1
|
Menke AJ, Mellberg JM, Pan H, Reibenspies JH, Janesko BG, Simanek EE. Controlling Swing Rates in Macrocyclic Molecular Mortise Hinges. Chemistry 2023; 29:e202300987. [PMID: 37229593 PMCID: PMC10524934 DOI: 10.1002/chem.202300987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Hinge motion is observed in macrocyclic, mortise-type molecular hinges using variable temperature NMR spectroscopy. The data is consistent with dynamic hinging from a folded-to-extended-to-folded enantiomeric state. Crystallographic and solution structures of the folded states are reported. Chemical shift predictions derived from crystallographic data corroborate fully revolute hinge motion. The rate of hinging is affected by steric congestion at the hinge axis. A macrocycle containing glycine, 1, hinges faster than one comprising aminoisobutyric acid, 2. The free energies of activation, ΔG≠ , for 1 and 2 were determined to be 13.3±0.3 kcal/mol and 16.3±0.3 kcal/mol, respectively. This barrier is largely independent of solvent across those surveyed (CD3 OD, CD3 CN, DMSO-d6 , pyridine-d5 , D2 O). Experiment and computation predict energy barriers that are consistent with disruption of an intramolecular network of hydrogen bonds. DFT calculations reveal a pathway for hinge motion.
Collapse
Affiliation(s)
- Alexander J Menke
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Joseph M Mellberg
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Hongjun Pan
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | | | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Eric E Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, 76129, USA
| |
Collapse
|
2
|
Dais TN, Takano R, Ishida T, Plieger PG. Lanthanide induced variability in localised Co II geometries of four triangular L 3Co 3 IILn III complexes. RSC Adv 2022; 12:4828-4835. [PMID: 35425468 PMCID: PMC8981366 DOI: 10.1039/d1ra08797e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Four tetranuclear heterobimetallic triangle complexes [L3Co3Dy(NO3)2(H2O)(MeOH)5](NO3) (C1), [L3Co3Gd(NO3)3(MeOH)4] (C2), [L3Co3La(NO3)2(H2O)6](NO3)(H2O) (C3), and [L3Co3TbCl(NO3)2(H2O)0.5(MeOH)3.5] (C4), where H2L = 1,4-bisformylnaphthalene-2,3-diol, have been synthesised and structurally characterised. Each complex crystallises with a complete molecule in the asymmetric unit (Z' = 1) and displays near perfect octahedrality in two out of three CoII centres. The third CoII ion assumes a different coordination geometry in each complex: six-coordinate octahedral in C1, six-coordinate with a distortion towards trigonal prismatic in C2, five-coordinate trigonal bipyramidal in C3, and five-coordinate square pyramidal in C4; which has been attributed to increasing lanthanide cation size, coupled with a non-macrocyclic coordination environment. Continuous Shape Measurement (CShM) calculations and octahedral distortion parameter calculations were performed, using the SHAPE and OctaDist software packages, respectively, in order to aid in the assessment of each metal centre's local coordination geometry. The preliminary magnetic investigation of C3 found χ m T = 9.4 cm3 K mol-1 at 300 K and M = 7.1 μ B at 1.8 K, which are approximately two thirds the maximum theoretical values for three CoII ions and indicates the presence of a relatively large zero-field splitting parameter (D/k B = 65 K) operative in each CoII ion rather than exchange coupling between the CoII centres.
Collapse
Affiliation(s)
- Tyson N Dais
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| | - Rina Takano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Takayuki Ishida
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communication 1-5-1 Chofugaoka, Chofu Tokyo 182-8585 Japan
| | - Paul G Plieger
- School of Natural Sciences, Massey University Private Bag 11 222 Palmerston North New Zealand
| |
Collapse
|
3
|
Rojas‐León I, Gómez‐Jaimes G, Montes‐Tolentino P, Hiller W, Alnasr H, Rodríguez‐Molina B, Hernández‐Ahuactzi IF, Beltrán H, Jurkschat K, Höpfl H. Molecular Cage Assembly by Sn-O-Sn Bridging of Di-, Tri- and Tetranuclear Organotin Tectons: Extending the Spacing in Double Ladder Structures. Chemistry 2021; 27:12276-12283. [PMID: 34076334 PMCID: PMC8453508 DOI: 10.1002/chem.202101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Hydrolysis reactions of di- and trinuclear organotin halides yielded large novel cage compounds containing Sn-O-Sn bridges. The molecular structures of two octanuclear tetraorganodistannoxanes showing double-ladder motifs, viz., [{Me3 SiCH2 (Cl)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (μ-O)2 ]2 [1, Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ] and [{Me3 SiCH2 (I)SnCH2 YCH2 Sn(OH)CH2 SiMe3 }2 (μ-O)2 ]2 ⋅0.48 I2 [2⋅0.48 I2 , Y=p-(Me)2 SiC6 H4 -C6 H4 Si(Me)2 ], and the hexanuclear cage-compound 1,3,6-C6 H3 (p-C6 H4 Si(Me)2 CH2 Sn(R)2 OSn(R)2 CH2 Si(Me)2 C6 H4 -p)3 C6 H3 -1,3,6 (3, R=CH2 SiMe3 ) are reported. Of these, the co-crystal 2⋅0.48 I2 exhibits the largest spacing of 16.7 Å reported to date for distannoxane-based double ladders. DFT calculations for the hexanuclear cage and a related octanuclear congener accompany the experimental work.
