1
|
Yan W, Cao Z, Ding M, Yuan Y. Design and construction of microbial cell factories based on systems biology. Synth Syst Biotechnol 2023; 8:176-185. [PMID: 36874510 PMCID: PMC9979088 DOI: 10.1016/j.synbio.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Environmental sustainability is an increasingly important issue in industry. As an environmentally friendly and sustainable way, constructing microbial cell factories to produce all kinds of valuable products has attracted more and more attention. In the process of constructing microbial cell factories, systems biology plays a crucial role. This review summarizes the recent applications of systems biology in the design and construction of microbial cell factories from four perspectives, including functional genes/enzymes discovery, bottleneck pathways identification, strains tolerance improvement and design and construction of synthetic microbial consortia. Systems biology tools can be employed to identify functional genes/enzymes involved in the biosynthetic pathways of products. These discovered genes are introduced into appropriate chassis strains to build engineering microorganisms capable of producing products. Subsequently, systems biology tools are used to identify bottleneck pathways, improve strains tolerance and guide design and construction of synthetic microbial consortia, resulting in increasing the yield of engineered strains and constructing microbial cell factories successfully.
Collapse
Affiliation(s)
- Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Zhang H, Liu Q, Liang Q, Wang B, Chen Z, Wang J. Expression of tardigrade disordered proteins impacts the tolerance to biofuels in a model cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2023; 13:1091502. [PMID: 36687595 PMCID: PMC9845703 DOI: 10.3389/fmicb.2022.1091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tardigrades, known colloquially as water bears or moss piglets, are diminutive animals capable of surviving many extreme environments, even been exposed to space in low Earth orbit. Recently termed tardigrade disordered proteins (TDPs) include three families as cytoplasmic-(CAHS), secreted-(SAHS), and mitochondrial-abundant heat soluble (MAHS) proteins. How these tiny animals survive these stresses has remained relatively mysterious. Cyanobacteria cast attention as a "microbial factory" to produce biofuels and high-value-added chemicals due to their ability to photosynthesis and CO2 sequestration. We explored a lot about biofuel stress and related mechanisms in Synechocystis sp. PCC 6803. The previous studies show that CAHS protein heterogenous expression in bacteria, yeast, and human cells increases desiccation tolerance in these hosts. In this study, the expression of three CAHS proteins in cyanobacterium was found to affect the tolerance to biofuels, while the tolerance to Cd2+ and Zn2+ were slightly affected in several mutants. A quantitative transcriptomics approach was applied to decipher response mechanisms at the transcriptional level further.
Collapse
Affiliation(s)
- Heao Zhang
- Whittle School and Studios, Shenzhen, Guangdong, China
| | - Qingyang Liu
- Whittle School and Studios, Shenzhen, Guangdong, China
| | - Qing Liang
- Shenzhen Link Spider Technology Co., Ltd., Shenzhen, China
| | - Boxiang Wang
- Shenzhen Link Spider Technology Co., Ltd., Shenzhen, China,*Correspondence: Boxiang Wang, Zixi Chen
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,*Correspondence: Boxiang Wang, Zixi Chen
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Towards understanding the mechanism of n-hexane tolerance in Synechocystis sp. PCC 6803. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Hao D, Bai J, Du J, Wu X, Thomsen B, Gao H, Su G, Wang X. Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites 2021; 11:metabo11110753. [PMID: 34822411 PMCID: PMC8621036 DOI: 10.3390/metabo11110753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolomics has been applied to measure the dynamic metabolic responses, to understand the systematic biological networks, to reveal the potential genetic architecture, etc., for human diseases and livestock traits. For example, the current published results include the detected relevant candidate metabolites, identified metabolic pathways, potential systematic networks, etc., for different cattle traits that can be applied for further metabolomic and integrated omics studies. Therefore, summarizing the applications of metabolomics for economic traits is required in cattle. We here provide a comprehensive review about metabolomic analysis and its integration with other omics in five aspects: (1) characterization of the metabolomic profile of cattle; (2) metabolomic applications in cattle; (3) integrated metabolomic analysis with other omics; (4) methods and tools in metabolomic analysis; and (5) further potentialities. The review aims to investigate the existing metabolomic studies by highlighting the results in cattle, integrated with other omics studies, to understand the metabolic mechanisms underlying the economic traits and to provide useful information for further research and practical breeding programs in cattle.
Collapse
Affiliation(s)
- Dan Hao
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Jiangsong Bai
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianyong Du
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoping Wu
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Hongding Gao
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; (H.G.); (G.S.)
