• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4611578)   Today's Articles (6963)   Subscriber (49382)
For: Aranyosi AJ, Wong EA, Irimia D. A neutrophil treadmill to decouple spatial and temporal signals during chemotaxis. Lab Chip 2015;15:549-556. [PMID: 25412288 PMCID: PMC4268067 DOI: 10.1039/c4lc00970c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Number Cited by Other Article(s)
1
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Ji W, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. Dev Cell 2024:S1534-5807(24)00381-2. [PMID: 38971157 DOI: 10.1016/j.devcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
2
Town JP, Weiner OD. Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance. PLoS Biol 2023;21:e3002307. [PMID: 37747905 PMCID: PMC10553818 DOI: 10.1371/journal.pbio.3002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/05/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]  Open
3
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546744. [PMID: 37425711 PMCID: PMC10327146 DOI: 10.1101/2023.06.27.546744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
4
Liu Y, Ren X, Wu J, Wilkins JA, Lin F. T Cells Chemotaxis Migration Studies with a Multi-Channel Microfluidic Device. MICROMACHINES 2022;13:1567. [PMID: 36295920 PMCID: PMC9611841 DOI: 10.3390/mi13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
5
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022;22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
6
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022;6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]  Open
7
Rocha-Gregg B, Huttenlocher A. Signal integration in forward and reverse neutrophil migration: Fundamentals and emerging mechanisms. Curr Opin Cell Biol 2021;72:124-130. [PMID: 34411839 DOI: 10.1016/j.ceb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
8
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021;12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]  Open
9
Microfluidic devices for neutrophil chemotaxis studies. J Transl Med 2020;18:168. [PMID: 32293474 PMCID: PMC7158383 DOI: 10.1186/s12967-020-02335-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]  Open
10
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
11
Determining whether observed eukaryotic cell migration indicates chemotactic responsiveness or random chemokinetic motion. J Theor Biol 2017;425:103-112. [PMID: 28501636 DOI: 10.1016/j.jtbi.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 01/07/2023]
12
Chandrasekaran A, Ellett F, Jorgensen J, Irimia D. Temporal gradients limit the accumulation of neutrophils towards sources of chemoattractant. MICROSYSTEMS & NANOENGINEERING 2017;3:16067. [PMID: 28713624 PMCID: PMC5507070 DOI: 10.1038/micronano.2016.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 05/19/2023]
13
Menachery A, Kumawat N, Qasaimeh MA. Merging orthogonal microfluidic flows to generate multi-profile concentration gradients. RSC Adv 2017. [DOI: 10.1039/c7ra09692e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]  Open
14
Nakajima A, Ishida M, Fujimori T, Wakamoto Y, Sawai S. The microfluidic lighthouse: an omnidirectional gradient generator. LAB ON A CHIP 2016;16:4382-4394. [PMID: 27735954 DOI: 10.1039/c6lc00898d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
15
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016;100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA