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
50
|
Liu Z, Yuan Z, Hu W, Chen Z. Electrochemically deposition of metal-organic framework onto carbon fibers for online in-tube solid-phase microextraction of non-steroidal anti-inflammatory drugs. J Chromatogr A 2022; 1673:463129. [DOI: 10.1016/j.chroma.2022.463129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|