1
|
Jaiswal A, Rawat PS, Singh SK, Bhatti JS, Khurana A, Navik U. Betaine Intervention as a Novel Approach to Preventing Doxorubicin-Induced Cardiotoxicity. ADVANCES IN REDOX RESEARCH 2023; 9:100084. [DOI: 10.1016/j.arres.2023.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
2
|
Free radical induced activity of an anthracycline analogue and its Mn II complex on biological targets through in situ electrochemical generation of semiquinone. Heliyon 2021; 7:e07746. [PMID: 34458604 PMCID: PMC8379465 DOI: 10.1016/j.heliyon.2021.e07746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Cytotoxicity by anthracycline antibiotics is attributed to several pathways. Important among them are formation of free-radical intermediates. However, their generation makes anthracyclines cardiotoxic which is a concern on their use as anticancer agents. Hence, any change in redox behavior that address cardiotoxicity is welcome. Modulation of redox behavior raises the fear that cytotoxicity could be compromised. Regarding the generation of free radical intermediates on anthracyclines, a lot depends on the surrounding environment (oxic or anoxic), polarity and pH of the medium. In case of anthracyclines, one-electron reduction to semiquinone or two-electron reduction to quinone-dianion are crucial both for cytotoxicity and for cardiotoxic side effects. The disproportion-comproportionation equilibria at play between quinone-dianion, free quinone and semiquinone control biological activity. Whatever is the form of reduction, semiquinones are generated as a consequence of the presence of anthracyclines and these interact with a biological target. Alizarin, a simpler anthracycline analogue and its MnII complex were subjected to electrochemical reduction to realize what happens when anthracyclines are reduced by compounds present in cells as members of the electron transport chain. Glassy carbon electrode maintained at the pre-determined reduction potential of a compound was used for reduction of the compounds. Nucleobases and calf thymus DNA that were maintained in immediate vicinity of such radical generation were used as biological targets. Changes due to the generated species under aerated/de-aerated conditions on nucleobases and on DNA helps one to realize the process by which alizarin and its MnII complex might affect DNA. The study reveals alizarin was more effective on nucleobases than the complex in the free radical pathway. Difference in damage caused by alizarin and the MnII complex on DNA is comparatively less than that observed on nucleobases; the complex makes up for any inefficacy in the free radical pathway by its other attributes.
Collapse
|
3
|
Liu Y, Lv S, Liu D, Song F. Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomater 2020; 116:16-31. [PMID: 32942012 DOI: 10.1016/j.actbio.2020.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Nanoscale metal coordination polymers (NCPs), built from metal ions and organic ligands, have attracted tremendous interest in biomedical applications. This is mainly due to their mesoporous structure, tunable size and morphology and versatile functionality. NCPs can be further divided into nanoscale metal-organic frameworks (NMOFs) and amorphous coordination polymer particles (ACPPs) depending on their structural crystallinity. NMOFs as nanocarriers have been extensively reviewed. However, the highlights of ACPPs as theranostic nanoplatforms are still limited. In this review, the recent progress of ACPPs as theranostic nanoplatforms is summarized based on what types of organic linkers used. The ACPPs are divided into three main parts: photosensitizers-based ACPPs, chemical drugs-based ACPPs, and biomolecules-based ACPPs. Finally, the prospects and challenges of the ACPPs for enhanced biomedical applications are also discussed. STATEMENT OF SIGNIFICANCE: Over the last decades, amorphous metal coordination polymers (ACPPs), constructed by metal ions and organic linkers, have attracted enormous interest in cancer treatment owing to their high drug loading capability, facile synthetic procedures, low long-term toxicity, and mild preparation conditions. In this review, we highlight the recent progress of ACPPs for biomedical application based on different types of organic building blocks including photosensitizers, chemical drugs, and biomolecules. Moreover, the prospects and challenges of ACPPs for clinical application are also discussed. We hope this review entitled "Recent development of amorphous metal coordination polymers for cancer therapy" would arise the researchers' interest in this field to accelerate their clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T 1 MRI activation for cancer theranostics. Biomaterials 2020; 244:119979. [PMID: 32200104 PMCID: PMC7138217 DOI: 10.1016/j.biomaterials.2020.119979] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
