1
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Patra SA, Sahu G, Das S, Dinda R. Recent Advances in Mitochondria-Localized Luminescent Ruthenium(II) Metallodrugs as Anticancer Agents. ChemMedChem 2023; 18:e202300397. [PMID: 37772783 DOI: 10.1002/cmdc.202300397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Presently, the most effective way to transport drugs specifically to mitochondria inside the cells is of pharmacophoric interest, as mitochondria are recognized as one of the most important targets for new drug design in cancer diagnosis. To date, there are many reviews covering the photophysical, photochemical, and anticancer properties of ruthenium(II) based metallodrugs owing to their high interest in biological applications. There are, however, no reviews specifically covering the mitochondria-localized luminescent Ru(II) complexes and their subsequent mitochondria-mediated anticancer activities. Therefore, this review describes the physicochemical basis for the mitochondrial accumulation of ruthenium complexes, their synthetic strategies to localize and monitor the mitochondria in living cells, and their related underlying anticancer results. Finally, we review the related areas from previous works describing the mitochondria-localized ruthenium complexes for the treatment of cancer-related diseases. Along with this, we also deliberate the perspectives and future directions for emerging more bifunctional Ru(II) complexes that can target, image, and kill tumors more efficiently in comparison with the existing mitochondria-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
3
|
Vinck R, Dömötör O, Karges J, Jakubaszek M, Seguin J, Tharaud M, Guérineau V, Cariou K, Mignet N, Enyedy ÉA, Gasser G. In Situ Bioconjugation of a Maleimide-Functionalized Ruthenium-Based Photosensitizer to Albumin for Photodynamic Therapy. Inorg Chem 2023; 62:15510-15526. [PMID: 37708255 DOI: 10.1021/acs.inorgchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Johanne Seguin
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Mickaël Tharaud
- Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, Institut de Physique du Globe de Paris, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| |
Collapse
|
4
|
Kang Y, Zhao Y, Wei Y, Zhang Y, Wang Z, Luo Q, Du J, Wang F. Ruthenium(II) polypyridyl complexes with visible light-enhanced anticancer activity and multimodal cell imaging. Dalton Trans 2023; 52:12478-12489. [PMID: 37602756 DOI: 10.1039/d3dt01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Ruthenium(II) polypyridyl complexes have drawn growing attention due to their photophysical properties and anticancer activity. Herein we report four ruthenium(II) polypyridyl complexes [(N^N)2RuII(L)]2+ (1-4, L = 4-anilinoquinazoline derivatives, N^N = bidentate ligands with bis-nitrogen donors) as multi-functional anticancer agents. The epidermal growth factor receptor (EGFR) is overexpressed in a broad range of cancer cells and related to many kinds of malignance. EGFR inhibitors, such as gefitinib and erlotinib, have been approved as clinical anticancer drugs. The EGFR-inhibiting 4-anilinoquinazoline ligands greatly enhanced the in vitro anticancer activity of these ruthenium(II) polypyridyl complexes against a series of human cancer cell lines compared to [Ru(bpy)2(phen)], but interestingly, these complexes were actually not potent EGFR inhibitors. Further mechanism studies revealed that upon irradiation with visible light, complexes 3 and 4 generated a high level of singlet oxygen (1O2), and their in vitro anticancer activities against human non-small-cell lung (A549), cervical (HeLa) and squamous (A431) cancer cells were significantly improved. Specifically, complex 3 displayed potent phototoxicity upon irradiation with blue light, of which the photo-toxicity indexes (PIs) against HeLa and A431 cells were 11 and 8.3, respectively. These complexes exhibited strong fluorescence emission at ca. 600 nm upon excitation at about 450 nm. A subcellular distribution study by fluorescence microscopy imaging and secondary ion mass spectrometry imaging (ToF-SIMS) demonstrated that complex 3 mainly localized at the cytoplasm and complex 4 mainly localized in the nuclei of cells. Competitive binding with ctDNA showed that complex 4 was more favorable to bind to the DNA minor groove than complex 3. These differences support that complex 3 possibly exerts its anticancer activities majorly by photo-induced 1O2 generation and complex 4 by binding to DNA.
