1
|
Shibuya Y, Kuruma H, Oba M, Koguchi S. Synthesis and Structure of Diaryltellurium Disulfonates and Their Application for the α-Tosyloxylation of Ketones. ACS OMEGA 2024; 9:43642-43648. [PMID: 39494008 PMCID: PMC11525526 DOI: 10.1021/acsomega.4c05880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
A concise and efficient synthetic route to a variety of functionalized diaryltellurium disulfonates (1) is presented. The hydrolysis of these diaryltellurium disulfonates (1) produces diarylhydroxytelluronium triflates (2). The molecular structures of the diaryltellurium disulfonates and diarylhydroxytelluronium triflates were determined unambiguously using single-crystal X-ray diffraction analysis. To the best of our knowledge, this represents one of the very few reports on the solid-state structures of diaryltellurium disulfonates and diarylhydroxytelluronium triflates to date. The utility of the thus obtained diaryltellurium disulfonates was subsequently demonstrated via their application to the α-tosyloxylation of ketones, which also marks the first use of this class of compounds for this transformation.
Collapse
Affiliation(s)
- Yuga Shibuya
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 ,Japan
| | - Hajime Kuruma
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 ,Japan
| | - Makoto Oba
- Department of Bioengineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 ,Japan
| | - Shinichi Koguchi
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 ,Japan
| |
Collapse
|
2
|
Bu YJ, Tijaro-Bulla S, Cui H, Nitz M. Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. J Am Chem Soc 2024; 146:26161-26177. [PMID: 39259935 DOI: 10.1021/jacs.4c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tellurophene-bearing small molecules have emerged as valuable tools for localizing cellular activities in vivo using mass cytometry. To broaden the utility of tellurophenes in chemical biology, we have developed a bioorthogonal reaction to facilitate tagging of tellurophene-bearing conjugates for downstream applications. Using TePhe, a tellurophene-based phenylalanine analogue, labeled recombinant proteins were generated for reaction development. Using these proteins, we demonstrate an oxidation-controlled, strain-promoted tellurophene-alkyne cycloaddition (OSTAC) reaction. Mild oxidation of the tellurophene ring with N-chlorosuccinimide produces a reactive Te(IV) species which undergoes rapid (k > 100 M-1 s-1) cycloaddition with bicyclo[6.1.0]nonyne (BCN) yielding a benzo-fused cyclooctane. Selective labeling of TePhe-containing proteins can be achieved in complex protein mixtures and on fixed cells. OSTAC reactions can be combined with strain-promoted azide alkyne cycloaddition (SPAAC) and copper-catalyzed azide alkyne click (CuAAC) reactions. Demonstrating the versatility of this approach, we observe the expected staining patterns for 5-ethynyl-2'-deoxyuridine (DNA synthesis-CuAAC) and immunohistochemistry targets in combination with TePhe (protein synthesis-OSTAC) in fixed cells. The favorable properties of the OSTAC reaction suggest its broad applicability in chemical biology.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Maleki I, Allaei SMV, Naghavi SS. Polytelluride square planar chain-induced anharmonicity results in ultralow thermal conductivity and high thermoelectric efficiency in Al 2Te 5 monolayers. Phys Chem Chem Phys 2024; 26:19724-19732. [PMID: 38982952 DOI: 10.1039/d4cp01577k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) metal chalcogenides provide rich ground for the development of nanoscale thermoelectrics, although achieving optimal thermoelectric efficiency is still a challenge. Here, we leverage the unique chemistry of tellurium (Te), renowned for its hypervalent bonding and catenation abilities, to tackle this challenge as manifested in Al2Te3 and Al2Te5 monolayers. While the former forms a straightforward covalent Al-Te network, the latter adopts a more intricate bonding mechanism, enabled by eccentric features of Te chemistry, to maintain charge balance. In Al2Te5, a square planar chain (SPC) known as polytelluride [Te3]2- is neutralized by the covalently bonded [Al2Te2]2+ framework. The hypervalent nature of Te results in bizarre Born effective charges of 7 and -4 for adjacent Te atoms within the square planar chain, a feature that induces significant anharmonicity in Al2Te5 monolayers. Enhanced anharmonic lattice vibrations and the accordion pattern bestow glass-like, strongly anisotropic thermal conductivity to the Al2Te5 monolayer. The calculated κL values of 1.8 and 0.5 W m-1 K-1 along the a- and b-axes at 600 K are one order of magnitude lower than those of Al2Te3, and even lower than monolayers that contain heavy cations like Bi2Te3. Moreover, the tellurium chain dominates the valence band maximum and conduction band minimum of Al2Te5, leading to a high valley degeneracy of 10, and thus a high power factor and figure of merit (zT). Using rigorous first-principles calculations of electron relaxation time, the estimated hole-doped and electron-doped zT of, respectively, 1.5 and 0.5 at 600 K is achieved for Al2Te5. The pioneering zT of Al2Te5 compared to that of Al2Te3 is rooted merely in its amorphous-like lattice thermal transport and its polytelluride chain. These findings underscore the importance of aluminum telluride and polymeric-based inorganic compounds as practical and cost-effective thermoelectric materials, pending further experimental validation.
Collapse
Affiliation(s)
- Iraj Maleki
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.
| | - S Mehdi Vaez Allaei
- Department of Physics, University of Tehran, Tehran 14395-547, Iran.
- New Uzbekistan University, Movarounnahr Street 1, Tashkent 100000, Uzbekistan
| | - S Shahab Naghavi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| |
Collapse
|
5
|
Kalita N, Crawley MR, Rosch LE, Szeglowski O, Cook TR. Exploring the Te(II)/Te(IV) Redox Couple of a Tellurorosamine Chromophore: Photophysical, Photochemical, and Electrochemical Studies. Inorg Chem 2024; 63:13157-13165. [PMID: 38989980 DOI: 10.1021/acs.inorgchem.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A tellurorosamine dye [Te(II)] undergoes aerobic photooxidation. Although Te(IV) species have been used in a number of oxidations, key Te(IV)-oxo and Te(IV)-bis(hydroxy) intermediates are challenging to study. Under aerobic irradiation with visible light, Te(II) (λmax = 600 nm) transforms into a Te(IV) species (λmax = 669 nm). The resultant Te(IV) species is not stable in the dark or at -20 °C, decomposing back to Te(II) and other byproducts over many hours. To eliminate the structural ambiguity of the Te(IV) photoproduct, we used spectroelectrochemistry, wherein the bis(hydroxy) Te(IV)-(OH)2 was electrochemically generated under anaerobic conditions. The absorption of Te(IV)-(OH)2 matches that of the Te(IV) photoproduct. Because isosbestic points are maintained both photochemically and electrochemically, the oxo core formed photochemically must rapidly equilibrate with Te(IV)-(OH)2. Calculations on the bis(hydroxy) versus oxo species further corroborate that the equilibration is rapid and the spectra of the two species are similar. To further explore Te(IV) cores, two novel compounds, Te(IV)-Cl2 and Te(IV)-Br2, were synthesized. Characterization of Te(IV)-X2 was simplified because these cores have no analogue to the Te(IV)-(O)/Te(IV)-(OH)2 equilibrium. This work provides insights into the photophysical and electrochemical behavior of Te analogues of chalcogenoxanthylium dyes, which are relevant for a broad range of photochemical applications.
