1
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
2
|
Mertens J, Alami A, Arijs K. Comparative in vivo toxicokinetics of silver powder, nanosilver and soluble silver compounds after oral administration to rats. Arch Toxicol 2023; 97:1859-1872. [PMID: 37195448 PMCID: PMC10256634 DOI: 10.1007/s00204-023-03511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Silver (Ag; massive, powder and nanoform) and Ag compounds are used in industrial, medical and consumer applications, with potential for human exposure. Uncertainties exist about their comparative mammalian toxicokinetic ('TK') profiles, including their relative oral route bioavailability, especially for Ag massive and powder forms. This knowledge gap impedes concluding on the grouping of Ag and Ag compounds for hazard assessment purposes. Therefore, an in vivo TK study was performed in a rat model. Sprague-Dawley rats were exposed via oral gavage for up to 28 days to silver acetate (AgAc; 5, 55, 175 mg/kg(bw)/d), silver nitrate (AgNO3; 5, 55, 125 mg/kg(bw)/d), nanosilver (AgNP; 15 nm diameter; 3.6, 36, 360 mg/kg(bw)/d) or silver powder (AgMP; 0.35 µm diameter; 36, 180, 1000 mg/kg(bw)/d). Total Ag concentrations were determined in blood and tissues to provide data on comparative systemic exposure to Ag and differentials in achieved tissue Ag levels. AgAc and AgNO3 were the most bioavailable forms with comparable and linear TK profiles (achieved systemic exposures and tissue concentrations). AgMP administration led to systemic exposures of about an order of magnitude less, with tissue Ag concentrations 2-3 orders of magnitude lower and demonstrating non-linear kinetics. The apparent oral bioavailability of AgNP was intermediate between AgAc/AgNO3 and AgMP. For all test items, highest tissue Ag concentrations were in the gastrointestinal tract and reticuloendothelial organs, whereas brain and testis were minor sites of distribution. It was concluded that the oral bioavailability of AgMP was very limited. These findings provide hazard assessment context for various Ag test items and support the prediction that Ag in massive and powder forms exhibit low toxicity potential.
Collapse
Affiliation(s)
- Jelle Mertens
- European Precious Metals Federation, Avenue de Tervueren 168 Box 6, 1150, Brussels, Belgium.
| | - Anissa Alami
- European Precious Metals Federation, Avenue de Tervueren 168 Box 6, 1150, Brussels, Belgium
| | - Katrien Arijs
- European Precious Metals Federation, Avenue de Tervueren 168 Box 6, 1150, Brussels, Belgium
- ARCHE Consulting, Liefkensstraat 35D, 9032 Wondelgem, Ghent, Belgium
| |
Collapse
|
3
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
4
|
Kircheva N, Angelova S, Dobrev S, Petkova V, Nikolova V, Dudev T. Cu +/Ag + Competition in Type I Copper Proteins (T1Cu). Biomolecules 2023; 13:biom13040681. [PMID: 37189429 DOI: 10.3390/biom13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Due to the similarity in the basic coordination behavior of their mono-charged cations, silver biochemistry is known to be linked to that of copper in biological systems. Still, Cu+/2+ is an essential micronutrient in many organisms, while no known biological process requires silver. In human cells, copper regulation and trafficking is strictly controlled by complex systems including many cytosolic copper chaperones, whereas some bacteria exploit the so-called "blue copper" proteins. Therefore, evaluating the controlling factors of the competition between these two metal cations is of enormous interest. By employing the tools of computational chemistry, we aim to delineate the extent to which Ag+ might be able to compete with the endogenous copper in its Type I (T1Cu) proteins, and where and if, alternatively, it is handled uniquely. The effect of the surrounding media (dielectric constant) and the type, number, and composition of amino acid residues are taken into account when modelling the reactions in the present study. The obtained results clearly indicate the susceptibility of the T1Cu proteins to a silver attack due to the favorable composition and geometry of the metal-binding centers, along with the similarity between the Ag+/Cu+-containing structures. Furthermore, by exploring intriguing questions of both metals' coordination chemistry, an important background for understanding the metabolism and biotransformation of silver in organisms is provided.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Magazenkova DN, Skomorokhova EA, Farroukh MA, Zharkova MS, Jassem ZM, Rekina VE, Shamova OV, Puchkova LV, Ilyechova EY. Influence of Silver Nanoparticles on the Growth of Ascitic and Solid Ehrlich Adenocarcinoma: Focus on Copper Metabolism. Pharmaceutics 2023; 15:pharmaceutics15041099. [PMID: 37111584 PMCID: PMC10145613 DOI: 10.3390/pharmaceutics15041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