Collapse
Affiliation(s)
- Yan Kang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Yuanyuan Wei
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yang Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaoying Wang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Selenol (-SeH) as a target for mercury and gold in biological systems: Contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Peña Q, Rodríguez-Calado S, Simaan AJ, Capdevila M, Bayón P, Palacios O, Lorenzo J, Iranzo O. Cell-penetrating peptide-conjugated copper complexes for redox-mediated anticancer therapy. Front Pharmacol 2022; 13:1060827. [PMID: 36467097 PMCID: PMC9714576 DOI: 10.3389/fphar.2022.1060827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Metal-based chemotherapeutics like cisplatin are widely employed in cancer treatment. In the last years, the design of redox-active (transition) metal complexes, such as of copper (Cu), has attracted high interest as alternatives to overcome platinum-induced side-effects. However, several challenges are still faced, including optimal aqueous solubility and efficient intracellular delivery, and strategies like the use of cell-penetrating peptides have been encouraging. In this context, we previously designed a Cu(II) scaffold that exhibited significant reactive oxygen species (ROS)-mediated cytotoxicity. Herein, we build upon the promising Cu(II) redox-active metallic core and aim to potentiate its anticancer activity by rationally tailoring it with solubility- and uptake-enhancing functionalizations that do not alter the ROS-generating Cu(II) center. To this end, sulfonate, arginine and arginine-rich cell-penetrating peptide (CPP) derivatives have been prepared and characterized, and all the resulting complexes preserved the parent Cu(II) coordination core, thereby maintaining its reported redox capabilities. Comparative in vitro assays in several cancer cell lines reveal that while specific solubility-targeting derivatizations (i.e., sulfonate or arginine) did not translate into an improved cytotoxicity, increased intracellular copper delivery via CPP-conjugation promoted an enhanced anticancer activity, already detectable at short treatment times. Additionally, immunofluorescence assays show that the Cu(II) peptide-conjugate distributed throughout the cytosol without lysosomal colocalization, suggesting potential avoidance of endosomal entrapment. Overall, the systematic exploration of the tailored modifications enables us to provide further understanding on structure-activity relationships of redox-active metal-based (Cu(II)) cytotoxic complexes, which contributes to rationalize and improve the design of more efficient redox-mediated metal-based anticancer therapy.
Collapse
Affiliation(s)
- Quim Peña
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Sergi Rodríguez-Calado
- Department Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A. Jalila Simaan
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Bayón
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julia Lorenzo
- Department Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Iranzo
- Aix Marseille University, CNRS, Centrale Marseille, ISm2, Marseille, France
| |
Collapse
|
7
|
|
8
|
Nie Y, Dai Z, Fozia, Zhao G, Jiang J, Xu X, Ying M, Wang Y, Hu Z, Xu H. Comparative Studies on DNA-Binding Mechanisms between Enantiomers of a Polypyridyl Ruthenium(II) Complex. J Phys Chem B 2022; 126:4787-4798. [PMID: 35731588 DOI: 10.1021/acs.jpcb.2c02104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of ruthenium(II) complex enantiomers, Δ- and Λ-[Ru(bpy)2MBIP]2+ (bpy = 2,2'-bipyridine, MBIP = 2-(3-bromophenyl)imidazo[5,6-f]phenanthroline), were designed, synthesized, and characterized. Comparative studies between the enantiomers on their binding behaviors to calf thymus DNA (CT-DNA) were conducted using UV-visible, fluorescence, and circular dichroism spectroscopies, viscosity measurements, isothermal titration calorimetry, a photocleavage experiment, and molecular simulation. The experimental results indicated that both the enantiomers spontaneously bound to CT-DNA through intercalation stabilized by the van der Waals force or the hydrogen bond and driven by enthalpy and that Δ-[Ru(bpy)2MBIP]2+ intercalated into DNA more deeply than Λ-[Ru(bpy)2MBIP]2+ did and exhibited a better DNA photocleavage ability. Molecular simulation further indicated that Δ-[Ru(bpy)2MBIP]2+ more preferentially intercalated between the base pairs of CT-DNA to the major groove, and Λ-[Ru(bpy)2MBIP]2+ more favorably intercalated to the minor groove. These research findings should be very helpful to the understanding of the stereoselectivity mechanism of DNA-bindings of metal complexes, and be useful for the design of novel metal-complex-based antitumor drugs with higher efficacy and lower toxicity.
Collapse
Affiliation(s)
- Yanhong Nie
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen 518060, P. R. China
| | - Fozia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guangyao Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jianrong Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xu Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P. R. China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
9
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
10
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Li X, Wang Y, Li M, Wang H, Dong X. Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. Molecules 2021; 27:148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhui Wang
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Man Li
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Huipeng Wang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| |
Collapse
|
12
|
Chakraborty A, Roy S, Chakraborty MP, Roy SS, Purkait K, Koley TS, Das R, Acharya M, Mukherjee A. Cytotoxic Ruthenium(II) Complexes of Pyrazolylbenzimidazole Ligands That Inhibit VEGFR2 Phosphorylation. Inorg Chem 2021; 60:18379-18394. [PMID: 34780170 DOI: 10.1021/acs.inorgchem.1c02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eight new ruthenium(II) complexes of N,N-chelating pyrazolylbenzimidazole ligands of the general formula [RuII(p-cym)(L)X]+ [where the ligand L is 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole (L1) substituted at the 4 position of the pyrazole ring by Cl (L2), Br (L3), or I (L4) and X = Cl- and I-] were synthesized and characterized using various analytical techniques. Complexes 1 and 3 were also characterized by single-crystal X-ray crystallography, and they crystallized as a monoclinic crystal system in space groups P21/n and P21/c, respectively. The complexes display good solution stability at physiological pH 7.4. The iodido-coordinated pyrazolylbenzimidazole ruthenium(II) p-cymene complexes (2, 4, 6, and 8) are more resistant toward hydrolysis and have less tendency to form monoaquated complexes in comparison to their chlorido analogues (1, 3, 5, and 7). The halido-substituted 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole ligands, designed as organic-directing molecules, inhibit vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation. In addition, the ruthenium(II) complexes display a potential to bind to DNA bases. The cytotoxicity profile of the complexes (IC50 ca. 9-12 μM for 4-8) against the triple-negative breast cancer cells (MDA-MB-231) show that most of the complexes are efficient. The lipophilicity and cellular accumulation data of the complexes show a good correlation with the cytotoxicity profile of 1-8. The representative complexes 3 and 7 demonstrate the capability of arresting the cell cycle in the G2/M phase and induce apoptosis. The inhibition of VEGFR2 phosphorylation with the representative ligands L2 and L4 and the corresponding metal complexes 3 and 7 in vitro shows that the organic-directing ligands and their complexes inhibit VEGFR2 phosphorylation. Besides, L2, L4, 3, and 7 inhibit the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and proto-oncogene tyrosine-protein kinase (Src), capable of acting downstream of VEGFR2 as well as independently. Compounds L2, L4, 3, and 7 have a lesser effect on ERK1/2 and more prominently affect Src phosphorylation. We extended the study for L2 and 3 in the Tg(fli1:gfp) zebrafish model and found that L2 is more effective in vivo compared to 3 in inhibiting angiogenesis.