Collapse
Affiliation(s)
- Nayanika Kalita
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lauren E Rosch
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Owen Szeglowski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
6
|
Camilli L, Hogan C, Romito D, Persichetti L, Caporale A, Palummo M, Di Giovannantonio M, Bonifazi D. On-Surface Molecular Recognition Driven by Chalcogen Bonding. JACS AU 2024; 4:2115-2121. [PMID: 38938818 PMCID: PMC11200221 DOI: 10.1021/jacsau.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Chalcogen bonding interactions (ChBIs) have been widely employed to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to engineer molecular self-assembly on surfaces has not been demonstrated. Here, we report the first demonstration of on-surface molecular recognition solely governed by ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl derivative can undergo noncovalent chiral dimerization on the Au(111) surface through double Ch···N interactions involving Te- or Se-containing chalcogenazolo pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.
Collapse
Affiliation(s)
- Luca Camilli
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Conor Hogan
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
- CNR-Istituto
di Struttura della Materia (CNR-ISM), 00133 Roma, Italy
| | - Deborah Romito
- Department
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Luca Persichetti
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Antonio Caporale
- Department
of Physics, University of Rome “Tor
Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | - Maurizia Palummo
- INFN,
Department of Physics, University of Rome
“Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
| | | | - Davide Bonifazi
- Department
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Poborchii V, Rappoport D. Optical study of Te 8 ring clusters: comparison with density functional theory and a step towards materials design using nanoporous zeolite space. NANOSCALE 2024. [PMID: 38682157 DOI: 10.1039/d4nr00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The Te8 ring molecule (cluster) is poorly investigated due to the lack of experimental data. Here, we report an experimental and theoretical study of a regular array of oriented Te8 rings formed in the ∼1.14 nm diameter cavities of zeolite LTA, which are arranged in a cubic lattice with a spacing of ∼1.2 nm. Single crystals of LTA with encapsulated tellurium (LTA-Te) were studied using Raman spectroscopy (RS) and optical absorption spectroscopy (OAS). The experimental LTA-Te spectra were found to be in agreement with those calculated using density functional theory (PBE0 hybrid functional and def2-TZVP basis sets) for the crown-shaped Te8 ring molecule with D4d symmetry. Using polarization-orientation RS, we show that the Te8 rings are oriented by their major axes along the 4-fold axes of cubic LTA. We also show that the site symmetry of Te8 in LTA-Te is lower than D4d. Te8 bond-bending modes are well described in the harmonic approximation, while bond-stretching modes are mixed due to the reduced ring symmetry and, probably, anharmonicity. Importantly, OAS data of LTA-Te display dependence on the Te8 concentration, implying the interaction of the rings from neighbouring LTA cavities with the generation of the valence and conduction electron bands of such a cluster crystal.
Collapse
Affiliation(s)
- Vladimir Poborchii
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan.
| | - Dmitrij Rappoport
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, CA, 92697-2025, USA
| |
Collapse
|
8
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
9
|
Li S, Cao Y, Jiang L, Liu J. Synthesis of Diaryl Tellurides with Sodium Aryltellurites under Mild Conditions. Chem Asian J 2024; 19:e202300993. [PMID: 38438327 DOI: 10.1002/asia.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
A highly efficient new protocol has been developed for the formation of C-Te bonds, leading to both symmetrical and unsymmetrical diaryl tellurides. This protocol utilizes sodium aryltellurites (4), which can be easily prepared from low-cost aryltelluride trichlorides and NaOH. The synthesis involves the use of 4 and arylazo sulfones as starting materials in the presence of (MeO)2P(O)H. A variety of diaryl tellurides are obtained in moderate to good yields using this method. Importantly, this innovative protocol eliminates the need for traditional, highly toxic aryltellurolating reagents such as diaryl ditellurides and elemental tellurium. This study will bring new vitality to the synthesis of tellurides.
Collapse
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
- Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu, 215600, China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| |
Collapse
|
10
|
Onn CS, Hill AF. Carbon-chalcogen wires: alkynyltellurolatocarbynes. Chem Commun (Camb) 2024; 60:3555-3558. [PMID: 38465387 DOI: 10.1039/d4cc00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The reactions of [W(CBr)(CO)2(Tp*)] (Tp* = tris(dimethylpyrazolyl)borate) with LiTeCCR (R = SiMe3, SiiPr3, iPr, nBu, tBu, Ph, C6H4Me-4, methylimidazol-2-yl) afford the first alkynyltellurolatocarbynes [W(CTeCCR)(CO)2(Tp*)]. Both the WC and CC multiple bonds are prone to metal addition as exemplified by treatment with [MCl(SMe2)] (M = Cu, Au) to afford the hexametallic complex [W2Cu4(μ-CTeCCSiiPr3)2Cl4(CO)4(Tp*)2] and [WAu(μ-CTeCCSiMe3)Cl(CO)2-(Tp*)] which evolves to the unusual hypervalent [WAu(μ-CTeCl4)(SMe2)(CO)2(Tp*)].
Collapse
Affiliation(s)
- Chee S Onn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| |
Collapse
|
11
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
12
|
Li J, Zhang L, Xin W, Yang M, Peng H, Geng Y, Yang L, Yan Z, Zhu Z. Rationally Designed ZnTe@C Nanowires with Superior Zinc Storage Performance for Aqueous Zn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304916. [PMID: 37452436 DOI: 10.1002/smll.202304916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 07/18/2023]
Abstract
Te-based materials with excellent electrical conductivity and ultra-high volume specific capacity have attracted much attention for the cost-efficient aqueous Zn batteries. However, the construction of functional structures with mild volume expansion and suppressed shuttle effects, enabling an expanded lifespan, is still a challenge for conversion-type materials. Herein, the carbon-coated zinc telluride nanowires (ZnTe@C NWs) are rationally designed as a high-performance cathode material for aqueous Zn batteries. The carbon-coated1D nanostructure could not only provide optimized transmission path for electrons and ions, but also help to maintain structure integrity upon volume variation and suppress intermediates dissolution, endowing the ZnTe@C NWs with improved cycling stability and reaction kinetics. Consequently, a reversible six-electron reaction mechanism of ZnTe@C NWs based on Te2- /Te4+ conversion with excellent output capacity (586 mAh g-1 at 0.1 A g-1 ) and lifespan (>250 mAh g-1 retained for 400 cycles at 1 A g-1 ) is eventually achieved.
Collapse
Affiliation(s)
- Junwei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenli Xin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Min Yang
- School of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huiling Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yaheng Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Li Yang
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zichao Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqiang Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
13
|
Bhattacharya D, Bhakat A, Debnath T. Breaking AgInTe 2 Quantum Dot Chain to Fabricate AgInTe 2-ZnS Janus Nanocrystals. Inorg Chem 2023. [PMID: 38010257 DOI: 10.1021/acs.inorgchem.3c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Colloidal multinary chalcogenides (MnCs) have emerged as excellent optoelectronic materials, where S- and Se-based MnCs show considerable progress; however, the Te counterpart suffers from detrimental surface oxidation. Moreover, Te-based I-III-VI MnCs (e.g., AgInTe2) tend to form a one-dimensional (1-D) anisotropic structure via the self-assembly of surface-oxidized Te, thus restricting the isolation of AgInTe2 quantum dots (QDs). We report successful control of the self-assembly of Te-based MnCs to arrest the growth of AgInTe2 QDs by using a synergistic capping agent (dodecanethiol and oleic acid). The reaction proceeds with several intermediates, including hexagonal microrods (MR), tetragonal QDs in a chain arrangement, and tetragonal MRs. Importantly, we note that the incorporation of ZnS QDs triggers the breaking of the chain arrangement of the AgInTe2 QDs and the emergence of evenly distributed AgInTe2-ZnS Janus nanocrystals with significantly reduced long-term Te-oxidative properties. Arresting the AgInTe2 QD chain and the subsequent Janus nanocrystal formation could have promising opportunities for 1-D charge hopping and efficient charge transport for optoelectronic applications, respectively.