The effort of incorporating therapeutic drugs with imaging agents has been one of the mainstreams of nanomedicine, which holds great promise in cancer treatment in terms of monitoring therapeutic drug activity and evaluating prognostic index. However, it is still technically challenging to develop nanomedicine endowing a spatiotemporally controllable mechanism of drug release and activatable imaging capability. Here, we developed a yolk-shell type of GSH-responsive nanovesicles (NVs) in which therapeutic drug (Doxorubicin, DOX) and magnetic resonance imaging (MRI) contrast agent (ultrasmall paramagnetic iron oxide nanoparticles, USPIO NPs) formed complexes (denoted as USD) and were encapsulated inside the NVs. The formation of USD complexes is mediated by both the electrostatic adsorption between DOX and poly(acrylic acid) (PAA) polymers and the DOX-iron coordination effect on USPIO NPs. The obtained USD NVs showed a unique yolk-shell structure with restrained drug activity and quenched T1 MRI contrast ability which, on the other hand, can respond to glutathione (GSH) and lead to drug release and T1 contrast activation in a spatiotemporally concurrent manner. Furthermore, the USD NVs exhibited great potential to kill HCT116 cancer cells in vitro and effectively inhibit the tumor growth in vivo. This study may shed light on the design of sophisticated nanotheranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Xinyu Wang
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin Sun
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Haixin Lin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yong Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kuikun Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
5
|
Jiang Y, Zhang Q. Catalpol ameliorates doxorubicin-induced inflammation and oxidative stress in H9C2 cells through PPAR-γ activation. Exp Ther Med 2020; 20:1003-1011. [PMID: 32765656 PMCID: PMC7388568 DOI: 10.3892/etm.2020.8743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-induced cardiomyopathy is a severe disease that leads to refractory heart disease at late stages, with increasing detrimental effects. DOX-induced cell damage is primarily induced via cellular oxidative stress. The present study investigated the effects of catalpol on doxorubicin (DOX)-induced H9C2 cardiomyocyte inflammation and oxidative stress. The Cell Counting Kit-8 assay was performed to detect cell viability, and western blotting was performed to detect the expression of peroxisome proliferator-activated receptor (PPAR)-γ in H9C2 cells. The expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were measured using ELISAs. Furthermore, the oxidative stress kit was used to detect the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase. A reactive oxygen species (ROS) kit and DCF-DA staining were used to detect ROS levels. The results indicated that DOX treatment inhibited H9C2 cell expression of PPAR-γ and decreased H9C2 cell viability. Various concentrations of catalpol exhibited a less potent effect on H9C2 cell viability compared with DOX; however, catalpol increased the viability of DOX-induced H9C2 cells. Catalpol treatment also significantly decreased the expression levels of inflammatory factors (TNF-α, IL-1β and IL-6) in DOX-induced H9C2 cells, which was reversed by transfections with short hairpin RNA targeting PPAR-γ. Results from the present study indicated that catalpol ameliorated DOX-induced inflammation and oxidative stress in H9C2 cardiomyoblasts by activating PPAR-γ.
Collapse
Affiliation(s)
- Yanjie Jiang
- Department of Pharmacology, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang 321017, P.R. China
| | - Qing Zhang
- Department of Pharmacy, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, P.R. China
| |
Collapse
|
6
|
Synthesis, characterization and albumin binding capabilities of quinizarin containing ternary cobalt(III) complexes. J Inorg Biochem 2020; 204:110963. [DOI: 10.1016/j.jinorgbio.2019.110963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/24/2023]
|
7
|
El-Boubbou K, Ali R, Al-Zahrani H, Trivilegio T, Alanazi AH, Khan AL, Boudjelal M, AlKushi A. Preparation of iron oxide mesoporous magnetic microparticles as novel multidrug carriers for synergistic anticancer therapy and deep tumor penetration. Sci Rep 2019; 9:9481. [PMID: 31263250 PMCID: PMC6603044 DOI: 10.1038/s41598-019-46007-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