Collapse
|
13
|
Auranofin: Past to Present, and repurposing. Int Immunopharmacol 2021; 101:108272. [PMID: 34731781 DOI: 10.1016/j.intimp.2021.108272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023]
Abstract
Auranofin (AF), a gold compound, has been used to treat rheumatoid arthritis (RA) for more than 40 years; however, its mechanism of action remains unknown. We revealed that AF inhibited the induction of proinflammatory proteins and their mRNAs by the inflammatory stimulants, cyclooxygenase-2 and inducible nitric oxide synthase, and their upstream regulator, NF-κB. AF also activated the proteins peroxyredoxin-1, Kelch-like ECH-associated protein 1, and NF-E2-related factor 2, and inhibited thioredoxin reductase, all of which are involved in oxidative or electrophilic stress under physiological conditions. Although the cell membrane was previously considered to be permeable to AF because of its hydrophobicity, the mechanisms responsible for transporting AF into and out of cells as well as its effects on the uptake and excretion of other drugs have not yet been elucidated. Antibodies for cytokines have recently been employed in the treatment of RA, which has had an impact on the use of AF. Trials to repurpose AF as a risk-controlled agent to treat cancers or infectious diseases, including severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019, are ongoing. Novel gold compounds are also under development as anti-cancer and anti-infection agents.
Collapse
|
14
|
Chen BC, Lu JJ, Jiang N, Ma XR, Li RT, Ye RR. Synthesis, characterization and antitumor mechanism investigation of ruthenium(II) polypyridyl complexes with artesunate moiety. J Biol Inorg Chem 2021; 26:909-918. [PMID: 34545414 DOI: 10.1007/s00775-021-01901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) with the formula [Ru(N^N)2bpy(4-CH3-4'-CH2OART)](PF6)2 (Ru-ART-1-3) and [Ru(N^N)2bpy(4-CH2OART-4'-CH2OART)](PF6)2 (Ru-ART-4-6) (N^N = 2,2'-bipyridine (bpy, in Ru-ART-1 and Ru-ART-4), 1,10-phenanthroline (phen, in Ru-ART-2 and Ru-ART-5) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-ART-3 and Ru-ART-6)), were synthesized and characterized. Among them, Ru-ART-1-3 and Ru-ART-4-6 carry one and two ART moieties, respectively. Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity among six Ru(II)-ART conjugates. These two complexes can be effectively taken up by human cervical carcinoma (HeLa) cells. In addition, they selectively kill cancer cell lines while mildly affect normal cells. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy. As a result, Ru-ART-3 and Ru-ART-6 induce autophagy-dependent cell apoptosis via mitochondrial dysfunction and reactive oxygen species (ROS) accumulation. In this work, six artesunate (ART) conjugated ruthenium(II) complexes (Ru(II)-ART conjugates) have been synthesized and characterized. Among them, Ru-ART-3 and Ru-ART-6 exhibit better cytotoxicity. Mechanism studies have shown that HeLa cells treated with Ru-ART-3 and Ru-ART-6 show typical apoptotic characteristics (morphology changes, mitochondrial dysfunction, caspase cascade, etc.). On the other hand, the up regulation of Beclin-1 and conversion of LC3-I to LC3-II note the appearance of autophagy.