Collapse
Affiliation(s)
- Debadrita Bhattacharya
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Arin Bhakat
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Hejda M, Doležal L, Blahut J, Hupf E, Tydlitát J, Jambor R, Růžička A, Beckmann J, Dostál L. N-Coordinated tellurenium(II) and telluronium(IV) cations: synthesis, structure and hydrolysis. Dalton Trans 2023; 52:16235-16248. [PMID: 37853810 DOI: 10.1039/d3dt02404k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A set of N-coordinated tellurium(II) compounds containing either C,N-chelating ligands CNR (where CN = 2-(RNCH)C6H4, R = tBu or Dipp; Dipp = 2,6-iPr2C6H3) or N,C,N pincer ligands NCNR (where NCN = 2,6-(RNCH)2C6H4, R = tBu or Dipp) were synthesized. In the case of C,N-chelated compounds, the reaction of CNDippLi with Te(dtc)2 (where dtc = Et2NCS2) in a 1 : 1 molar ratio smoothly provided the carbamate CNDippTe(dtc) which upon treatment with 2 eq. of HCl provided the chloride CNDippTeCl. In contrast, the analogous conversion of NCNRLi with Te(dtc)2 surprisingly furnished ionic bromides [NCNRTe]Br as a result of the exchange of dtc by Br coming from nBuBr present in the reaction mixture. Furthermore, the reaction of CNDippTeCl or [NCNRTe]Br with silver salts AgX (X = OTf or SbF6) provided the expected tellurenium cations [CNDippTe]SbF6 and [NCNRTe]X. To further increase the Lewis acidity of the central atom, the oxidation of selected compounds with 1 eq. of SO2Cl2 was examined yielding stable compounds [CNtBuTeCl2]X and [NCNtBuTeCl2]X. The oxidation of the Dipp substituted compounds proved to be more challenging and an excess of SO2Cl2 was necessary to obtain the oxidized products [CNDippTeCl2]SbF6 and [NCNDippTeCl2]SbF6, which could solely be characterized in solution. Compounds [CNtBuTeCl2]OTf and [NCNtBuTeCl2]OTf were shown to undergo a controlled hydrolysis to the corresponding telluroxanes. All compounds were studied by multinuclear NMR spectroscopy in solution and for selected compounds solid state 125Te NMR spectroscopy and single-crystal X-ray diffraction analysis were performed. The Lewis acidity of the studied cations was examined by the Gutmann-Beckett method using Et3PO as the probing agent. The Te-N chalcogen bonding situation of selected compounds has also been examined computationally by a set of real-space bonding indicators.
Collapse
Affiliation(s)
- Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Lukáš Doležal
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| |
Collapse
|
15
|
Rodewald M, Rautiainen JM, Görls H, Oilunkaniemi R, Weigand W, Laitinen RS. Formation, Characterization, and Bonding of cis- and trans-[PtCl 2{Te(CH 2) 6} 2], cis-trans-[Pt 3Cl 6{Te(CH 2) 6} 4], and cis- trans-[Pt 4Cl 8{Te(CH 2) 6} 4]: Experimental and DFT Study. Molecules 2023; 28:7551. [PMID: 38005273 PMCID: PMC10673514 DOI: 10.3390/molecules28227551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
[PtCl2{Te(CH2)6}2] (1) was synthesized from the cyclic telluroether Te(CH2)6 and cis-[PtCl2(NCPh)2] in dichloromethane at room temperature under the exclusion of light. The crystal structure determination showed that in the solid state, 1 crystallizes as yellow plate-like crystals of the cis-isomer 1cis and the orange-red interwoven needles of 1trans. The crystals could be separated under the microscope. NMR experiments showed that upon dissolution of the crystals of 1cis in CDCl3, it isomerizes and forms a dynamic equilibrium with the trans-isomer 1trans that becomes the predominant species. Small amounts of cis-trans-[Pt3Cl6{Te(CH2)6}4] (2) and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) were also formed and structurally characterized. Both compounds show rare bridging telluroether ligands and two different platinum coordination environments, one exhibiting a cis-Cl/cis-Te(CH2)6 arrangement and the other a trans-Cl/trans-Te(CH2)6 arrangement. Complex 2 has an open structure with two terminal and two bridging telluroether ligands, whereas complex 3 has a cyclic structure with four Te(CH2)6 bridging ligands. The bonding and formation of the complexes have been discussed through the use of DFT calculations combined with QTAIM analysis. The recrystallization of the mixture of the 1:1 reaction from d6-DMSO afforded [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) that could also be characterized both structurally and spectroscopically.
Collapse
Affiliation(s)
- Marko Rodewald
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Humboldt Str. 8, 07743 Jena, Germany; (M.R.); (H.G.)
| | - J. Mikko Rautiainen
- Department of Chemistry and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland;
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Humboldt Str. 8, 07743 Jena, Germany; (M.R.); (H.G.)
| | - Raija Oilunkaniemi
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland;
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University of Jena, Humboldt Str. 8, 07743 Jena, Germany; (M.R.); (H.G.)
| | - Risto S. Laitinen
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland;
| |
Collapse
|
16
|
Ghinato S, Giordana A, Diana E, Gomila RM, Priola E, Frontera A. Synthesis, X-ray characterization and DFT analysis of dicyanidoaurate telluronium salts: on the importance of charge assisted chalcogen bonds. Dalton Trans 2023; 52:15688-15696. [PMID: 37854010 DOI: 10.1039/d3dt02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this manuscript we report the synthesis and X-ray characterization of two cyanidoaurate telluronium salts, namely (3-fluorophenyl)(methyl)(phenyl)telluronium dicyanidoaurate [(3-F-Ph)(Me)(Ph)Te][Au(CN)2] (1) and methyldiphenyltelluronium dicyanidoaurate [(Me)(Ph)2Te][Au(CN)2] (2). In the solid state, the tellurium atom establishes three concurrent and directional chalcogen bonds (ChBs) with the adjacent anions, in both compounds. These charge-assisted ChBs (CAChBs) have been analyzed using DFT calculations and several computational tools. The MEP surface analysis discloses the existence of three σ-holes at the Te-atoms capable of establishing strong CAChBs with the counter-ions. In addition, significant charge transfer from the lone pair orbital at the N-atom of the anion to the antibonding σ*(Te-C) orbital of the cation is observed in some cases.
Collapse
Affiliation(s)
- Simone Ghinato
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Alessia Giordana
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Eliano Diana
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Emanuele Priola
- Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
17
|
Jia S, Ye H, He P, Lin X, You L. Selection of isomerization pathways of multistep photoswitches by chalcogen bonding. Nat Commun 2023; 14:7139. [PMID: 37932318 PMCID: PMC10628202 DOI: 10.1038/s41467-023-43013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Multistep photoswitches are able to engage in different photoisomerization pathways and are challenging to control. Here we demonstrate a multistep sequence of E/Z isomerization and photocyclization/cycloreversion of photoswitches via manipulating the strength and mechanism of noncovalent chalcogen bonding interactions. The incorporation of chalcogens and the formyl group on open ethene bridged dithienylethenes offers a versatile skeleton for single photochromic molecules. While bidirectional E/Z photoswitching is dominated by neutral tellurium arising from enhanced resonance-assisted chalcogen bonding, the creation of cationic telluronium enables the realization of photocyclization/cycloreversion. The reversible nucleophilic substitution reactions further allow interconversion between neutral tellurium and cationic telluronium and selection of photoisomerization mechanisms on purpose. By leveraging unique photoswitching patterns and dynamic covalent reactivity, light and pH stimuli-responsive multistate rewritable materials were constructed, triggered by an activating reagent for additional control. The results should provide ample opportunities to molecular recognition, intelligent switches, information encryption, and smart materials.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
| |
Collapse
|
18
|
Masilamani G, Krishna GR, Debnath S, Bedi A. Origin of Optoelectronic Contradictions in 3,4-Cycloalkyl[ c]-chalcogenophenes: A Computational Study. Polymers (Basel) 2023; 15:4240. [PMID: 37959920 PMCID: PMC10650045 DOI: 10.3390/polym15214240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The planar morphology of the backbone significantly contributes to the subtle optoelectronic features of π-conjugated polymers. On the other hand, the atomistic tuning of an otherwise identical π-backbone could also impact optoelectronic properties systematically. In this manuscript, we compare a series of 3,4-cycloalkylchalcogenophenes by tuning them atomistically using group-16 elements. Additionally, the effect of systematically extending these building blocks in the form of oligomers and polymers is studied. The size of the 3,4-substitution affected the morphology of the oligomers. In addition, the heteroatoms contributed to a further alteration in their geometry and resultant optoelectronic properties. The chalcogenophenes, containing smaller 3,4-cycloalkanes, resulted in lower bandgap oligomers or polymers compared to those with larger 3,4-cycloalkanes. Natural bonding orbital (NBO) calculations were performed to understand the disparity alongside the contour maps of frontier molecular orbitals (FMO).
Collapse
Affiliation(s)
- Ganesh Masilamani
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR—National Chemical Laboratory, Pune 411008, India
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anjan Bedi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
19
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
20
|
Tripathi A, Khan A, Srivastava R. Synthesis and screening for anticancer activity of two novel telluro-amino acids: 1,3-Tellurazolidine-4-carboxylic acid and tellurohomocystine. Amino Acids 2023; 55:1361-1370. [PMID: 37796355 DOI: 10.1007/s00726-023-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023]
Abstract
Tellurium (Te) containing amino acids and their derivatives have the potential to participate in biological processes, which are currently being studied extensively to understand the function of Te in biological and pharmacological activities. Here, we are reporting the synthesis of two novel Te-containing unnatural amino acids; 1,3-Tellurazolidine-4-carboxylic acid [Te{CH2CH(COOH)NHCH2}] 5, and 4,4'-(1,2-Ditellurdiyl)bis(2-aminobutanoic acid), i.e., tellurohomocystine [TeCH2CH2CH(NH2)COOH]2 7, synthesized from tellurocystine, and L-methionine as precursors, respectively. These telluro-amino acids were thoroughly characterized by multinuclear (1H, 13C, 125Te) NMR spectroscopy, high-resolution ESI-mass spectrometry (ESI-MS), and elemental analysis. The telluro-amino acids 5 and 7 demonstrated good biocompatibility when in vitro cytotoxicity was analyzed on two fibroblast cell lines L929 and NIH/3T3. The treatment of telluro-amino acids 1,3-Tellurazolidine-4-carboxylic acid 5 and tellurohomocystine 7 on breast cancer cell line MCF-7 showed anticancer activity with IC50 values of 7.29 ± 0.27 µg/mL and 25.36 ± 0.12 µg/mL, respectively. The cell cycle distribution studies also revealed arrest at the sub-G1 phase suggesting telluro-amino acids to be apoptotic.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
21
|
Pale P, Mamane V. Chalcogen Bonding Catalysis: Tellurium, the Last Frontier? Chemistry 2023:e202302755. [PMID: 37743816 DOI: 10.1002/chem.202302755] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Chalcogen bonding (ChB) is the non-covalent interaction occurring between chalcogen atoms as Lewis acid sites and atoms or groups of atoms able to behave as Lewis bases through their lone pair or π electrons. Analogously to its sister halogen bonding, the high directionality of this interaction was implemented for precise structural organizations in the solid state and in solution. Regarding catalysis, ChB is now accepted as a new mode of activation as demonstrated by the increased number of examples in the last five years. In the family of ChB catalysts, those based on tellurium rapidly appeared to overcome their lighter sulfur and selenium counterparts. In this review, we highlight the Lewis acid properties of tellurium-based derivatives in solution and summarize the start-of-the-art of their applications in catalysis.
Collapse
Affiliation(s)
- Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
22
|
Hosseini F, Hadian M, Lashani E, Moghimi H. Simultaneous bioreduction of tellurite and selenite by Yarrowia lipolytica, Trichosporon cutaneum, and their co-culture along with characterization of biosynthesized Te-Se nanoparticles. Microb Cell Fact 2023; 22:193. [PMID: 37749532 PMCID: PMC10519092 DOI: 10.1186/s12934-023-02204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Natural and anthropogenic activities, such as weathering of rocks and industrial processes, result in the release of toxic oxyanions such as selenium (Se) and tellurium (Te) into the environment. Due to the high toxicity of these compounds, their removal from the environment is vital. RESULTS In this study, two yeast strains, Yarrowia lipolytica and Trichosporon cutaneum, were selected as the superior strains for the bioremediation of tellurium and selenium. The reduction analyses showed that exposure to selenite induced more detrimental effects on the strains compared to tellurite. In addition, co-reduction of pollutants displayed almost the same results in selenite reduction and more than ~ 20% higher tellurite reduction in 50 h, which shows that selenite triggered higher tellurite reduction in both strains. The selenite and tellurite kinetics of removal were consistent with the first-order model because of their inhibitory behavior. The result of several characterization experiments, such as FE-SEM (Field emission scanning electron microscopy), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and dispersive X-ray (EDX) on Te-Se nanoparticles (NPs) revealed that the separated Te-Se NPs were needle-like, spherical, and amorphous, consisted of Te-Se NPs ranging from 25 to 171 nm in size, and their surface was covered with different biomolecules. CONCLUSIONS Remarkably, this work shows, for the first time, the simultaneous bioreduction of tellurite and selenite and the production of Te-Se NPs using yeast strains, indicating their potential in this area, which may be applied to the nanotechnology industry and environmental remediation.
Collapse
Affiliation(s)
- Firooz Hosseini
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Hadian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elham Lashani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Xing C, Zhang Y, Xiao K, Han X, Liu Y, Nan B, Ramon MG, Lim KH, Li J, Arbiol J, Poudel B, Nozariasbmarz A, Li W, Ibáñez M, Cabot A. Thermoelectric Performance of Surface-Engineered Cu 1.5-xTe-Cu 2Se Nanocomposites. ACS NANO 2023; 17:8442-8452. [PMID: 37071412 DOI: 10.1021/acsnano.3c00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cu2-xS and Cu2-xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2-xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5-xTe-Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5-xTe-Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5-xTe nanoparticles effectively inhibits Cu1.5-xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K.
Collapse
Affiliation(s)
- Congcong Xing
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu Zhang
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Xiao
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- University of Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Bingfei Nan
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- University of Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Maria Garcia Ramon
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Khak Ho Lim
- Institute of Zhejiang University-Quzhou, 99 Zheda Rd., Quzhou 324000, Zhejiang, People's Republic of China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, 610106 Chengdu, People's Republic of China
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Bed Poudel
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amin Nozariasbmarz
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wenjie Li
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andreu Cabot
- Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Pati PB. ‘2E−2N squares’: Chalcogen (E=S, Se and Te) Bonding Involving Benzochalcogenodiazoles. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Palas Baran Pati
- Aragen Lifesciences, IDA, Nacharam - Mallapur Rd, Nacharam Hyderabad 500076 Telangana
- Université de Nantes, CNRS, UMR 6230,Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) 44322 Nantes Cedex 3 France
| |
Collapse
|
25
|
Fernández-Catalá J, Singh H, Wang S, Huhtinen H, Paturi P, Bai Y, Cao W. Hydrothermal Synthesis of Ni 3TeO 6 and Cu 3TeO 6 Nanostructures for Magnetic and Photoconductivity Applications. ACS APPLIED NANO MATERIALS 2023; 6:4887-4897. [PMID: 37006912 PMCID: PMC10043876 DOI: 10.1021/acsanm.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Despite great attention toward transition metal tellurates especially M3TeO6 (M = transition metal) in magnetoelectric applications, control on single phasic morphology-oriented growth of these tellurates at the nanoscale is still missing. Herein, a hydrothermal synthesis is performed to synthesize single-phased nanocrystals of two metal tellurates, i.e., Ni3TeO6 (NTO with average particle size ∼37 nm) and Cu3TeO6 (CTO ∼ 140 nm), using NaOH as an additive. This method favors the synthesis of pure NTO and CTO nanoparticles without the incorporation of Na at pH = 7 in MTO crystal structures such as Na2M2TeO6, as it happens in conventional synthesis approaches such as solid-state reaction and/or coprecipitation. Systematic characterization techniques utilizing in-house and synchrotron-based characterization methods for the morphological, structural, electronic, magnetic, and photoconductivity properties of nanomaterials showed the absence of Na in individual particulate single-phase MTO nanocrystals. Prepared MTO nanocrystals also exhibit slightly higher antiferromagnetic interactions (e.g., T N-NTO = 57 K and T N-CTO = 68 K) compared to previously reported MTO single crystals. Interestingly, NTO and CTO show not only a semiconducting nature but also photoconductivity. The proposed design scheme opens the door to any metal tellurates for controllable synthesis toward different applications. Moreover, the photoconductivity results of MTO nanomaterials prepared serve as a preliminary proof of concept for potential application as photodetectors.
Collapse
Affiliation(s)
- Javier Fernández-Catalá
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu FIN-90014, Finland
- Materials
Institute and Inorganic Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Harishchandra Singh
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu FIN-90014, Finland
| | - Shubo Wang
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu FIN-90014, Finland
| | - Hannu Huhtinen
- Wihuri
Physical Laboratory, Department of Physics and Astronomy University of Turku, Turku FIN-20014, Finland
| | - Petriina Paturi
- Wihuri
Physical Laboratory, Department of Physics and Astronomy University of Turku, Turku FIN-20014, Finland
| | - Yang Bai
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90570 Oulu, Finland
| | - Wei Cao
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu FIN-90014, Finland
| |
Collapse
|
26
|
Yamamoto Y, Chen Q, Ogawa A. Diphenyl Diselenide-Assisted Radical Addition Reaction of Diphenyl Disulfide to Unsaturated Bonds upon Photoirradiation. Molecules 2023; 28:molecules28062450. [PMID: 36985420 PMCID: PMC10059204 DOI: 10.3390/molecules28062450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
The addition reaction of interelement compounds with heteroatom–heteroatom single bonds to unsaturated bonds under photoirradiation is an important method for the efficient and atom-economical construction of carbon–heteroatom bonds. However, in practice, the desired addition reaction is sometimes unable to proceed as expected due to the low efficiency of the desired addition reactions or the preferential polymerization of unsaturated compounds. In this study, by combining an interelement compound with homologous heteroatom compounds as a catalyst, we succeeded in suppressing the polymerization of the unsaturated compounds and in attaining a highly selective carbon–heteroatom bond formation through the desired addition reaction. In this paper, we have examined in detail whether such a “catalytic radical reaction” proceeds for unsaturated compounds and found that the dithiolation of some unsaturated compounds (i.e., vinylic ethers, styrenes, and isocyanides) could proceed with the assistance of (PhSe)2 under light. The developed methods in this study are expected to have strong implications in the fields of radical chemistry, heteroatom chemistry, synthetic organic chemistry, and catalyst chemistry as atom-economical methods for carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Qiqi Chen
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
- Correspondence:
| |
Collapse
|
27
|
Kim C, Lim YJ, Kim YE, Cho H, Lee SH. Studies on the Selective Syntheses of Sodium Ditelluride and Dialkyl Ditellurides. Molecules 2022; 27:molecules27248991. [PMID: 36558124 PMCID: PMC9782605 DOI: 10.3390/molecules27248991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Studies on the selective synthetic method for dialkyl ditellurides 1, a representative class of organyl tellurium compounds, were presented. Considering the difficulty in conducting previous harsh reactions and in suppressing the formation of dialkyl tellurides 2 as side products, we optimized reaction conditions for selective syntheses of sodium ditelluride and the corresponding dialkyl ditellurides 1. We reduced tellurium to sodium ditelluride by using NaBH4 and subsequently, treated the obtained sodium ditelluride with alkyl halides (RX) to give the target compounds 1. Consequently, by applying various alkyl halides (RX) we achieved the selective syntheses of dialkyl ditellurides 1 (13 examples with 4 new compounds) in modest to good yields. We also suggested the mechanistic pathways to dialkyl ditellurides 1.
Collapse
|
28
|
Conjugated polymers based on selenophene building blocks. Polym J 2022. [DOI: 10.1038/s41428-022-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe intrinsic flexibility, solution processability, and optoelectronic properties of semiconducting conjugated polymers make them ideal candidates for use in a wide range of next-generation electronic devices. A virtually unlimited chemical design space has led to diverse polymeric architectures made from combinations of smaller molecular building blocks with desirable functionalities. Of these, thiophene is undoubtedly the most common due to its mixture of synthetic versatility, polymer backbone planarizing effects, and good optoelectronic characteristics. However, the success of thiophene has meant that other heterocycles, such as selenophene, remain relatively underexplored. This focus review discusses the challenges and material advantages of incorporating selenophene into conjugated polymer systems within the context of our contributions to the field. The early studies of poorly performing electrochemically synthesized polyselenophenes are outlined, progressing onto the model chemically synthesized alkylated homopolymers that revealed the key consequences of selenophene addition. We then review the various donor and donor-acceptor copolymer strategies that have exploited the properties of the selenium atom to enhance the performance of solar cells, transistors, and other organic electronic devices. Finally, we give our perspective on the state of the field and the fundamental material optimization studies required to realize the full potential of selenophene-containing conjugated polymers.