The link between copper metabolism and tumor progression motivated us to use copper chelators for suppression of tumor growth. We assume that silver nanoparticles (AgNPs) can be used for lowering bioavailable copper. Our assumption is based on the ability of Ag(I) ions released by AgNPs in biological media and interfere with Cu(I) transport. Intervention of Ag(I) into copper metabolism leads to the replacement of copper by silver in ceruloplasmin and the decrease in bioavailable copper in the bloodstream. To check this assumption, mice with ascitic or solid Ehrlich adenocarcinoma (EAC) were treated with AgNPs using different protocols. Copper status indexes (copper concentration, ceruloplasmin protein level, and oxidase activity) were monitored to assess copper metabolism. The expression of copper-related genes was determined by real-time PCR in the liver and tumors, and copper and silver levels were measured by FAAS. Intraperitoneal AgNPs treatment beginning on the day of tumor inoculation enhanced mice survival, reduced the proliferation of ascitic EAC cells, and suppressed the activity of HIF1α, TNF-α and VEGFa genes. Topical treatment by the AgNPs, which was started together with the implantation of EAC cells in the thigh, also enhanced mice survival, decreased tumor growth, and repressed genes responsible for neovascularization. The advantages of silver-induced copper deficiency over copper chelators are discussed.
Collapse
Affiliation(s)
- Daria N. Magazenkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Ekaterina A. Skomorokhova
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Maria S. Zharkova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Zena M. Jassem
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Valeria E. Rekina
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Olga V. Shamova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V. Puchkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Y. Ilyechova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-(921)-7605274
| |
Collapse
|
6
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
7
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
8
|
Lison D, Ambroise J, Leinardi R, Ibouraadaten S, Yakoub Y, Deumer G, Haufroid V, Paquot A, Muccioli GG, van den Brûle S. Systemic effects and impact on the gut microbiota upon subacute oral exposure to silver acetate in rats. Arch Toxicol 2021; 95:1251-1266. [PMID: 33779765 DOI: 10.1007/s00204-021-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
CONTEXT The addition of silver (Ag) to food items, and its migration from food packaging and appliances results in a dietary exposure in humans, estimated to 70-90 µg Ag/day. In view of the well-known bactericidal activity of Ag ions, concerns arise about a possible impact of dietary Ag on the gut microbiota (GM), which is a master determinant of human health and diseases. Repeated oral administration of Ag acetate (AgAc) can also cause systemic toxicity in rats with reported NOAELs of 4 mg AgAc/b.w./d for impaired fertility and 0.4 mg AgAc/b.w./d for developmental toxicity. OBJECTIVE The objective of this study was to investigate whether oral exposure to AgAc can induce GM alterations at doses causing reproductive toxicity in rats. METHODS Male and female Wistar rats were exposed during 10 weeks to AgAc incorporated into food (0, 0.4, 4 or 40 mg/kg b.w./d), and we analyzed the composition of the GM (α- and β-diversity). We documented bacterial function by measuring short-chain fatty acid (SCFA) production in cecal content. Ferroxidase activity, a biomarker of systemic Ag toxicity, was measured in serum. RESULTS AND CONCLUSIONS From 4 mg/kg b.w./d onwards, we recorded systemic toxicity, as indicated by the reduction of serum ferroxidase activity, as well as serum Cu and Se concentrations. This systemic toxic response to AgAc might contribute to explain reprotoxic manifestations. We observed a dose-dependent modification of the GM composition in male rats exposed to AgAc. No impact of AgAc exposure on the production of bacterial SCFA was recorded. The limited GM changes recorded in this study do not appear related to a reprotoxicity outcome.