Collapse
Affiliation(s)
- Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
15
|
Cyclometalated Ru(II) β-carboline complexes induce cell cycle arrest and apoptosis in human HeLa cervical cancer cells via suppressing ERK and Akt signaling. J Biol Inorg Chem 2021; 26:793-808. [PMID: 34459988 DOI: 10.1007/s00775-021-01894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Two new cyclometalated Ru(II)-β-carboline complexes, [Ru(dmb)2(Cl-Ph-βC)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine; Cl-Ph-βC = Cl-phenyl-9H-pyrido[3,4-b]indole; RuβC-3) and [Ru(bpy)2(Cl-Ph-βC)](PF6) (bpy = 2,2'-bipyridine; RuβC-4) were synthesized and characterized. The Ru(II) complexes display high cytotoxicity against HeLa cells, the stabilized human cervical cancer cell, with IC50 values of 3.2 ± 0.4 μM (RuβC-3) and 4.1 ± 0.6 μM (RuβC-4), which were considerably lower than that of non-cyclometalated Ru(II)-β-carboline complex [Ru(bpy)2(1-Py-βC)] (PF6)2 (61.2 ± 3.9 μM) by 19- and 15-folds, respectively. The mechanism studies indicated that both Ru(II) complexes could significantly inhibit HeLa cell migration and invasion, and effectively induce G0/G1 cell cycle arrest. The new Ru(II) complexes could also trigger apoptosis through activating caspase-3 and poly (ADP-ribose) polymerase (PARP), increasing the Bax/Bcl-2 ratio, enhancing reactive oxygen species (ROS) generation, decreasing mitochondrial membrane potential (MMP), and inducing cytochrome c release from mitochondria. Further research revealed that RuβC-3 could deactivate the ERK/Akt signaling pathway thus inhibiting HeLa cell invasion and migration, and inducing apoptosis. In addition, RuβC-3-induced apoptosis in HeLa cells was closely associated with the increase of intracellular ROS levels, which may act as upstream factors to regulate ERK and Akt pathways. More importantly, RuβC-3 exhibited low toxicity on both normal BEAS-2B cells in vitro and zebrafish embryos in vivo. Consequently, the developed Ru(II) complexes have great potential on developing novel low-toxic anticancer drugs.
Collapse
|
16
|
Abstract
One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.
Collapse
Affiliation(s)
- Anna Jastrząb
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Li S, Xu G, Zhu Y, Zhao J, Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans 2020; 49:9454-9463. [PMID: 32598409 DOI: 10.1039/d0dt01040e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(ii)-polypyridyl complexes have been widely studied and well established for their antitumor properties. Modifications of the coordination environment around the Ru atom through a proper choice of the ligand can lead to different modes of action and result in greatly improved anticancer efficacy. Herein, two Ru(ii)-polypyridyl complexes of curcumin were synthesized and characterized as potential anticancer agents. In vitro tests indicated that complexes 1 and 2 displayed excellent antiproliferative activity against the tested cancer cell lines, especially complex 2, which exhibited superior cytotoxicity compared to curcumin and cisplatin. Further biological evaluations demonstrated that complexes 1 and 2 can cause cell apoptosis via DNA interaction and MEK/ERK signaling pathway, which is the first example of a Ru(ii)-polypyridyl complex inhibiting the MEK/ERK signaling pathway and DNA intercalation. Overall, this work suggests that coordination with bioactive agents may endow Ru(ii)-polypyridyl complexes with improved pharmaceutical properties and synergistic effects for cancer therapy.
Collapse
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Zhao Y, Kang Y, Xu F, Zheng W, Luo Q, Zhang Y, Jia F, Wang F. Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. J Biol Inorg Chem 2019; 25:109-124. [PMID: 31741123 DOI: 10.1007/s00775-019-01743-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Six novel ruthenium(III) complexes of general formula [RuCl3(L)3] (1,3,5) and [RuCl3(H2O)(L)2] (2,4,6), where L stands for three different triazolopyrimidine-derived ligands, are reported. The compounds have been structurally characterized (IR, EPR, SCXRD), and their magnetic moments have been determined. The single-crystal X-ray diffraction study revealed a slightly distorted octahedral geometry of the Ru(III) complexes with mer configuration in 1 and 5, and fac configuration in 3. In 2 and 4, three chloride ions are in mer configuration and the two triazolopyrimidines are oriented trans mutually with the water molecule playing the role of the sixth ligand. All complexes have been thoroughly screened for their in vitro cytotoxicity against human breast cancer cell line MCF-7, human cervical cancer cell line HeLa, and L929 murine fibroblast cells, uncovering among others that the most lipophilic complexes 5 and 6, containing the bulky ligand dptp (5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine), display high cytotoxic activity against MCF-7, and HeLa cells. Moreover, it was also revealed that during the interaction of the complexes 1-6 with the cancer MCF-7 cell line, reactive oxygen species are released intracellularly, which could indicate that they are involved in cell apoptosis. Furthermore, extensive studies have been carried out to reveal the mechanism by which complexes 1-6 interact with DNA, albumin, and apotransferrin. The biological studies were complemented by detailed kinetic studies of the hydrolysis of the complexes in the pH range 5-8, to determine the stability of the complexes in solution. Six novel ruthenium(III) complexes with triazolopyrimidine derivatives demonstrated the potential for use as anticancer agents by maintaining the toxic effect on MCF-7 and HeLa cells.