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; (H.G.); (G.S.)
| | - Xiao Wang
- Konge Larsen ApS, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
5
|
Yadav M, Shukla P. Recent systems biology approaches for probiotics use in health aspects: a review. 3 Biotech 2019; 9:448. [PMID: 31763126 PMCID: PMC6848287 DOI: 10.1007/s13205-019-1980-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The market of probiotics is growing dynamically for the food and supplements, which provides better health to an individual. Probiotics are used as dietary management for diseases, but it varies between regions and persons. Systems biology can help in resolving the strain specificity of probiotics by studying their genome level organization. In this review, we have compiled facets of systems biology and next-generation omics methods such as metagenomics, proteomics and metabolomics. These tools are crucial for the optimization of the metabolic processes in probiotics and hence, their use for human health. The limitations and challenges associated with the development of probiotics involve their stability and function in different individuals. Systems biology facilitates emerging metabolic engineering approaches to improve probiotics strain for their broader application. This review provides comprehensive and updated knowledge of engineered probiotics as therapeutics and various challenges in the development of engineered probiotics.
Collapse
Affiliation(s)
- Monika Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
6
|
Lin CT, Xu T, Xing SL, Zhao L, Sun RZ, Liu Y, Moore JP, Deng X. Weighted Gene Co-expression Network Analysis (WGCNA) Reveals the Hub Role of Protein Ubiquitination in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2019; 60:2707-2719. [PMID: 31410481 DOI: 10.1093/pcp/pcz160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Chih-Ta Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Lai Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Li Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Run-Ze Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - John Paul Moore
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Matieland 7602, South Africa
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
7
|
Qiao C, Zhang M, Luo Q, Lu X. Identification of two two-component signal transduction mutants with enhanced sucrose biosynthesis in Synechococcus elongatus PCC 7942. J Basic Microbiol 2019; 59:465-476. [PMID: 30802333 DOI: 10.1002/jobm.201800676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Metabolic engineering of the freshwater cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942), synthesizing sucrose as the only compatible solute upon salt stress, has greatly improved its sucrose productivity. However, the signaling and regulatory mechanisms of this physiological process are still unknown. To know more about these aspects, a library of inactivation mutants for all 44 predicted signal transduction genes of Syn7942 was constructed. By evaluating sucrose production, two two-component signal transduction mutants Δ1125 and Δ1404, in which Synpcc7942_1125 and Synpcc7942_1404 was inactivated, respectively, were identified. They exhibited stably enhanced sucrose production, but the growth and the expression of sps encoding sucrose-phosphate synthase under salt stress were not affected, indicating that the corresponding signal transduction proteins do not regulate salt-induced sucrose synthesis by directly regulating sps expression. Moreover, the glycogen accumulation was enhanced in Δ1125 and Δ1404, and the salt stress-intensified photodamage of these mutants was also found to be relieved. These results indicated that the basic cell metabolisms such as glycogen metabolism and photosynthesis of the mutants were affected by gene inactivation, which might further affect salt-induced sucrose synthesis. Further studies on gene functions and signaling pathways or networks of Synpcc7942_1125 and Synpcc7942_1404 would reveal more details about the molecular bases for the observed phenotypes of Δ1125 and Δ1404.
Collapse
Affiliation(s)
- Cuncun Qiao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Aoshanwei, Qingdao, China
| |
Collapse
|
8
|
Horinouchi T, Maeda T, Furusawa C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J Microbiol Biotechnol 2018; 34:157. [PMID: 30341456 PMCID: PMC6208762 DOI: 10.1007/s11274-018-2542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Microbes are capable of producing alcohols, making them an important source of alternative energy that can replace fossil fuels. However, these alcohols can be toxic to the microbes themselves, retaring or inhibiting cell growth and decreasing the production yield. One solution is improving the alcohol tolerance of such alcohol-producing organisms. Advances in omics technologies, including transcriptomic, proteomic, metabolomic, and genomic technologies, have helped us understand the complex mechanisms underlying alcohol toxicity, and such advances could assist in devising strategies for engineering alcohol-tolerant strains. This review highlights these advances and discusses strategies for improving alcohol tolerance using omics analyses.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tomoya Maeda
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 2018; 36:2060-2076. [PMID: 30266342 DOI: 10.1016/j.biotechadv.2018.09.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
International competition within the dairy market and increasing public awareness about the importance of functional food consumption are providing new challenges for innovation in the probiotic sector. In this context, countless references are currently dedicated to the selection and characterization of new species and more specific strains of probiotic bacteria. In general, these studies adopt basic selection criteria established by the World Health Organization (WHO), including host-associated stress resistance, epithelium adhesion ability, and antimicrobial activity. These aspects are applied to ensure that the candidate probiotic could withstand the stressful conditions of the human digestive system and exert functional proprieties. However, it cannot be assumed that these novel microbial strains are capable of offering several biological benefits attributed to probiotics. Additionally, safety-associated selection criteria, such as plasmid-associated antibiotic resistance spreading and enterotoxin production, are often neglected. This article reviews the recent developments in the processes, strategies, and methods, such as anticarcinogenic, antidepression, antianxiety, antiobesity, antidiabetic, immunostimulatory, and cholesterol-lowering assessments, to select probiotic strains with the ultimate objective of assisting future probiotic microbe evaluation studies.