Collapse
|
29
|
Wood ND, Gillie LJ, Cooke DJ, Molinari M. A Review of Key Properties of Thermoelectric Composites of Polymers and Inorganic Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8672. [PMID: 36500167 PMCID: PMC9738949 DOI: 10.3390/ma15238672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This review focusses on the development of thermoelectric composites made of oxide or conventional inorganic materials, and polymers, with specific emphasis on those containing oxides. Discussion of the current state-of-the-art thermoelectric materials, including the individual constituent materials, i.e., conventional materials, oxides and polymers, is firstly presented to provide the reader with a comparison of the top-performing thermoelectric materials. Then, individual materials used in the inorganic/polymer composites are discussed to provide a comparison of the performance of the composites themselves. Finally, the addition of carbon-based compounds is discussed as a route to improving the thermoelectric performance. For each topic discussed, key thermoelectric properties are tabulated and comparative figures are presented for a wide array of materials.
Collapse
Affiliation(s)
| | | | | | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
30
|
Orr MS, Cruz KR, Nguyen HH, Kojima AL, Macaluso RT. Versatility of Tellurium in Heteroanionic Ln 2O 2Te (Ln = La, Ce, Pr) and Tellurate Ln 2TeO 6 (Ln = La, Pr). Inorg Chem 2022; 61:18002-18009. [DOI: 10.1021/acs.inorgchem.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Melissa S. Orr
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Katheryn R. Cruz
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Hoa H. Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Akari L. Kojima
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| | - Robin T. Macaluso
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas76019, United States
| |
Collapse
|
31
|
Rani P, Alegaonkar AP, Biswas R, Jewariya Y, Kanta Haldar K, Alegaonkar PS. Reduced graphene oxide doped tellurium nanotubes for high performance supercapacitor. Front Chem 2022; 10:1027554. [PMID: 36329860 PMCID: PMC9623563 DOI: 10.3389/fchem.2022.1027554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Supercapacitors have been achieving great interest in energy storage systems for the past couple of decades. Such devices with superior performance, mainly, depending on the material architecture of the electrodes. We report on the preparation of Tellurium nanotubes (Te-tubes diameter ∼100 nm and length ∼700 nm), with variable doping of conducting network reduced graphene oxide (rGO) to fabricate high-performance electrode characteristics of rGO @ Te. The prepared material was characterized using XRD, FTIR, FESEM, and Raman spectroscopy techniques, including Brunauer-Emmett-Teller, Barrett-Joyner-Halenda measurements. FTIR study revealed that 15% rGO @ Te has a wide C-O vibration band at ∼ 1,100–1,300 cm−1, over other compositions. FESEM study shows the Te-tubes dispersion in rGO layers. The EDX study revealed that 15% of the composition has an optimistic concentration of C and O elements. In other compositions, either at lower/higher rGO concentration, an uneven count of C and O is observed. These support efficient charge dynamics to achieve superior ultra-capacitor characteristics, thereby achieving specific capacitance Csp 170 + F/g @ 10 mV/s in a symmetric configuration. The reported values are thirty times higher than pristine Te-tubes (∼5 F/g). This finding suggests that rGO @ Te is a promising candidate for supercapacitor.
Collapse
Affiliation(s)
- Pinki Rani
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Rathindranath Biswas
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Yogesh Jewariya
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Prashant S. Alegaonkar
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
- *Correspondence: Prashant S. Alegaonkar,
| |
Collapse
|
32
|
Wang GS, Zhang CY, Wan MJ, Gong JY. Study on the spectroscopy and transition properties of TeCl . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121439. [PMID: 35660150 DOI: 10.1016/j.saa.2022.121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
For the first time, the spectroscopy data of TeCl+ ion and the transition data between low excited states are systematically calculated. The potential energy curves of 22 Λ-S states and 51 Ω states are calculated by the internally contracted multiconfiguration interaction and Davidson correction method. By solving the one-dimensional radial Schrödinger equation, the spectroscopy data of Λ-S states and Ω states are obtained. The phenomenon of avoided crossing in Ω state is analyzed in detail, which is mainly concentrated in the region of 20000 cm-1 to 35000 cm-1. The Franck-Condon factors, Einstein coefficients and spontaneous radiative lifetimes of [Formula: see text] transitions are calculated. According to the calculation results, it is preliminarily judged that the direct laser cooling of TeCl+ ion is not feasible.
Collapse
Affiliation(s)
- Guo-Sen Wang
- School of Mathematics and Physics, Chengdu University of Technology, Chengdu, China
| | - Chuan-Yu Zhang
- School of Mathematics and Physics, Chengdu University of Technology, Chengdu, China.
| | - Ming-Jie Wan
- Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China
| | - Jia-Yi Gong
- School of Mathematics and Physics, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
33
|
Ao B, He F, Lv J, Tu J, Tan Z, Jiang H, Shi X, Li J, Hou J, Hu Y, Xia X. Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus Mortierella sp. AB1 with antibacterial activity. Front Microbiol 2022; 13:1020179. [PMID: 36274686 PMCID: PMC9581301 DOI: 10.3389/fmicb.2022.1020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tellurite [Te(IV)] is a high-toxicity metalloid. In this study, a fungus with high Te(IV) resistance was isolated. Strain AB1 could efficiently reduce highly toxic Te(IV) to less toxic Te(0). The reduced products formed rod-shaped biogenetic Te(0) nanoparticles (Bio-TeNPs) intracellularly. Further TEM-element mapping, FTIR, and XPS analysis showed that the extracted Bio-TeNPs ranged from 100 to 500 nm and consisted of Te(0), proteins, lipids, aromatic compounds, and carbohydrates. Moreover, Bio-TeNPs exhibited excellent antibacterial ability against Shigella dysenteriae, Escherichia coli, Enterobacter sakazakii, and Salmonella typhimurium according to inhibition zone tests. Further growth and live/dead staining experiments showed that E. coli and S. typhimurium were significantly inhibited by Bio-TeNPs, and cells were broken or shriveled after treatment with Bio-TeNPs based on SEM observation. Additionally, the antioxidant and cytotoxicity tests showed that the Bio-TeNPs exhibited excellent antioxidant capacity with no cytotoxicity. All these results suggested that strain AB1 showed great potential in bioremediation and Bio-TeNPs were excellent antibacterial nanomaterials with no cytotoxicity.
Collapse
Affiliation(s)
- Bo Ao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Fei He
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jing Lv
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Zheng Tan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- *Correspondence: Xian Xia,
| |
Collapse
|
34
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier J, Costa RD, Bonifazi D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew Chem Int Ed Engl 2022; 61:e202202137. [PMID: 35274798 PMCID: PMC9544418 DOI: 10.1002/anie.202202137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).