The preparation of mesoporous iron oxides with controllable physiochemical properties for effective therapeutic drug delivery remains a formidable challenge. Herein, iron oxide mesoporous magnetic microparticles (IO-MMMs) were prepared by a modified reverse hard-templating approach using, for the first time, acid-prepared mesoporous spheres (APMS) as the hard silica template. The obtained mesostructures exhibited remarkably high surface area and large pore volumes (SBET = 240 m2/g and Vpore = 0.55 cm3/g), controllable average sizes, generally uniform morphologies, and excellent biocompatibilities, allowing them to achieve optimal drug release in cancer cells and tumor tissues. IO-MMM carriers were able to co-load high amounts of hydrophilic chemotherapeutic drugs (Dox or Daun) and/or hydrophobic hormonal anticancer drugs (Tam), and release them sustainably in a pH-dependent manner, utilizing the fluorescence of Daun to real-time trace the intracellular drug distribution, and employing Daun/Tam to treat cancer by combined chemo/hormonal therapy. Cytotoxicity assays against different types of cancerous cells showed that the combinatory Daun/Tam@IO-MMM formulation significantly reduced the viability of metastatic MCF7 and KAIMRC1 breast as well as HCT8 colorectal cancer cells, with the least potency towards non-cancerous normal primary cells (up to 10-fold). Electron, flow, and live confocal microscopy imaging confirmed that the loaded vehicles were successfully and differentially uptaken by the different tested cells, gradually releasing their payloads, and causing apoptotic cell death. Importantly, compared to free drugs, Daun/Tam@IO-MMMs displayed enhanced drug accumulation in patient breast primary tumor tissues, deeply penetrating into the tumor region and killing the tumor cells inside. The designed carriers described here, thus, constitute a novel promising magnetic mesoporous smart system that entraps different kinds of drugs and release them in a controlled manner for combinatorial chemo/hormonal cancer theranostics. This multifactorial platform may open new avenues in cancer therapy as efficient synergistic antitumor system through overcoming limitations of conventional cancer therapy.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11481, Saudi Arabia. .,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia.
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Hajar Al-Zahrani
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Thadeo Trivilegio
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Abdullah H Alanazi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Abdul Latif Khan
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Abdulmohsen AlKushi
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| |
Collapse
|
8
|
Park JW, Park KH, Seo S. Natural polyelectrolyte complex‐based pH‐dependent delivery carriers using alginate and chitosan. J Appl Polym Sci 2019. [DOI: 10.1002/app.48143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Woo Park
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| | - Kyu Ha Park
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| |
Collapse
|
9
|
Economides MP, McCue D, Borthakur G, Pemmaraju N. Topoisomerase II inhibitors in AML: past, present, and future. Expert Opin Pharmacother 2019; 20:1637-1644. [PMID: 31136213 DOI: 10.1080/14656566.2019.1621292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Topoisomerase II inhibitors have long been used in the frontline and as salvage therapy for AML, with daunorubicin and idarubicin being prototypical agents in this therapeutic class, classically in combination with nucleoside analogs, e.g. cytarabine. Most recently, several other compounds from this drug class have or are being investigated. Areas covered: The current paper reviews older and newer topoisomerase II inhibitors in clinical development for the treatment of AML. The authors discuss the clinical use of these agents, current trials involving them as well as their safety profile. Important side effects of these medications including therapy-related AML (t-AML) are also covered. Expert opinion: Topoisomerase II inhibitors have helped improve outcomes in AML. Recently, the FDA approved several agents including CPX-351 for the treatment of secondary and t-AML. CPX-351 may have applicability in other high-risk myeloid diseases. Future directions include a combination of these agents with other targeted therapies. Finally, the authors believe that small molecule inhibitors, such as venetoclax and possibly immunotherapy options could also be incorporated to our treatment paradigm in selected patients.
Collapse
Affiliation(s)
- Minas P Economides
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston , Houston , TX , USA
| | - Deborah McCue
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
10
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
11
|
Lin M, Chen B. Advances in the drug therapies of acute myeloid leukemia (except acute wpromyelocytic leukemia). Drug Des Devel Ther 2018; 12:1009-1017. [PMID: 29750014 PMCID: PMC5933364 DOI: 10.2147/dddt.s161199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy, characterized by the clonal expansion of myeloid blasts in the peripheral blood, bone marrow, and/or other tissues. The new drugs used for treating AML are facing a big challenge, and the candidates include cytotoxic drugs, targeted small-molecule inhibitors, and monoclonal antibodies. In recent years, active research has focused on several new agents for including them in the large antileukemic drug family. This review aims to introduce some of these new drugs and highlights new advances made in the old drugs, mainly in the last 5 years.