Collapse
Affiliation(s)
- Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Gladys Deumer
- Laboratory of Analytical Biochemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.,Laboratory of Analytical Biochemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Sybille van den Brûle
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Skomorokhova EA, Sankova TP, Orlov IA, Savelev AN, Magazenkova DN, Pliss MG, Skvortsov AN, Sosnin IM, Kirilenko DA, Grishchuk IV, Sakhenberg EI, Polishchuk EV, Brunkov PN, Romanov AE, Puchkova LV, Ilyechova EY. Size-Dependent Bioactivity of Silver Nanoparticles: Antibacterial Properties, Influence on Copper Status in Mice, and Whole-Body Turnover. Nanotechnol Sci Appl 2020; 13:137-157. [PMID: 33408467 PMCID: PMC7781014 DOI: 10.2147/nsa.s287658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The ability of silver nanoparticles (AgNPs) of different sizes to influence copper metabolism in mice is assessed. Materials and Methods AgNPs with diameters of 10, 20, and 75 nm were fabricated through a chemical reduction of silver nitrate and characterized by UV/Vis spectrometry, transmission and scanning electronic microscopy, and laser diffractometry. To test their bioactivity, Escherichia coli cells, cultured A549 cells, and C57Bl/6 mice were used. The antibacterial activity of AgNPs was determined by inhibition of colony-forming ability, and cytotoxicity was tested using the MTT test (viability, %). Ceruloplasmin (Cp, the major mammalian extracellular copper-containing protein) concentration and enzymatic activity were measured using gel-assay analyses and WB, respectively. In vitro binding of AgNPs with serum proteins was monitored with UV/Vis spectroscopy. Metal concentrations were measured using atomic absorption spectrometry. Results The smallest AgNPs displayed the largest dose- and time-dependent antibacterial activity. All nanoparticles inhibited the metabolic activity of A549 cells in accordance with dose and time, but no correlation between cytotoxicity and nanoparticle size was found. Nanosilver was not uniformly distributed through the body of mice intraperitoneally treated with low AgNP concentrations. It was predominantly accumulated in liver. There, nanosilver was included in ceruloplasmin, and Ag-ceruloplasmin with low oxidase activity level was formed. Larger nanoparticles more effectively interfered with the copper metabolism of mice. Large AgNPs quickly induced a drop of blood serum oxidase activity to practically zero, but after cancellation of AgNP treatment, the activity was rapidly restored. A major fraction of the nanosilver was excreted in the bile with Cp. Nanosilver was bound by alpha-2-macroglobulin in vitro and in vivo, but silver did not substitute for the copper atoms of Cp in vitro. Conclusion The data showed that even at low concentrations, AgNPs influence murine copper metabolism in size-dependent manner. This property negatively correlated with the antibacterial activity of AgNPs.
Collapse
Affiliation(s)
- Ekaterina A Skomorokhova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| | - Tatiana P Sankova
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Iurii A Orlov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia
| | - Andrew N Savelev
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Daria N Magazenkova
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail G Pliss
- Department of Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.,Laboratory of Blood Circulation Biophysics, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Alexey N Skvortsov
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya M Sosnin
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia
| | - Demid A Kirilenko
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ivan V Grishchuk
- Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Elena I Sakhenberg
- Laboratory of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Polishchuk
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Pavel N Brunkov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey E Romanov
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Center of Nanoheterostructures Physics, Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ludmila V Puchkova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia.,Higher Engineering Physics School of the Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina Yu Ilyechova
- International Research Center of Functional Materials and Devices of Optoelectronics, ITMO University, St. Petersburg, Russia.,Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
10
|
Anti-Influenza Effect of Nanosilver in a Mouse Model. Vaccines (Basel) 2020; 8:vaccines8040679. [PMID: 33202939 PMCID: PMC7712555 DOI: 10.3390/vaccines8040679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the "virocell" concept. Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. Three treatment regimens were used: Scheme 1-mice were pretreated 4 days before infection and then every day during infection development; Scheme 2-mice were pretreated four days before infection and on the day of virus infection; Scheme 3-virus infection and AgNP treatment started simultaneously, and mice were injected with AgNPs until the end of the experiment. The mice treated by Scheme 1 demonstrated significantly lower mortality, the protection index reached 60-70% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNP treatment did not influence influenza virus replication. The possibility of using nanosilver as an effective indirectly-acting antiviral drug is discussed.