Collapse
|
20
|
Hong XL, Xu J, Jiang RH, Li JY, Chen JL, Lu FC. Ruthenium(II) complexes containing a pendant methanol amidogen induce apoptosis in SGC-7901 cells through a ROS-mediated mitochondrial dysfunction pathway. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kladnik J, Kljun J, Burmeister H, Ott I, Romero-Canelón I, Turel I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chemistry 2019; 25:14169-14182. [PMID: 31461189 DOI: 10.1002/chem.201903109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Indexed: 12/25/2022]
Abstract
An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared. After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, respectively, and a methyl group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
22
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|
23
|
Zhu H, Dai C, He L, Xu A, Chen T. Iron (II) Polypyridyl Complexes as Antiglioblastoma Agents to Overcome the Blood-Brain Barrier and Inhibit Cell Proliferation by Regulating p53 and 4E-BP1 Pathways. Front Pharmacol 2019; 10:946. [PMID: 31551768 PMCID: PMC6733960 DOI: 10.3389/fphar.2019.00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose: It is urgently required to develop promising candidates to permeate across blood-brain barrier (BBB) efficiently with simultaneous disrupting vasculogenic mimicry capability of gliomas. Previously, a series of iron (II) complexes were synthesized through a modified method. Hence, the aim of this study was to evaluate anticancer activity of Fe(PIP)3SO4 against glioma cancer cells. Methods: Cytotoxic effects were determined via MTT assay, and IC50 values were utilized to evaluate the cytotoxicity. Cellular uptake of Fe(PIP)3SO4 between U87 and HEB cells was conducted by subtracting content of the complex remaining in the cell culture supernatants. Propidium Iodide (PI)-flow cytometric analysis was used to analyze cell cycle proportion of U87 cells treated with Fe(PIP)3SO4. The reactive oxygen species levels induced by Fe(PIP)3SO4 were measured by 2'-deoxycoformycin (DCF) probe; ABTS assay was utilized to examine the radical scavenge capacity of Fe(PIP)3SO4. To study the bind efficiency to thioredoxin reductase (TrxR), Fe(PIP)3SO4 was introduced into solution containing TrxR. To verify if Fe(PIP)3SO4 could penetrate BBB, HBMEC/U87 coculture as BBB model was established, and penetrating capability of Fe(PIP)3SO4 was tested. In vitro U87 tumor spheroids were formed to test the permeating ability of Fe(PIP)3SO4. Acute toxicity and biodistribution of Fe(PIP)3SO4 were tested on mice for 72 h. Protein profiles associated with U87 cells treated with Fe(PIP)3SO4 were determined by Western blotting analysis. Results: Results showed that Fe(PIP)3SO4 could suppress cell proliferation by inducing G2/M phase cycle retardation and apoptotic pathways, which was related with expression of p53 and initiation factor 4E binding protein 1. In addition, Fe complex could suppress cell proliferation by downregulating reactive oxygen species levels via scavenging free radicals and interaction with TrxR. Furthermore, Fe(PIP)3SO4 could permeate across BBB and simultaneously inhibited the vasculogenic mimicry-channel of U87 cells, suggesting favorable antiglioblastoma efficacy. Acute toxicity manifested lower degree of the complex compared with cisplatin and temozolomide. Conclusion: Fe(PIP)3SO4 exhibited favorable anticancer activity against glioma cells associated with p53 and 4E binding protein 1, accompanied with negligible toxic effects on normal tissues. Herein, Fe(PIP)3SO4 could be developed as a promising metal-based chemotherapeutic agent to overcome BBB and antagonize glioblastomas.
Collapse
Affiliation(s)
- Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengli Dai
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Lizhen He
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- The First Affiliated Hospital and the Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Ruthenium(II) Complexes as Potential Apoptosis Inducers in Cancer Therapy. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The compound cis-diamminedichloroplatinum(II) (cisplatin) is the most widely used anticancer drug, but due to its serious side effects (including gastrointestinal symptoms, renal tubular injury, neuromuscular complications, and ototoxicity), clinical applications of cisplatin are limited. Therefore, these limitations have provided an encouragement for further research into other transition metal complexes, with an aim to overcome the disadvantages related with cisplatin therapy. In the search for effective complexes that can be targeted against tumor cells, many research groups synthesized various ruthenium( II) complexes with different ligands. Also, newly synthesized ruthenium(II) complexes showed selective anticancer activity against different types of cancer cells. Activity of ruthenium(II) complexes in some cases was even higher than that of cisplatin against the same cells. Precise mechanism of action of ruthenium(II) complexes is not fully understood. The different examples mentioned in this review showed that ruthenium(II) complexes decreased viability of cancer cells by induction of apoptosis and/or by cell cycle arrest which implies their different mechanism of action against different types of cancer cells.