Collapse
Affiliation(s)
- Min Lin
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Mike LA, Tripathi A, Blankenship CM, Saluk A, Schultz PJ, Tamayo-Castillo G, Sherman DH, Mobley HLT. Discovery of nicoyamycin A, an inhibitor of uropathogenic Escherichia coli growth in low iron environments. Chem Commun (Camb) 2018; 53:12778-12781. [PMID: 29139494 DOI: 10.1039/c7cc07732g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput screening and activity-guided purification identified nicoyamycin A, a natural product comprised of an uncommon 3-methyl-1,4-dioxane ring incorporated into a desferrioxamine-like backbone via a spiroaminal linkage. Nicoyamycin A potently inhibits uropathogenic Escherichia coli growth in low iron medium, a promising step toward developing novel antibiotics to treat recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Laura A Mike
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gravina GL, Mancini A, Mattei C, Vitale F, Marampon F, Colapietro A, Rossi G, Ventura L, Vetuschi A, Di Cesare E, Fox JA, Festuccia C. Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models. Oncotarget 2018; 8:29865-29886. [PMID: 28415741 PMCID: PMC5444710 DOI: 10.18632/oncotarget.16168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT). Results Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10−100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly higher γH2Ax levels compared with controls. In xenograft models, vosaroxin reduced tumor growth and showed enhanced activity with RT; vosaroxin/RT combined was more effective than temozolomide/RT. Vosaroxin/RT triggered rapid and massive cell death with characteristics of necrosis. A minor proportion of treated cells underwent caspase-dependent apoptosis, in agreement with in vitro results. Vosaroxin/RT inhibited RT-induced autophagy, increasing necrosis. This was associated with increased recruitment of granulocytes, monocytes, and undifferentiated bone marrow–derived lymphoid cells. Pharmacokinetic analyses revealed adequate blood-brain penetration of vosaroxin. Vosaroxin/RT increased disease-free survival (DFS) and overall survival (OS) significantly compared with RT, vosaroxin alone, temozolomide, and temozolomide/RT in the U251-luciferase orthotopic model. Materials and Methods Cellular, molecular, and antiproliferative effects of vosaroxin alone or combined with RT were evaluated in 13 GBM cell lines. Tumor growth delay was determined in U87MG, U251, and T98G xenograft mouse models. (DFS) and (OS) were assessed in orthotopic intrabrain models using luciferase-transfected U251 cells by bioluminescence and magnetic resonance imaging. Conclusions Vosaroxin demonstrated significant activity in vitro and in vivo in GBM models, and showed additive/synergistic activity when combined with RT in O6-methylguanine methyltransferase-negative and -positive cell lines.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Giulia Rossi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, Chair of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Judith A Fox
- Sunesis Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Jamieson GC, Fox JA, Poi M, Strickland SA. Molecular and Pharmacologic Properties of the Anticancer Quinolone Derivative Vosaroxin: A New Therapeutic Agent for Acute Myeloid Leukemia. Drugs 2017; 76:1245-1255. [PMID: 27484675 PMCID: PMC4989016 DOI: 10.1007/s40265-016-0614-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vosaroxin is a first-in-class anticancer quinolone derivative that targets topoisomerase II and induces site-selective double-strand breaks in DNA, leading to tumor cell apoptosis. Vosaroxin has chemical and pharmacologic characteristics distinct from other topoisomerase II inhibitors due to its quinolone scaffold. The efficacy and safety of vosaroxin in combination with cytarabine were evaluated in patients with relapsed/refractory acute myeloid leukemia (AML) in a phase III, randomized, multicenter, double-blind, placebo-controlled study (VALOR). In this study, the addition of vosaroxin produced a 1.4-month improvement in median overall survival (OS; 7.5 months with vosaroxin/cytarabine vs. 6.1 months with placebo/cytarabine; hazard ratio [HR] 0.87, 95 % confidence interval [CI] 0.73−1.02; unstratified log-rank p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 0.061; stratified log-rank p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}=0.024), with the greatest OS benefit observed in patients ≥60 years of age (7.1 vs. 5.0 months; HR 0.75, 95 % CI 0.62−0.92; p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}=0.003) and patients with early relapse (6.7 vs. 5.2 months; HR 0.77, 95 % CI 0.59−1.00; p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 0.039), two AML patient groups that typically have poor prognosis. Here we review the chemical and pharmacologic properties of vosaroxin, how these properties are distinct from those of currently available topoisomerase II inhibitors, how they may contribute to the efficacy and safety profile observed in the VALOR trial, and the status of clinical development of vosaroxin for treatment of AML.