Collapse
Affiliation(s)
- Deborah Romito
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Elisa Fresta
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Luca M. Cavinato
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Hanspeter Kählig
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Heinz Amenitsch
- Graz University of TechnologyInstitute for Inorganic ChemistryStremayergasse 9/V8010GrazAustria
| | - Laura Caputo
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Christophe Charlier
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Rubén D. Costa
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Davide Bonifazi
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
35
|
Sinharoy A, Lens PNL. Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129333. [PMID: 35728327 DOI: 10.1016/j.jhazmat.2022.129333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The performance of Aspergillus niger pellets to remove selenite and tellurite from wastewater using batch and continuous fungal pelleted bioreactors was investigated. The acid hydrolysate of brewer's spent grain (BSG) was utilized by A. niger as the electron donor for selenite and tellurite reduction. The dilution of BSG hydrolysate using mineral medium had a positive effect on the selenite and tellurite removal efficiency with a 1:3 ratio giving the best efficiency. However, selenite and tellurite inhibited fungal growth with a 40.9% and 27.3% decrease in the A. niger biomass yield in the presence of 50 mg/L selenite and tellurite, respectively. The maximum selenite and tellurite removal efficiency using 25% BSG hydrolysate in batch incubations amounted to 72.8% and 99.5% Two fungal pelleted bioreactors were operated in continuous mode using BSG hydrolysate as the substrate. Both the selenite and tellurite removal efficiencies during steady state operation were > 80% with tellurite showing a maximum removal efficiency of 98.5% at 10 mg/L influent concentration. Elemental Se nanospheres for selenite and both Te nanospheres and nanorods for tellurite were formed within the fungal pellets. This study demonstrates the suitability BSG hydrolysate as a low cost carbon source for removal of selenite and tellurite using fungal pellet bioreactors.
Collapse
Affiliation(s)
- Arindam Sinharoy
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
36
|
Wegener D, Hoffmann KF, Pérez-Bitrián A, Bayindir I, Hadi AN, Wiesner A, Riedel S. Air-stable aryl derivatives of pentafluoroorthotellurate. Chem Commun (Camb) 2022; 58:9694-9697. [PMID: 35959700 PMCID: PMC9404409 DOI: 10.1039/d2cc03936b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023]
Abstract
We report on two different sets of air-stable derivatives of pentafluoroorthotellurate containing fluorinated and non-fluorinated aryl groups. The acid cis-PhTeF4OH was obtained in gram scale and further transformed to Ag[cis-PhTeF4O], which was used as a cis-PhTeF4O transfer reagent to obtain [PPh4][cis-PhTeF4O]. Furthermore, the synthesis of trans-(C6F5)2TeF3OH was achieved by a selective hydrolysis of trans-(C6F5)2TeF4 in the presence of KF and subsequent protonation by aHF. Quantum-chemical calculations show a higher acidity and robustness against fluoride abstraction for trans-(C6F5)2TeF3OH compared to cis-PhTeF4OH.
Collapse
Affiliation(s)
- Daniel Wegener
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Kurt F Hoffmann
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Alberto Pérez-Bitrián
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Ilayda Bayindir
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Amiera N Hadi
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195 Berlin, Germany.
| |
Collapse
|
37
|
|
38
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
39
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
40
|
Hesabizadeh T, Hicks E, Medina Cruz D, Bourdo SE, Watanabe F, Bonney M, Nichols J, Webster TJ, Guisbiers G. Synthesis of "Naked" TeO 2 Nanoparticles for Biomedical Applications. ACS OMEGA 2022; 7:23685-23694. [PMID: 35847343 PMCID: PMC9280960 DOI: 10.1021/acsomega.2c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chalcogenide nanoparticles have become a very active field of research for their optoelectronic and biological properties. This article shows the production of tellurium dioxide nanoparticles (TeO2 NPs) by pulsed laser ablation in liquids. The produced nanoparticles were spherical with a diameter of around 70 nm. The energy band gap of those nanoparticles was determined to be around 5.2 eV. Moreover, TeO2 NPs displayed a dose-dependent antibacterial effect against antibiotic-resistant bacteria such as multidrug-resistant Escherichia coli (MDR E. coli) and methicillin-resistant Staphylococcus aureus (MR S. aureus). The "naked" nature of the nanoparticle surface helped to eradicate the antibiotic-resistant bacteria at a very low concentration, with IC50 values of ∼4.3 ± 0.9 and 3.7 ± 0.2 ppm for MDR E. coli and MR S. aureus, respectively, after just 8 h of culture. Further, the IC50 values of the naked TeO2 NPs against melanoma (skin cancer) and healthy fibroblasts were 1.6 ± 0.7 and 5.5 ± 0.2 ppm, respectively, for up to 72 h. Finally, to understand these optimal antibacterial and anticancer properties of the TeO2 NPs, the reactive oxygen species generated by the nanoparticles were measured. In summary, the present in vitro results demonstrate much promise for the presently prepared TeO2 NPs and they should be studied for a wide range of safe antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Tina Hesabizadeh
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Evan Hicks
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - David Medina Cruz
- Department
of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360
Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shawn E. Bourdo
- Center
for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Fumiya Watanabe
- Center
for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Marvin Bonney
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - John Nichols
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| | - Thomas J. Webster
- Department
of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360
Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Grégory Guisbiers
- Department
of Physics and Astronomy, University of
Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204, United States
| |
Collapse
|
41
|
A novel antibacterial benzimidazolium hexachlorotellurate hybrid compound: Experimental-Theoretical characterization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Zha J, Wang Z, Liu B, Tan Q, Xu B. Multicomponent Reaction of Isocyanide, Ditelluride, and Mn(III) Carboxylate: Synthesis of N-Acyl Tellurocarbamate. Org Lett 2022; 24:2863-2867. [PMID: 35420436 DOI: 10.1021/acs.orglett.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of isocyanides, ditellurides and manganese(III) carboxylates under mild reaction conditions leads to the synthesis of various N-acyl tellurocarbamates. This method demonstrates good functional tolerance and broad substrate scope and, as a result, is especially suitable for the postfunctionalization of complicated molecules such as drugs. The given method can be further extended to the synthesis of selenocarbamates.
Collapse
Affiliation(s)
- Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Zhuoer Wang
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Miller DK, Chernyshov IY, Torubaev YV, Rosokha SV. From weak to strong interactions: structural and electron topology analysis of the continuum from the supramolecular chalcogen bonding to covalent bonds. Phys Chem Chem Phys 2022; 24:8251-8259. [PMID: 35320823 DOI: 10.1039/d1cp05441d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The relationship between covalent and supramolecular bonding, and the criteria of the assignments of different interactions were explored via the review of selenium and tellurium containing structures in the Cambridge Structural Database and their computational analysis using Quantum Theory of Atoms in Molecules (QTAIM). This combined study revealed continuums of the interatomic Se⋯Br and Te⋯I distances, dCh⋯X, in the series of associations from the sums of the van der Waals radii of these atoms (rCh + rX) to their covalent bond lengths. The electron densities, ρ(r), at Bond Critical Points (BCPs) along the chalcogen bond paths increased gradually from about 0.01 a.u. common for the non-covalent interactions to about 0.1 a.u. typical for the covalent bonds. The log ρ(r) values fell on the same linear trend line when plotted against normalized interatomic distances, RXY = dCh⋯X/(rCh + rX). The transition from the positive to negative values of the energy densities, H(r), at the BCPs (related to a changeover of essentially non-covalent into partially covalent interactions) were observed at RXY ≈ 0.80. Synchronous changes of bonding characteristics with RXY (similar to that found earlier in the halogen-bonded systems) designated normalized interatomic separation as a critical factor determining the nature of these bondings. The uninterrupted continuums of Te⋯I and Se⋯Br bond lengths and BCPs' characteristics signified an intrinsic link between limiting types of bonding involving chalcogen atoms and between covalent and supramolecular bonding in general.