Collapse
|
25
|
Ye J, Ma J, Liu C, Huang J, Wang L, Zhong X. A novel iron(II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage. Biochem Pharmacol 2019; 166:93-107. [PMID: 31078603 DOI: 10.1016/j.bcp.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and aggressive cancers worldwide, especially in China, with poor prognosis due to the lack of effective therapeutic strategies. Here, the anticancer effect and pharmacological mechanism of a newly synthesized Fe(II) phenanthroline complex was studied in ESCC. Our data showed that transferrin receptor 1 (TFR1) was specifically overexpressed in ESCC tissues compared to its expression in normal esophageal tissues, a finding further supported by public datasets. The newly synthesized Fe(II) complex was selectively transported into ESCC cells overexpressing TFR1 through TFR1-mediated endocytosis and exhibited anticancer activity in a dose-dependent manner. The mechanistic study elucidated that the Fe(II) complex caused cell cycle arrest at the G0/G1 phase by blocking the CDK4/6-cyclin D1 complex and induced mitochondria-mediated apoptosis. Furthermore, exposure to the Fe(II) complex led to excessive reactive oxygen species (ROS) accumulation by thioredoxin reductase (TrxR) inhibition and DNA double-strand breaks (DSBs), which in turn sequentially activated ATM, CHK1/2 and p53. Moreover, combination treatment with cisplatin and the Fe(II) complex exhibited a synergistic effect in ESCC cells. Taken together, our results initially suggest the potential application of the Fe(II) complex in ESCC chemotherapy, especially for patients with TFR1 overexpression.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chan Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jianxian Huang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
26
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
27
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
28
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
29
|
He W, Cao P, Xia Y, Hong L, Zhang T, Shen X, Zheng P, Shen H, Zhao Y, Zou P. Potent inhibition of gastric cancer cells by a natural compound via inhibiting TrxR1 activity and activating ROS-mediated p38 MAPK pathway. Free Radic Res 2019; 53:104-114. [DOI: 10.1080/10715762.2018.1558448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Hong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huanpei Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
31
|
Zhu MC, Wang N, Meng B, Su JQ, Peng TT, Qi ZZ, Jia B, Feng YH, Gao EJ. Two Ho(III) and Co(II) complexes constructed from bis(triazol-1-yl)benzoic acid with structurally similar carboxyl ligands: Syntheses, structures and biological activities. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming-Chang Zhu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Ning Wang
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bo Meng
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Jun-qi Su
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Ting-ting Peng
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Zhen-zhen Qi
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bing Jia
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yun-hui Feng
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - En-Jun Gao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| |
Collapse
|
32
|
Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radic Biol Med 2018; 127:62-79. [PMID: 29596885 DOI: 10.1016/j.freeradbiomed.2018.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Thioredoxin reductase 2 (TrxR2) is a key component of the mitochondrial thioredoxin system able to transfer electrons to peroxiredoxin 3 (Prx3) in a reaction mediated by thioredoxin 2 (Trx2). In this way, both the level of hydrogen peroxide and thiol redox state are modulated. TrxR2 is often overexpressed in cancer cells conferring apoptosis resistance. Due to their exposed flexible arm containing selenocysteine, both cytosolic and mitochondrial TrxRs are inhibited by a large number of molecules. The various classes of inhibitors are listed and the molecules acting specifically on TrxR2 are extensively described. Particular emphasis is given to gold(I/III) complexes with phosphine, carbene or other ligands and to tamoxifen-like metallocifens. Also chemically unrelated organic molecules, including natural compounds and their derivatives, are taken into account. An important feature of many TrxR2 inhibitors is provided by their nature of delocalized lipophilic cations that allows their accumulation in mitochondria exploiting the organelle membrane potential. The consequences of TrxR2 inhibition are presented focusing especially on the impact on mitochondrial pathophysiology. Inhibition of TrxR2, by hindering the activity of Trx2 and Prx3, increases the mitochondrial concentration of reactive oxygen species and shifts the thiol redox state toward a more oxidized condition. This is reflected by alterations of specific targets involved in the release of pro-apoptotic factors such as cyclophilin D which acts as a regulator of the mitochondrial permeability transition pore. Therefore, the selective inhibition of TrxR2 could be utilized to induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Alberto Bindoli
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Institute of Neuroscience (CNR), Padova Section, c/o Department of Biomedical Sciences, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
33
|
Bouchmaa N, Ben Mrid R, Boukharsa Y, Nhiri M, Ait Mouse H, Taoufik J, Ansar M, Zyad A. Cytotoxicity of new pyridazin-3(2H)-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468). Arch Pharm (Weinheim) 2018; 351:e1800128. [DOI: 10.1002/ardp.201800128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Najat Bouchmaa
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics; Faculty of Sciences and Techniques; Tangier Morocco
| | - Youness Boukharsa
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics; Faculty of Sciences and Techniques; Tangier Morocco
| | - Hassan Ait Mouse
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
| | - Jamal Taoufik
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy; Mohammed V University; Rabat Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Techniques; Sultan Moulay Slimane University; Beni-Mellal Morocco
| |
Collapse
|
34
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
35
|
Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150:419-445. [DOI: 10.1016/j.ejmech.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
|
36
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
37
|
Thota S, Rodrigues DA, Crans DC, Barreiro EJ. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J Med Chem 2018; 61:5805-5821. [PMID: 29446940 DOI: 10.1021/acs.jmedchem.7b01689] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal based therapeutics are a precious class of drugs in oncology research that include examples of theranostic drugs, which are active in both diagnostic, specifically imaging, and therapeutics applications. Ruthenium compounds have shown selective bioactivity and the ability to overcome the resistance that platinum-based therapeutics face, making them effective oncotherapeutic competitors in rational drug invention approaches. The development of antineoplastic ruthenium therapeutics is of particular interest because ruthenium containing complexes NAMI-A, KP1019, and KP1339 entered clinical trials and DW1/2 is in preclinical levels. The very robust, conformationally rigid organometallic Ru(II) compound DW1/2 is a protein kinase inhibitor and presents new Ru(II) compound designs as anticancer agents. Over the recent years, numerous strategies have been used to encapsulate Ru(II) derived compounds in a nanomaterial system, improving their targeting and delivery into neoplastic cells. A new photodynamic therapy based Ru(II) therapeutic, TLD-1433, has also entered clinical trials. Ru(II)-based compounds can also be photosensitizers for photodynamic therapy, which has proven to be an effective new, alternative, and noninvasive oncotherapy modality.