Collapse
Affiliation(s)
- Irán Rojas‐León
- Centro de Investigaciones QuímicasInstituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Cuernavaca, Morelos62209México
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44221DortmundGermany
| | - Gelen Gómez‐Jaimes
- Centro de Investigaciones QuímicasInstituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Cuernavaca, Morelos62209México
- Departamento de Ciencias NaturalesDCNIUniversidad Autónoma Metropolitana CuajimalpaCiudad de México05370México
| | - Pedro Montes‐Tolentino
- Centro de Investigaciones QuímicasInstituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Cuernavaca, Morelos62209México
| | - Wolf Hiller
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44221DortmundGermany
| | - Hazem Alnasr
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44221DortmundGermany
| | | | - Irán F. Hernández‐Ahuactzi
- Centro Universitario de TonaláUniversidad de GuadalajaraAv. Nuevo Periférico 555Ejido San José Tatepozco, Tonalá, Jalisco45425México
| | - Hiram Beltrán
- Departamento de Ciencias NaturalesDCNIUniversidad Autónoma Metropolitana CuajimalpaCiudad de México05370México
- Departamento de Ciencias BásicasDCBIUniversidad Autónoma Metropolitana AzcapotzalcoCiudad de México02200México
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44221DortmundGermany
| | - Herbert Höpfl
- Centro de Investigaciones QuímicasInstituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosAv. Universidad 1001Cuernavaca, Morelos62209México
| |
Collapse
|
4
|
Jones CD, Kershaw Cook LJ, Marquez-Gamez D, Luzyanin KV, Steed JW, Slater AG. High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge. J Am Chem Soc 2021; 143:7553-7565. [PMID: 33961419 PMCID: PMC8397308 DOI: 10.1021/jacs.1c02891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Many molecular machines
are built from modular components with
well-defined motile capabilities, such as axles and wheels. Hinges
are particularly useful, as they provide the minimum flexibility needed
for a simple and pronounced conformational change. Compounds with
multiple stable conformers are common, but molecular hinges almost
exclusively operate via dihedral rotations rather than truly hinge-like
clamping mechanisms. An ideal molecular hinge would better reproduce
the behavior of hinged devices, such as gates and tweezers, while
remaining soluble, scalable, and synthetically versatile. Herein,
we describe two isomeric macrocycles with clamp-like open and closed
geometries, which crystallize as separate polymorphs but interconvert
freely in solution. An unusual one-pot addition cyclization reaction
was used to produce the macrocycles on a multigram scale from inexpensive
reagents, without supramolecular templating or high-dilution conditions.
Using mechanistic information from NMR kinetic studies and at-line
mass spectrometry, we developed a semicontinuous flow synthesis with
maximum conversions of 85–93% and over 80% selectivity for
a single isomer. The macrocycles feature voids that are sterically
protected from guests, including reactive species such as fluoride
ions, and could therefore serve as chemically inert hinges for adaptive
supramolecular receptors and flexible porous materials.
Collapse
Affiliation(s)
- Christopher D Jones
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - David Marquez-Gamez
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Konstantin V Luzyanin
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Anna G Slater
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
5
|
Hardy M, Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chemistry 2020; 26:13332-13346. [PMID: 32297380 PMCID: PMC7693062 DOI: 10.1002/chem.202001602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host‐systems or as magnetic, photo‐active, redox‐active, and even catalytically active materials.
Collapse
Affiliation(s)
- Matthias Hardy
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| |
Collapse
|
6
|
Hosseinnejad T, Ebrahimpour-Malmir F, Fattahi B. Computational investigations of click-derived 1,2,3-triazoles as keystone ligands for complexation with transition metals: a review. RSC Adv 2018; 8:12232-12259. [PMID: 35539398 PMCID: PMC9079615 DOI: 10.1039/c8ra00283e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/04/2019] [Accepted: 03/02/2018] [Indexed: 01/05/2023] Open
Abstract
In recent years, metal complexes of organo 1,2,3-triazole click-derived ligands have attracted significant attention as catalysts in many chemical transformations and also as biological and pharmaceutical active agents. Regarding the important applications of these metal-organo 1,2,3-triazole-based complexes, in this review, we focused on the recently reported investigations of the structural, electronic, and spectroscopic aspects of the complexation process in transition metal complexes of 1,2,3-triazole-based click ligands. In line with this, the coordination properties of these triazole-based click ligands with transition metals were studied via several quantum chemistry calculations. Moreover, considering the complexation process, we have presented comparative discussions between the computational results and the available experimental data.