Collapse
Affiliation(s)
- Daniel K Miller
- Chemistry Department, Ball State University, Muncie, IN, 47306, USA.
| | - Ivan Yu Chernyshov
- TheoMat group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russia
| | - Yury V Torubaev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, L eninsky prospect, 31, Moscow, 119991, Russia
| | - Sergiy V Rosokha
- Chemistry Department, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
45
|
Te⋯N secondary-bonding interactions in tellurium crystals: Supramolecular aggregation patterns and a comparison with their lighter congeners. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
O’Neill SW, Krauss TD. Synthetic Mechanisms in the Formation of SnTe Nanocrystals. J Am Chem Soc 2022; 144:6251-6260. [PMID: 35348326 PMCID: PMC9011400 DOI: 10.1021/jacs.1c11697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Infrared active colloidal
semiconducting nanocrystals (NCs) are
important for applications including photodetectors and photovoltaics.
While much research has been conducted on nanocrystalline materials
such as the Pb and Hg chalcogenides, less toxic alternatives such
as SnTe have been far less explored. Previous synthetic work on SnTe
NCs have characterized photophysical properties of the nanoparticles.
This study focuses on understanding the fundamental chemical mechanisms
involved in SnTe NC formation, with the aim to improve synthetic outcomes.
The solvent oleylamine, common to all SnTe syntheses, is found to
form a highly reactive, heteroleptic Sn-oleylamine precursor that
is the primary molecular Sn species initiating NC formation and growth.
Further, the capping ligand oleic acid (OA) reacts with this amine
to produce tin oxide (SnOx), facilitating
the formation of an NC SnOx shell. Therefore,
the use of OA during synthesis is counterproductive to the formation
of stoichiometric SnTe nanoparticles. The knowledge of chemical reaction
mechanisms creates a foundation for the production of high-quality,
unoxidized, and stoichiometric SnTe NCs.
Collapse
Affiliation(s)
- Sean W. O’Neill
- Materials Science Program, University of Rochester, 4011 Wegmans Hall, Rochester, New York 14627, United States
| | - Todd D. Krauss
- Materials Science Program, University of Rochester, 4011 Wegmans Hall, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, 404 Hutchison Hall, Rochester, New York 14627, United States
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, New York 14627, United States
| |
Collapse
|
47
|
Long-Range Supramolecular Synthon Isomerism: Insight from a Case Study of Vinylic Tellurium Trihalides Cl(Ph)C=C(Ph)TeX3 (X = Cl, I). CHEMISTRY 2022. [DOI: 10.3390/chemistry4010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A slight modification of the synthetic procedure resulted in a new (Cc) polymorph of vinylic tellurium-trichloride Z-Cl(Ph)C=C(Ph)TeCl3 (1, β-form) which is stabilized by Te⋯Cl chalcogen bonds, assembling its molecules into the zigzag chains. Such a packing motive is in contrast to the known (Pca21) polymorph of Z-Cl(Ph)C=C(Ph)TeCl3 (1, α-form, CCDC refcode: BESHOW), which is built upon Te⋯π(Ph) chalcogen bonded chains. We noted a similar case of [Te⋯halogen] vs. [Te⋯π(Ph)] supramolecular synthon polymorphism in its triiodide congener Z-Cl(Ph)C=CPh(TeI3) (2, α and β-polymorphic forms). Quantum chemical calculations of the intermolecular interaction and lattice energies for 1α–β and 2α–β supported the assumption that α is thermodynamic while β is a kinetic form. Kinetic forms 1β and 2β are isostructural (Cc), while the thermodynamic forms 1α (Pca21) and 2α (P21/c) are not and feature an unusual example of long-range supramolecular synthon module isomerism. In other words, 1α–2α pairs demonstrate very similarly to isostructural Te⋯πPh ChB stabilized chains, which are further packed differently relative to each other, following different angular geometry of type-I Cl⋯Cl and type-II I⋯I halogen bonding. These structural considerations are backed by quantum chemical calculations that support the proposed hierarchy of primary and secondary supramolecular synthons and the assignment of α and β as thermodynamic and kinetic forms, respectively.
Collapse
|
48
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier JC, Costa R, Bonifazi D. Supramolecular Chalcogen‐Bonded Semiconducting Nanoribbons at work in Lighting Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deborah Romito
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 Vienna AUSTRIA
| | - Elisa Fresta
- Technical University Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Luca Maria Cavinato
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Hanspeter Kählig
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 vienna AUSTRIA
| | - Heinz Amenitsch
- Graz University of Technology: Technische Universitat Graz Institute for Inorganic Chemistry Stremayergasse 9/V 8010 Graz AUSTRIA
| | - Laura Caputo
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Yusheng Chen
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Paolo Samorì
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Jean-Christophe Charlier
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Rubén Costa
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Davide Bonifazi
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna AUSTRIA
| |
Collapse
|
49
|
Sharma T, Sharma R, Kanhere DG. A DFT study of Se n Te n clusters. NANOSCALE ADVANCES 2022; 4:1464-1482. [PMID: 36133684 PMCID: PMC9418643 DOI: 10.1039/d1na00321f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/14/2022] [Indexed: 06/16/2023]
Abstract
First principles calculations have been performed to study the characteristic properties of Se n Te n (n = 5-10) clusters. The present study reveals that the properties of these small clusters are consistent with the properties of Se-Te glassy systems. Several hundred equilibrium structures obtained from a genetic algorithm based USPEX code are relaxed to their minimum energy using the VASP code. Most of the lowest energy buckled ring-like structures are formed from Se-Te heteropolar bonds. Detailed structural analysis and distance energy plots unveil that many equilibrium structures are close in energy to their global minimum. The computed Raman and IR spectra show the dominance of Se-Te heteropolar bonds, consistent with earlier simulation and experimental findings in Se1-x Te x glass materials. Low frequency vibrational modes observed in small clusters are characteristic features of amorphous materials. Non-bonding orbitals (lone pair) are observed in the HOMO, whereas the LUMO is formed from purely antibonding orbitals. The dielectric functions corroborate the bonding mechanism and slightly polar nature of Se n Te n clusters. The energy loss and absorption coefficient indicate the presence of π-plasmons in the UV-visible region. Furthermore, it is ascertained that the use of a hybrid functional (B3LYP) does not affect the properties of small clusters appreciably, except causing a blue shift in the optical spectra. Hence, we find that the small clusters have bearing on the formation of glassy Se-Te systems.
Collapse
Affiliation(s)
- Tamanna Sharma
- Department of Physics, Himachal Pradesh University Shimla 171 005 India
| | - Raman Sharma
- Department of Physics, Himachal Pradesh University Shimla 171 005 India
| | - D G Kanhere
- Centre for Modeling and Simulation, Savitribai Phule Pune University Pune 411 007 India
| |
Collapse
|
50
|
Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Tellurides via S H2 Reaction of Aryl Radicals on Tellurium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030809. [PMID: 35164075 PMCID: PMC8839872 DOI: 10.3390/molecules27030809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Although diaryl tellurides are parent organotellurium compounds, their synthesis methods, especially for unsymmetrical ones, are limited. This may be due to the instability of diaryl tellurides and their synthesis intermediates under reaction conditions. Radical reactions are known to exhibit excellent functional group selectivity; therefore, we focused on a bimolecular homolytic substitution (SH2) reaction between the aryl radical and diaryl ditelluride. Aryl radicals are generated from arylhydrazines in air and captured by diaryl ditellurides, resulting in a selective formation of unsymmetrical diaryl tellurides with high yields. The electronic effects of the substituents on both arylhydrazines and diaryl ditellurides on the SH2 reaction of tellurium are also discussed in detail.
Collapse
|