Collapse
Affiliation(s)
- Sreekanth Thota
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz, Ministério da Saúde, Av. Brazil 4036, Prédio da Expansão, 8° Andar, Sala 814, Manguinhos , 21040-361 Rio de Janeiro , RJ , Brazil.,Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Daniel A Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Debbie C Crans
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| |
Collapse
|
38
|
A comparative study on in vitro cytotoxicity, cellular uptake, localization and apoptosis-inducing mechanism of two ruthenium(II) complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Tadić A, Poljarević J, Krstić M, Kajzerberger M, Aranđelović S, Radulović S, Kakoulidou C, Papadopoulos AN, Psomas G, Grgurić-Šipka S. Ruthenium–arene complexes with NSAIDs: synthesis, characterization and bioactivity. NEW J CHEM 2018. [DOI: 10.1039/c7nj04416j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two non-steroidal antiinflammatory drugs indomethacin and mefenamic acid were coordinated to Ru(ii)–arenes to afford four new complexes.
Collapse
Affiliation(s)
- Ana Tadić
- University of Belgrade – Faculty of Chemistry
- 11000 Belgrade
- Serbia
| | | | - Milena Krstić
- Faculty of Veterinary Medicine
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | | | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia
- 11000 Belgrade
- Serbia
| | - Chrisoula Kakoulidou
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Athanasios N. Papadopoulos
- Department of Nutrition and Dietetics
- Faculty of Food Technology and Nutrition
- Alexandrion Technological Educational Institution
- Sindos
- Greece
| | - George Psomas
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | | |
Collapse
|
40
|
Sidhu JS, Singh A, Garg N, Kaur N, Singh N. Carbon dots as analytical tools for sensing of thioredoxin reductase and screening of cancer cells. Analyst 2018. [DOI: 10.1039/c7an02040f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The addition of Cu2+ to a CD solution quenches the fluorescence emission of CDs while on the addition of TrxR, 2-mercaptopropanoic acid released from the surface of the CDs and emission from CDs was regained.
Collapse
Affiliation(s)
| | - Ashutosh Singh
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| | - Neha Garg
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| | - Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh 160014
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|
41
|
Sundaraneedi MK, Tedla BA, Eichenberger RM, Becker L, Pickering D, Smout MJ, Rajan S, Wangchuk P, Keene FR, Loukas A, Collins JG, Pearson MS. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl Trop Dis 2017; 11:e0006134. [PMID: 29240773 PMCID: PMC5746282 DOI: 10.1371/journal.pntd.0006134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis affects over 200 million people and there are concerns whether the current chemotherapeutic control strategy (periodic mass drug administration with praziquantel (PZQ)-the only licenced anti-schistosome compound) is sustainable, necessitating the development of new drugs. METHODOLOGY/PRINCIPAL FINDINGS We investigated the anti-schistosome efficacy of polypyridylruthenium(II) complexes and showed they were active against all intra-mammalian stages of S. mansoni. Two compounds, Rubb12-tri and Rubb7-tnl, which were among the most potent in their ability to kill schistosomula and adult worms and inhibit egg hatching in vitro, were assessed for their efficacy in a mouse model of schistosomiasis using 5 consecutive daily i.v. doses of 2 mg/kg (Rubb12-tri) and 10 mg/kg (Rubb7-tnl). Mice treated with Rubb12-tri showed an average 42% reduction (P = 0.009), over two independent trials, in adult worm burden. Liver egg burdens were not significantly decreased in either drug-treated group but ova from both of these groups showed significant decreases in hatching ability (Rubb12-tri-68%, Rubb7-tnl-56%) and were significantly morphologically altered (Rubb12-tri-62% abnormal, Rubb7-tnl-35% abnormal). We hypothesize that the drugs exerted their activity, at least partially, through inhibition of both neuronal and tegumental acetylcholinesterases (AChEs), as worms treated in vitro showed significant decreases in activity of these enzymes. Further, treated parasites exhibited a significantly decreased ability to uptake glucose, significantly depleted glycogen stores and withered tubercules (a site of glycogen storage), implying drug-mediated interference in this nutrient acquisition pathway. CONCLUSIONS/SIGNIFICANCE Our data provide compelling evidence that ruthenium complexes are effective against all intra-mammalian stages of schistosomes, including schistosomula (refractory to PZQ) and eggs (agents of disease transmissibility). Further, the results of this study suggest that schistosome AChE is a target of ruthenium drugs, a finding that can inform modification of current compounds to identify analogues which are even more effective and selective against schistosomes.