Collapse
Affiliation(s)
- Tayebeh Hosseinnejad
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| | - Fatemeh Ebrahimpour-Malmir
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| | - Bahareh Fattahi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| |
Collapse
|
7
|
Zhang YY, Gao WX, Lin L, Jin GX. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Shu HX, Wang JY, Zhang QC, Chen ZN. Photophysical and Electroluminescent Properties of PtAg2 Acetylide Complexes Supported with meso- and rac-Tetraphosphine. Inorg Chem 2017; 56:9461-9473. [PMID: 28441021 DOI: 10.1021/acs.inorgchem.7b00452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui-Xing Shu
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Jin-Yun Wang
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Qian-Chong Zhang
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Zhong-Ning Chen
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Torres-Huerta A, Cruz-Huerta J, Höpfl H, Hernández-Vázquez LG, Escalante-García J, Jiménez-Sánchez A, Santillan R, Hernández-Ahuactzi IF, Sánchez M. Variation of the Molecular Conformation, Shape, and Cavity Size in Dinuclear Metalla-Macrocycles Containing Hetero-Ditopic Dithiocarbamate-Carboxylate Ligands from a Homologous Series of N-Substituted Amino Acids. Inorg Chem 2016; 55:12451-12469. [PMID: 27934408 DOI: 10.1021/acs.inorgchem.6b02387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A homologous series of dithiocarbamate ligands derived from N-substituted amino acids was reacted with different diorganotin dichlorides to give 18 diorganotin complexes. Spectroscopic and mass spectrometric analysis evidenced the formation of assemblies with six-coordinate tin atoms embedded in skewed-trapezoidal bipyramidal coordination environments of composition C2SnS2O2. Single-crystal X-ray diffraction analysis for three of the compounds revealed a one-dimensional polymeric structure for the complex with the ligand derived from 5-aminopentanoic acid, which through further intermolecular Sn···O interactions generated an overall two-dimensional coordination polymer containing 40-membered hexanuclear tin macrocycles. On the contrary, the ligands derived from 6-aminohexanoic and 8-aminooctanoic acid provided the expected 22- and 26-membered dinuclear macrocyclic structures. Density functional theory calculations for a representative series of macrocyclic complexes of composition [Me2SnLx]2 with Lx = ¯S2CN(Me)-(CH2)x-COO¯ (x = 3-12) enabled a detailed analysis of the variations in the molecular conformation, shape, and cavity size of the macrocycles in dependence of the aliphatic spacer. Because of odd-even effects, the difunctional ligands can adopt either a curved or a twisted-pincer shape, while the SnSxO4-x (x = 0-4) moieties can act either as linear or angular tectons with varying connectivity angles.
Collapse
Affiliation(s)
- Aaron Torres-Huerta
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Jorge Cruz-Huerta
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Luis G Hernández-Vázquez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Jaime Escalante-García
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos , Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Arturo Jiménez-Sánchez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, México 07360, México
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, México 07360, México
| | - Irán F Hernández-Ahuactzi
- Centro Universitario de Tonalá, Universidad de Guadalajara , Av. Nuevo Periférico 555, Ejido San José Tatepozco, Tonalá 48525, Jalisco, México
| | - Mario Sánchez
- Centro de Investigación, Advanced Materials Research Center , Alianza Norte 202, PIIT, Carretera Monterrey-Aeropuerto Km. 10, Apodaca 66628, Nuevo Leon, México
| |
Collapse
|
10
|
Preston D, Tucker RAJ, Garden AL, Crowley JD. Heterometallic [MnPtn(L)2n]x+ Macrocycles from Dichloromethane-Derived Bis-2-pyridyl-1,2,3-triazole Ligands. Inorg Chem 2016; 55:8928-34. [DOI: 10.1021/acs.inorgchem.6b01435] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dan Preston
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Robert A. J. Tucker
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Anna L. Garden
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - James D. Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Zhang YY, Zhang L, Lin YJ, Jin GX. Mixed-Metal Coordination Cages Constructed with Pyridyl-Functionalized β-Diketonate Metalloligands: Syntheses, Structures and Host-Guest Properties. Chemistry 2015; 21:14893-900. [DOI: 10.1002/chem.201502194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/07/2022]
|