Collapse
Affiliation(s)
| | - Judith A Fox
- Sunesis Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Ming Poi
- College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stephen A Strickland
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Lai H, Zhang X, Feng P, Xie L, Chen J, Chen T. Enhancement of Antiangiogenic Efficacy of Iron(II) Complex by Selenium Substitution. Chem Asian J 2017; 12:982-987. [DOI: 10.1002/asia.201700272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiang Zhang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Lina Xie
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Jinjin Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
16
|
Nijenhuis CM, Lucas L, Rosing H, Huitema ADR, Mergui-Roelvink M, Jamieson GC, Fox JA, Mould DR, Schellens JHM, Beijnen JH. Metabolism and disposition of the anticancer quinolone derivative vosaroxin, a novel inhibitor of topoisomerase II. Invest New Drugs 2017; 35:478-490. [PMID: 28138829 DOI: 10.1007/s10637-017-0428-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
Abstract
Background Vosaroxin is a first-in-class anticancer quinolone derivative that is being investigated for patients with relapsed or refractory acute myeloid leukemia (AML). The primary objective of this study was to quantitatively determine the pharmacokinetics of vosaroxin and its metabolites in patients with advanced solid tumors. Methods This mass balance study investigated the pharmacokinetics (distribution, metabolism, and excretion) of vosaroxin in cancer patients after a single dose of 60 mg/m2 14C-vosaroxin, administered as short intravenous injection. Blood, urine and feces were collected over 168 h after injection or until recovered radioactivity over 24 h was less than 1% of the administered dose (whichever was earlier). Total radioactivity (TRA), vosaroxin and metabolites were studied in all matrices. Results Unchanged vosaroxin was the major species identified in plasma, urine, and feces. N-desmethylvosaroxin was the only circulating metabolite detected in plasma, accounting for <3% of the administered dose. However, in plasma, the combined vosaroxin + N-desmethylvosaroxin AUC0-∞ was 21% lower than the TRA AUC0-∞ , suggesting the possible formation of protein bound metabolites after 48 h when the concentration-time profiles diverged. The mean recovery of TRA in excreta was 81.3% of the total administered dose; 53.1% was excreted through feces and 28.2% through urine. Conclusions Unchanged vosaroxin was the major compound found in the excreta, although 10 minor metabolites were detected. The biotransformation reactions were demethylation, hydrogenation, decarboxylation and phase II conjugation including glucuronidation.
Collapse
Affiliation(s)
- C M Nijenhuis
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands.
| | - L Lucas
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - H Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands
| | - M Mergui-Roelvink
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G C Jamieson
- Sunesis Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - J A Fox
- Sunesis Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - D R Mould
- Projections Research, Inc., Phoenixville, PA, USA
| | - J H M Schellens
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute and MC Slotervaart, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Benyettou F, Ocadiz Flores JA, Ravaux F, Rezgui R, Jouiad M, Nehme SI, Parsapur RK, Olsen JC, Selvam P, Trabolsi A. Mesoporous γ-Iron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Chemistry 2016; 22:17020-17028. [DOI: 10.1002/chem.201602956] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Florent Ravaux
- Department of Mechanical and Materials Engineering; Masdar Institute of Science and Technology; Abu Dhabi United Arab Emirates
| | | | - Mustapha Jouiad
- Department of Mechanical and Materials Engineering; Masdar Institute of Science and Technology; Abu Dhabi United Arab Emirates
| | | | - Rajesh Kumar Parsapur
- National Centre for Catalysis Research and Department of Chemistry; Indian Institute of Technology-Madras; Chennai 600 036 India
| | - John-Carl Olsen
- Department of Chemistry; University of Rochester, RC Box 270216; Rochester NY 14607-0216 USA
| | - Parasuraman Selvam
- National Centre for Catalysis Research and Department of Chemistry; Indian Institute of Technology-Madras; Chennai 600 036 India
| | - Ali Trabolsi
- New York University; Abu Dhabi United Arab Emirates
| |
Collapse
|
18
|
Marx KR, Kantarjian H, Ravandi F. Vosaroxin: innovative anticancer quinolone for the treatment of acute myelogenous leukemia. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1194753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Menna P, Salvatorelli E, Minotti G. Rethinking Drugs from Chemistry to Therapeutic Opportunities: Pixantrone beyond Anthracyclines. Chem Res Toxicol 2016; 29:1270-8. [PMID: 27420111 DOI: 10.1021/acs.chemrestox.6b00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pixantrone (6,9-bis[(2-aminoethyl)amino]benzo[g]isoquinoline-5,10-dione) has been approved by the European Medicines Agency for the treatment of refractory or relapsed non-Hodgkin's lymphoma (NHL). It is popularly referred to as a novel aza-anthracenedione, and as such it is grouped with anthracycline-like drugs. Preclinical development of pixantrone was in fact tailored to retain the same antitumor activity as that of anthracyclines or other anthracenediones while also avoiding cardiotoxicity that dose-limits clinical use of anthracycline-like drugs. Preliminary data in laboratory animals showed that pixantrone was active, primarily in