Collapse
Affiliation(s)
| | - Bruna de Oliveira Coelho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Vanete Thomaz-Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium. J Proteomics 2018; 179:100-109. [DOI: 10.1016/j.jprot.2018.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
|
11
|
Bi Y, Pei G, Sun T, Chen Z, Chen L, Zhang W. Regulation Mechanism Mediated by Trans-Encoded sRNA Nc117 in Short Chain Alcohols Tolerance in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:863. [PMID: 29780373 PMCID: PMC5946031 DOI: 10.3389/fmicb.2018.00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans-encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans-encoded sRNA Nc117 was determined to be 102 nucleotides using 3′ RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans-encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans-encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.
Collapse
Affiliation(s)
- Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of the People's Republic of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Pei G, Niu X, Zhou Y, Chen L, Zhang W. Crosstalk of two-component signal transduction systems in regulating central carbohydrate and energy metabolism during autotrophic and photomixotrophic growth of Synechocystis sp. PCC 6803. Integr Biol (Camb) 2018; 9:485-496. [PMID: 28485419 DOI: 10.1039/c7ib00049a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unicellular model cyanobacterium Synechocystis sp. PCC 6803 has received considerable attention as a sustainable energy resource because of its photosynthetic machinery. However, two-component signal transduction systems (TCSTSs) in regulating central carbohydrate and energy metabolism of cyanobacteria are still poorly understood due to their diversity and functional complication. In this study, by comparing the growth of knockout mutants of 44 response regulators (RRs) of TCSTSs in Synechocystis, several RR mutants demonstrating differential growth patterns were identified under auto- or photomixotrophic conditions. However, in spite of no growth difference observed for the remaining RR mutants, liquid chromatography-mass spectrometry based metabolomic profile analysis showed that a widespread crosstalk of TCSTSs in regulating central carbohydrate and energy metabolism of Synechocystis was identified, while most of them showed diverse patterns during different trophic types or growth stages. Furthermore, an integrative analysis between evolutionary relationships and metabolomic profiles revealed some pairs of paralogous RRs with highly functional convergence, suggesting the possible conserved functions of Synechocystis TCSTSs during evolution. This study laid an important basis for understanding the function of TCSTSs in photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Lopes da Silva T, Passarinho PC, Galriça R, Zenóglio A, Armshaw P, Pembroke JT, Sheahan C, Reis A, Gírio F. Evaluation of the ethanol tolerance for wild and mutant Synechocystis strains by flow cytometry. ACTA ACUST UNITED AC 2018; 17:137-147. [PMID: 29556479 PMCID: PMC5856660 DOI: 10.1016/j.btre.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/28/2023]
Abstract
Flow cytometry was used to evaluate the effect of initial ethanol concentrations on cyanobacterial strains of Synechocystis PCC 6803 [wild-type (WT), and ethanol producing recombinants (UL 004 and UL 030)] in batch cultures. Ethanol recombinants, containing one or two metabolically engineered cassettes, were designed towards the development of an economically competitive process for the direct production of bioethanol from microalgae through an exclusive autotrophic route. It can be concluded that the recombinant Synechocystis UL 030 containing two copies of the genes per genome was the most tolerant to ethanol. Nevertheless, to implement a production process using recombinant strains, the bioethanol produced will be required to be continuously extracted from the culture media via a membrane-based technological process for example to prevent detrimental effects on the biomass. The results presented here are of significance in defining the maximum threshold for bulk ethanol concentration in production media.