Collapse
Affiliation(s)
- Madhu K. Sundaraneedi
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Bemnet A. Tedla
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Siji Rajan
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - F. Richard Keene
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - J. Grant Collins
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australian Capital Territory, Australia
| | - Mark S. Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
42
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ruthenium(II) polypyridyl complexes: Synthesis, characterization and anticancer activity studies on BEL-7402 cells. J Inorg Biochem 2017; 173:1-11. [PMID: 28472754 DOI: 10.1016/j.jinorgbio.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
Abstract
Two new ligand PTTP (2-phenoxy-1,4,8,9-tetraazatriphenylene) and FTTP (2-(3-fluoronaphthalen-2-yloxy)-1,4,8,9-tetraazatriphenylene) and their six ruthenium(II) polypyridyl complexes [Ru(N-N)2(PTTP)](ClO4)2 and [Ru(N-N)2(FTTP)](ClO4)2 (N-N=dmb: 4,4'-dimethyl-2,2'-bipiridine; dmp: 2,9-dimethyl-1,10-phenanthroline; ttbpy: 4,4'-ditertiarybutyl-2,2'-bipyridine) were synthesized and characterized. The cytotoxic activity of the complexes against cancer cells HeLa, BEL-7402, A549, HepG-2, HOS and normal cell LO2 was evaluated by MTT method. The IC50 values range from 1.5±0.1 to 55.9±7.5μM. Complex 3 shows the highest cytotoxic activity toward BEL-7402 cells (IC50=1.5±0.1μM). Complex 5 displays most effective inhibition of the cell growth in A549 and HOS cells with low IC50 values of 2.5±0.6 and 2.6±0.1μM, respectively. The apoptosis, reactive oxygen species, mitochondrial membrane potential, DNA damage, autophagy and anti-metastasis assay were investigated under a fluorescent microscope. The cell cycle arrest was assayed by flow cytometry, and the expression of caspases and Bcl-2 family proteins was studied by western blot. The results obtained show that the complexes induce apoptosis in BEL-7402 cells through a ROS-mediated mitochondrial dysfunction pathway.
Collapse
|
44
|
Tekin N, Öztürk K, Baran T, Kerimoğlu B, Tarhan M, Menteş A. Cytotoxic and apoptotic activities of novel Pd(II) complexes against human leukemia cell lines in vitro. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1294449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Lai H, Zhang X, Feng P, Xie L, Chen J, Chen T. Enhancement of Antiangiogenic Efficacy of Iron(II) Complex by Selenium Substitution. Chem Asian J 2017; 12:982-987. [DOI: 10.1002/asia.201700272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiang Zhang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Lina Xie
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Jinjin Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
46
|
He L, Zeng L, Mai X, Shi C, Luo L, Chen T. Nucleolin-targeted selenium nanocomposites with enhanced theranostic efficacy to antagonize glioblastoma. J Mater Chem B 2017; 5:3024-3034. [PMID: 32263994 DOI: 10.1039/c6tb03365b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glioblastoma is considered as the most lethal cancer, due to the inability of chemotherapeutic agents to reach the glioma core as well as the infiltration zone of the invasive glioma cells. Nanotechnology based delivery systems bring new hope to cancer targeted therapy and diagnosis owing to their enhancement of selective cellular uptake and cytotoxicity to cancer cells through various smart designs. We prepared a novel selenium-based composite nanosystem (QDs/Se@Ru(A)) surface functionalized with the AS1411 aptamer and loaded with quantum dots to realize selectivity against glioblastoma and enhance theranostic effects. This cancer targeted nanosystem significantly enhanced the cellular uptake in glioma cells through nucleolin mediated endocytosis, and increased selectivity between cancer and normal cells. The QDs/Se@Ru(A) nanosystem can also be used for spontaneous fluorescence of biological probes to explore their localization in cancer cells, because of the green fluorescent quantum dots loaded into the selenium nanoparticles. QDs/Se@Ru(A) promotes excess reactive oxygen species (ROS) production in glioma cells to induce DNA damage, thus activating diverse downstream signaling pathways, and inhibiting proliferation of U87 cells through the G2/M phase cycle. Thus, this study provides an effective strategy to design a theranostic agent to simultaneously realize cell imaging and therapy for glioblastoma treatment.
Collapse
Affiliation(s)
- Lizhen He
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
47
|
Peng P, Lv J, Cai C, Lin S, Zhuo E, Wang S. Cinobufagin, a bufadienolide, activates ROS-mediated pathways to trigger human lung cancer cell apoptosis in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra01085k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung cancer, as the most common malignancy worldwide, is one of the most threatening diseases for human beings.
Collapse
Affiliation(s)
- Panli Peng
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Junhong Lv
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Changqing Cai
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Shaohuan Lin
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Enqing Zhuo
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Senming Wang
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|
48
|
Notaro A, Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 2017; 46:7317-7337. [DOI: 10.1039/c7cs00356k] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes with anticancer properties are reviewed.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| |
Collapse
|
49
|
Xie L, Luo Z, Zhao Z, Chen T. Anticancer and Antiangiogenic Iron(II) Complexes That Target Thioredoxin Reductase to Trigger Cancer Cell Apoptosis. J Med Chem 2016; 60:202-214. [DOI: 10.1021/acs.jmedchem.6b00917] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zuandi Luo
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Ru(II) complexes bearing guanidinium ligands as potent anticancer agents. J Inorg Biochem 2016; 164:91-98. [DOI: 10.1016/j.jinorgbio.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/14/2016] [Accepted: 09/13/2016] [Indexed: 01/23/2023]
|