hematologic malignancies, but caused significantly less cardiotoxicity than doxorubicin or mitoxantrone. Pixantrone was cardiac tolerable also in animals pretreated with doxorubicin, which anticipated a therapeutic niche for pixantrone to treat patients with a history of prior exposure to anthracyclines. This is the case for patients with refractory/relapsed NHL. Pixantrone clinical development, regulatory approval, and penetration in clinical practice were nonetheless laborious if not similar to a rocky road. Structural and nominal similarities with mitoxantrone and anthracyclines may have caused a negative influence, possibly leading to a general perception that pixantrone is a "me-too" anthracycline. Recent insights suggest this is not the case. Pixantrone shows pharmacological and toxicological mechanisms of action that are difficult to reconcile with anthracycline-like drugs. Pixantrone is a new drug with its own characteristics. For example, pixantrone causes mis-segregation of genomic material in cancer cells and inhibits formation of toxic anthracycline metabolites in cardiac cells. Understanding the differences between pixantrone and anthracyclines or mitoxantrone may help one to appreciate how it worked in the phase 3 study that led to its approval in Europe and how it might work in many more patients in everyday clinical practice, were it properly perceived as a drug with its own characteristics and therapeutic potential. The road is rocky but not a dead-end.
Collapse
Affiliation(s)
- Pierantonio Menna
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emanuela Salvatorelli
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Giorgio Minotti
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
20
|
Short NJ, Ravandi F. The safety and efficacy of vosaroxin in patients with first relapsed or refractory acute myeloid leukemia - a critical review. Expert Rev Hematol 2016; 9:529-34. [DOI: 10.1080/17474086.2016.1187063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Kadia TM, Ravandi F, Cortes J, Kantarjian H. New drugs in acute myeloid leukemia. Ann Oncol 2016; 27:770-8. [PMID: 26802152 PMCID: PMC4843183 DOI: 10.1093/annonc/mdw015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022] Open
Abstract
The standard therapy for acute myeloid leukemia (AML) has not changed meaningfully for the past four decades. Improvements in supportive care and modifications to the dose and schedule of existing agents have led to steady improvements in outcomes. However, developing new therapies for AML has been challenging. Although there have been advances in understanding the biology of AML, translating this knowledge to viable treatments has been slow. Active research is currently ongoing to address this important need and several promising drug candidates are currently in the pipeline. Here, we review some of the most advanced and promising compounds that are currently in clinical trials and may have the potential to be part of our future armamentarium. These drug candidates range from cytotoxic chemotherapies, targeted small-molecule inhibitors, and monoclonal antibodies.
Collapse
Affiliation(s)
- T M Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, USA
| | - F Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Cortes
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, USA
| | - H Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
22
|
Pan JL, Guo Q, Yang B, Li YY, Cao JG, Meng XG, Xiao FP. Tetra-Fe(iii) and deca-Mn(iii) metallacrowns built from bis-salicylhydrazide ligands: synthesis, structures and magnetic properties. CrystEngComm 2016. [DOI: 10.1039/c6ce01100d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Bisacchi GS, Hale MR. A "Double-Edged" Scaffold: Antitumor Power within the Antibacterial Quinolone. Curr Med Chem 2016; 23:520-77. [PMID: 26695512 PMCID: PMC4997924 DOI: 10.2174/0929867323666151223095839] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
In the late 1980s, reports emerged describing experimental antibacterial quinolones having significant potency against eukaryotic Type II topoisomerases (topo II) and showing cytotoxic activity against tumor cell lines. As a result, several pharmaceutical companies initiated quinolone anticancer programs to explore the potential of this class in comparison to conventional human topo II inhibiting antitumor drugs such as doxorubicin and etoposide. In this review, we present a modern re-evaluation of the anticancer potential of the quinolone class in the context of today's predominantly pathway-based (rather than cytotoxicity-based) oncology drug R&D environment. The quinolone eukaryotic SAR is comprehensively discussed, contrasted with the corresponding prokaryotic data, and merged with recent structural biology information which is now beginning to help explain the basis for that SAR. Quinolone topo II inhibitors appear to be much less susceptible to efflux-mediated resistance, a current limitation of therapy with conventional agents. Recent advances in the biological understanding of human topo II isoforms suggest that significant progress might now be made in overcoming two other treatment-limiting disadvantages of conventional topo II inhibitors, namely cardiotoxicity and drug-induced secondary leukemias. We propose that quinolone class topo II inhibitors could have a useful future therapeutic role due to the continued need for effective topo II drugs in many cancer treatment settings, and due to the recent biological and structural advances which can now provide, for the first time, specific guidance for the design of a new class of inhibitors potentially superior to existing agents.