Collapse
Affiliation(s)
- Teresa Lopes da Silva
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Paula C Passarinho
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Ricardo Galriça
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Afonso Zenóglio
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Patricia Armshaw
- Bernal Institute, Department of Chemical Sciences, School of Natural Sciences University of Limerick, Ireland
| | - J Tony Pembroke
- Bernal Institute, Department of Chemical Sciences, School of Natural Sciences University of Limerick, Ireland
| | - Con Sheahan
- School of Engineering, University of Limerick, Ireland
| | - Alberto Reis
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| | - Francisco Gírio
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal
| |
Collapse
|
14
|
Gandhi A, Shah NP. Integrating omics to unravel the stress-response mechanisms in probiotic bacteria: Approaches, challenges, and prospects. Crit Rev Food Sci Nutr 2018; 57:3464-3471. [PMID: 26853094 DOI: 10.1080/10408398.2015.1136805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Identifying the stress-response mechanism of probiotic bacteria has always captivated the interest of food producers. It is crucial to identify probiotic bacteria that have increased stress tolerance to survive during production, processing, and storage of food products. However, in order to achieve high resistance to environmental factors, there is a need to better understand stress-induced responses and adaptive mechanisms. With advances in bacterial genomics, there has been an upsurge in the application of other omic platforms such as transcriptomics, proteomics, metabolomics, and some more recent ones such as interactomics, fluxomics, and phenomics. These omic technologies have revolutionized the functional genomics and their application. There have been several studies implementing various omic technologies to investigate the stress responses of probiotic bacteria. Integrated omics has the potential to provide in-depth information about the mechanisms of stress-induced responses in bacteria. However, there remain challenges in integrating information from different omic platforms. This review discusses current omic techniques and challenges faced in integrating various omic platforms with focus on their use in stress-response studies.
Collapse
Affiliation(s)
- Akanksha Gandhi
- a Food and Nutritional Science, School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Nagendra P Shah
- a Food and Nutritional Science, School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
15
|
Song X, Wang Y, Diao J, Li S, Chen L, Zhang W. Direct Photosynthetic Production of Plastic Building Block Chemicals from CO 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:215-238. [PMID: 30091097 DOI: 10.1007/978-981-13-0854-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxy acids have attracted attention as building block chemicals due to their roles as precursors for the production of various pharmaceuticals, vitamins, antibiotics, and flavor compounds as well as monomers for biodegradable plastic polyesters. The current approach to hydroxy acid production relies on nonrenewable fossil resources such as petroleum for raw materials, raising issues such as the rising costs of starting materials and environmental incompatibility. Recently, synthetic biology approaches based on the rational design and reconstruction of new biological systems were implemented to produce chemicals from a variety of renewable substrates. In addition to research using heterotrophic organic carbon-dependent Escherichia coli or yeasts, photosynthetic microorganisms such as cyanobacteria possessing the ability to absorb solar radiation and fix carbon dioxide (CO2) as a sole carbon source have been engineered into a new type of microbial cell factory to directly produce hydroxy acids from CO2. In this chapter, recent progress regarding the direct photosynthetic production of three important hydroxy acids-3-hydroxypropionate (3-HP), 3-hydroxybutyrate (3-HB), and 3-hydroxyvalerate (3-HV)-from CO2 in cyanobacteria is summarized and discussed.
Collapse
Affiliation(s)
- Xinyu Song
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China. .,Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
16
|
Sun T, Chen L, Zhang W. Quantitative Proteomics Reveals Potential Crosstalk between a Small RNA CoaR and a Two-Component Regulator Slr1037 in Synechocystis sp. PCC6803. J Proteome Res 2017; 16:2954-2963. [PMID: 28677390 DOI: 10.1021/acs.jproteome.7b00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacterial small RNAs (sRNAs) and two-component systems (TCSs) were two vital regulatory mechanisms employed by microorganisms to respond to environmental changes and stresses. As a promising "autotrophic cell factory", photosynthetic cyanobacteria have attracted a lot of attention these years. Although most studies focused on studying the roles of sRNAs or TCS regulators in stress response in photosynthetic cyanobacteria, limited work has elucidated their potential crosstalk. Our previous work has identified a negative sRNA regulator CoaR and a positive response regulator Slr1037 both related to 1-butanol stress regulation in Synechocystis sp. PCC6803. In this work, the potential crosstalk between CoaR and Slr1307 (i.e., the coregulated genes mediated by CoaR and Slr1037) was identified and validated through quantitative proteomics and quantitative real-time PCR (qRT-PCR), respectively. The results showed that the sensitive phenotype to 1-butanol of Δslr1037 could be rescued by suppressing coaR in Δslr1037, probably due to the fact that some target genes of Slr1037 could be reactivated by repression of CoaR. Twenty-eight coregulated proteins mediated by CoaR and Slr1037 were found through quantitative proteomics, and 10 of the annotated proteins were validated via qRT-PCR. This study proved the existence of crosstalk between sRNAs and response regulators and provided new insights into the coregulation of biofuel resistance in cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University , Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, P. R. China.,Center for Biosafety Research and Strategy, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Shi M, Zhang X, Pei G, Chen L, Zhang W. Functional Diversity of Transcriptional Regulators in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:280. [PMID: 28270809 PMCID: PMC5318462 DOI: 10.3389/fmicb.2017.