Collapse
Affiliation(s)
- Gregory S Bisacchi
- Syngene International Ltd., Biocon Park, Jigani Link Road, Bangalore 560099, India.
| | | |
Collapse
|
24
|
Ravandi F, Ritchie EK, Sayar H, Lancet JE, Craig MD, Vey N, Strickland SA, Schiller GJ, Jabbour E, Erba HP, Pigneux A, Horst HA, Recher C, Klimek VM, Cortes J, Roboz GJ, Odenike O, Thomas X, Havelange V, Maertens J, Derigs HG, Heuser M, Damon L, Powell BL, Gaidano G, Carella AM, Wei A, Hogge D, Craig AR, Fox JA, Ward R, Smith JA, Acton G, Mehta C, Stuart RK, Kantarjian HM. Vosaroxin plus cytarabine versus placebo plus cytarabine in patients with first relapsed or refractory acute myeloid leukaemia (VALOR): a randomised, controlled, double-blind, multinational, phase 3 study. Lancet Oncol 2015; 16:1025-1036. [PMID: 26234174 DOI: 10.1016/s1470-2045(15)00201-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Safe and effective treatments are urgently needed for patients with relapsed or refractory acute myeloid leukaemia. We investigated the efficacy and safety of vosaroxin, a first-in-class anticancer quinolone derivative, plus cytarabine in patients with relapsed or refractory acute myeloid leukaemia. METHODS This phase 3, double-blind, placebo-controlled trial was undertaken at 101 international sites. Eligible patients with acute myeloid leukaemia were aged 18 years of age or older and had refractory disease or were in first relapse after one or two cycles of previous induction chemotherapy, including at least one cycle of anthracycline (or anthracenedione) plus cytarabine. Patients were randomly assigned 1:1 to vosaroxin (90 mg/m(2) intravenously on days 1 and 4 in a first cycle; 70 mg/m(2) in subsequent cycles) plus cytarabine (1 g/m(2) intravenously on days 1-5) or placebo plus cytarabine through a central interactive voice system with a permuted block procedure stratified by disease status, age, and geographical location. All participants were masked to treatment assignment. The primary efficacy endpoint was overall survival and the primary safety endpoint was 30-day and 60-day all-cause mortality. Efficacy analyses were done by intention to treat; safety analyses included all treated patients. This study is registered with ClinicalTrials.gov, number NCT01191801. FINDINGS Between Dec 17, 2010, and Sept 25, 2013, 711 patients were randomly assigned to vosaroxin plus cytarabine (n=356) or placebo plus cytarabine (n=355). At the final analysis, median overall survival was 7·5 months (95% CI 6·4-8·5) in the vosaroxin plus cytarabine group and 6·1 months (5·2-7·1) in the placebo plus cytarabine group (hazard ratio 0·87, 95% CI 0·73-1·02; unstratified log-rank p=0·061; stratified p=0·024). A higher proportion of patients achieved complete remission in the vosaroxin plus cytarabine group than in the placebo plus cytarabine group (107 [30%] of 356 patients vs 58 [16%] of 355 patients, p<0·0001). Early mortality was similar between treatment groups (30-day: 28 [8%] of 355 patients in the vosaroxin plus cytarabine group vs 23 [7%] of 350 in the placebo plus cytarabine group; 60-day: 70 [20%] vs 68 [19%]). Treatment-related deaths occurred at any time in 20 (6%) of 355 patients given vosaroxin plus cytarabine and in eight (2%) of 350 patients given placebo plus cytarabine. Treatment-related serious adverse events occurred in 116 (33%) and 58 (17%) patients in each group, respectively. Grade 3 or worse adverse events that were more frequent in the vosaroxin plus cytarabine group than in the placebo plus cytarabine group included febrile neutropenia (167 [47%] vs 117 [33%]), neutropenia (66 [19%] vs 49 [14%]), stomatitis (54 [15%] vs 10 [3%]), hypokalaemia (52 [15%] vs 21 [6%]), bacteraemia (43 [12%] vs 16 [5%]), sepsis (42 [12%] vs 18 [5%]), and pneumonia (39 [11%] vs 26 [7%]). INTERPRETATION Although there was no significant difference in the primary endpoint between groups, the prespecified secondary analysis stratified by randomisation factors suggests that the addition of vosaroxin to cytarabine might be of clinical benefit to some patients with relapsed or refractory acute myeloid leukaemia. FUNDING Sunesis Pharmaceuticals.
Collapse
Affiliation(s)
- Farhad Ravandi
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Hamid Sayar
- Indiana University Cancer Center, Indianapolis, IN, USA
| | | | | | - Norbert Vey
- Institut Paoli-Calmettes and Aix-Marseille University, Marseille, France
| | | | | | - Elias Jabbour
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harry P Erba
- Division of Hematology and Oncology, University of Alabama, Birmingham, AL, USA
| | - Arnaud Pigneux
- Université de Bordeaux, CHU de Bordeaux, Bordeaux, France
| | - Heinz-August Horst
- Medizinische Klinik und Poliklinik, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Recher
- Institut Universitaire du Cancer de Toulouse Oncopole, Université de Toulouse III, CHU de Toulouse, Toulouse, France
| | | | - Jorge Cortes
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | - Lloyd Damon
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Bayard L Powell
- Wake Forest University Baptist Medical Center-Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Gianluca Gaidano
- Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | - Andrew Wei
- The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Donna Hogge
- Vancouver General Hospital, Vancouver, BC, Canada
| | - Adam R Craig
- Sunesis Pharmaceuticals, South San Francisco, CA, USA
| | - Judith A Fox
- Sunesis Pharmaceuticals, South San Francisco, CA, USA
| | - Renee Ward
- Sunesis Pharmaceuticals, South San Francisco, CA, USA
| | | | - Gary Acton
- Sunesis Pharmaceuticals, South San Francisco, CA, USA
| | - Cyrus Mehta
- Cytel, Cambridge, MA, USA; Harvard School of Public Health, Cambridge, MA, USA
| | | | | |
Collapse
|
25
|
Hotinski AK, Lewis ID, Ross DM. Vosaroxin is a novel topoisomerase-II inhibitor with efficacy in relapsed and refractory acute myeloid leukaemia. Expert Opin Pharmacother 2015; 16:1395-402. [PMID: 25958926 DOI: 10.1517/14656566.2015.1044437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Vosaroxin is a first-in-class anti-cancer quinolone that inhibits topoisomerase-II leading to cell cycle arrest and apoptosis. It has shown efficacy in a range of solid organ and haematopoietic tumours in vitro, and several clinical trials are underway or completed in the field of Acute Myeloid Leukaemia (AML). The treatment of relapsed and refractory AML is a clinical challenge, where long-term survival is rare without allogeneic haematopoietic stem cell transplantation. AREAS COVERED We review the data from the published clinical trials of vosaroxin, including the recently presented Phase III VALOR study. In combination with intermediate dose cytarabine, vosaroxin almost doubled complete response (CR) rates in relapsed and refractory AML compared with cytarabine alone, and prolonged median survival by 1.4 months. EXPERT OPINION Vosaroxin is a promising new agent in the treatment of AML, with the potential to improve CR rates in a high-risk group of patients with relapsed and refractory AML. However, higher CR rates have been associated with higher rates of treatment-related morbidity and mortality, especially in elderly/unfit patients. Maximising the potential of vosaroxin will therefore require the identification of patients most likely to benefit from vosaroxin-containing combination regimens.
Collapse
Affiliation(s)
- Anya K Hotinski
- Royal Adelaide Hospital, Leukaemia Fellow, SA Pathology , Adelaide, SA 5000 , Australia
| | | | | |
Collapse
|
26
|
Nakano I, Soe CZ, Codd R. Isolation of doxorubicin from a bacterial culture using immobilised metal ion affinity chromatography. RSC Adv 2015. [DOI: 10.1039/c5ra07639k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin was isolated as a free ligand from aStreptomyces peucetiusvar.caesiusculture using Ni(ii)-based IMAC. This easy-to-use, water-compatible method could improve the security of doxorubicin supply.
Collapse
Affiliation(s)
- I. Nakano
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| | - C. Z. Soe
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| | - R. Codd
- School of Medical Sciences (Pharmacology)
- The University of Sydney
- Australia
| |
Collapse
|