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Functions of transcriptional regulators (TRs) are still poorly understood in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, we constructed knockout mutants for 32 putative TR-encoding genes of Synechocystis, and comparatively analyzed their phenotypes under autotrophic growth condition and metabolic profiles using liquid chromatography-mass spectrometry-based metabolomics. The results showed that only four mutants of TR genes, sll1872 (lytR), slr0741 (phoU), slr0395 (ntcB), and slr1871 (pirR), showed differential growth patterns in BG11 medium when compared with the wild type; however, in spite of no growth difference observed for the remaining TR mutants, metabolomic profiling showed that they were different at the metabolite level, suggesting significant functional diversity of TRs in Synechocystis. In addition, an integrative metabolomic and gene families’ analysis of all TR mutants led to the identification of five pairs of TR genes that each shared close relationship in both gene families and metabolomic clustering trees, suggesting possible conserved functions of these TRs during evolution. Moreover, more than a dozen pairs of TR genes with different origin and evolution were found with similar metabolomic profiles, suggesting a possible functional convergence of the TRs during genome evolution. Finally, a protein–protein network analysis was performed to predict regulatory targets of TRs, allowing inference of possible regulatory gene targets for 4 out of five pairs of TRs. This study provided new insights into the regulatory functions and evolution of TR genes in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China; Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
18
|
Sun T, Pei G, Wang J, Chen L, Zhang W. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:42. [PMID: 28239414 PMCID: PMC5319066 DOI: 10.1186/s13068-017-0727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microbial small RNAs (sRNAs) have been proposed as valuable regulatory elements for optimizing cellular metabolism for industrial purposes. However, little information is currently available on functional relevance of sRNAs to biofuels tolerance in cyanobacteria. RESULTS Here, we described the identification and functional characterization of a novel 124 nt sRNA Ncl1460 involved in tolerance to biofuel 1-butanol in Synechocystis sp. PCC 6803. The expression of Ncl1460 was verified by blotting assay and its length was determined through 3' RACE. Further analysis showed that Ncl1460 was a negative regulator of slr0847 (coaD) and slr0848 operon responsible for coenzyme A (CoA) synthesis possibly via promoter-directed transcriptional silencing mechanisms which has been widely discovered in eukaryote; thus Ncl1460 was designated as CoaR (CoA Biosynthesis Regulatory sRNA). The possible interaction between CoaR and target genes was suggested by CoA quantification and green fluorescent protein assays. Finally, a quantitative proteomics analysis showed that CoaR regulated tolerance to 1-butanol possibly by down-regulating CoA biosynthesis, resulting in a decrease of fatty acid metabolism and energy metabolism. CONCLUSIONS As the first reported sRNA involved CoA synthesis and 1-butanol tolerance in cyanobacteria, this study provides not only novel insights in regulating mechanisms of essential pathways in cyanobacteria, but also valuable target for biofuels tolerance and productivity modifications.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jiangxin Wang
- Shenzhen Engineering Lab for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
19
|
Vidal R. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2017; 101:3473-3482. [PMID: 28160048 DOI: 10.1007/s00253-017-8138-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/30/2023]
Abstract
The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.
Collapse
Affiliation(s)
- Rebeca Vidal
- CSIC/University of Seville, Avda. Americo Vespucio, s/n 41092, Seville, Spain. .,, Current Address: Avda. Republica Argentina, s/n. Edificio Principado, 41930, Bormujos (Seville), Spain.
| |
Collapse
|
20
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Li T, Zhang Y, Shi M, Pei G, Chen L, Zhang W. A putative magnesium transporter Slr1216 involved in sodium tolerance in cyanobacterium Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
23
|
Zhang Q, Jia KZ, Xia ST, Xu YH, Liu RS, Li HM, Tang YJ. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1. Sci Rep 2016; 6:20828. [PMID: 26860895 PMCID: PMC4748413 DOI: 10.1038/srep20828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Shi-Tao Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Yang-Hua Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Rui-Sang Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Hong-Mei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068 China
| |
Collapse
|
24
|
Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:487. [PMID: 26052317 PMCID: PMC4440267 DOI: 10.3389/fmicb.2015.00487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v) ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the Δslr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive Δslr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the Δslr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the Δslr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| |
Collapse
|