Collapse
|
11
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
12
|
CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells 2019; 8:cells8040322. [PMID: 30959888 PMCID: PMC6523758 DOI: 10.3390/cells8040322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.
Collapse
|
13
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
14
|
Ilyechova EY, Puchkova LV, Shavlovskii MM, Korzhevskii DE, Petrova ES, Tsymbalenko NV. Effect of Silver Ions on Copper Metabolism during Mammalian Ontogenesis. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Karpenko MN, Ilyicheva EY, Muruzheva ZM, Milyukhina IV, Orlov YA, Puchkova LV. Role of Copper Dyshomeostasis in the Pathogenesis of Parkinson's Disease. Bull Exp Biol Med 2018; 164:596-600. [PMID: 29577200 DOI: 10.1007/s10517-018-4039-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Serum concentration of copper, immunoreactive polypeptides of ceruloplasmin and its oxidase activity, and the number of copper atoms per ceruloplasmin molecule were decreased in patients with Parkinson's disease in comparison with the corresponding parameters in age-matched healthy individuals, but the ratio of apoceruloplasmin to holoceruloplasmin in patients with Parkinson's disease was similar in both groups. Treatment of blood serum with Helex 100, a high-affinity copper chelator, revealed reduced content of labile copper atoms per ceruloplasmin molecule in patients with Parkinson's disease in comparison with that in healthy controls. The mechanism underlying impaired metabolic incorporation of labile copper atoms into CP molecule is discussed as a possible cause of copper dyshomeostasis associated with Parkinson's disease.
Collapse
Affiliation(s)
- M N Karpenko
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - E Yu Ilyicheva
- Institute of Experimental Medicine, St. Petersburg, Russia. .,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.
| | - Z M Muruzheva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - I V Milyukhina
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Yu A Orlov
- St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia
| | - L V Puchkova
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
16
|
Sankova TP, Orlov IA, Saveliev AN, Kirilenko DA, Babich PS, Brunkov PN, Puchkova LV. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo. Biomolecules 2017; 7:biom7040078. [PMID: 29099786 PMCID: PMC5745460 DOI: 10.3390/biom7040078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022] Open
Abstract
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.
Collapse
Affiliation(s)
- Tatiana P Sankova
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Iurii A Orlov
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Andrey N Saveliev
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Demid A Kirilenko
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Center of Nanoheterostructures Physics, Ioffe Institute, Politekhnicheskaya str., 26, St.-Petersburg 194021, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, St.-Petersburg 191186, Russia.
| | - Pavel N Brunkov
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Center of Nanoheterostructures Physics, Ioffe Institute, Politekhnicheskaya str., 26, St.-Petersburg 194021, Russia.
| | - Ludmila V Puchkova
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| |
Collapse
|
17
|
Platonova NA, Orlov IA, Klotchenko SA, Babich VS, Ilyechova EY, Babich PS, Garmai YP, Vasin AV, Tsymbalenko NV, Puchkova LV. Ceruloplasmin gene expression profile changes in the rat mammary gland during pregnancy, lactation and involution. J Trace Elem Med Biol 2017; 43:126-134. [PMID: 28089327 DOI: 10.1016/j.jtemb.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/31/2016] [Accepted: 12/31/2016] [Indexed: 11/19/2022]
Abstract
Copper metabolism disturbances in mammary gland (MG) cells have severe consequences in newborns. The mechanism that controls the balance of copper in the MG has not been thoroughly characterized. Four primary copper homeostasis genes in mammals: (1) ceruloplasmin (Cp) encoding multifunction multicopper blue (ferr)oxidase; (2) CTR1 encoding high affinity copper importer 1; and (3 and 4) two similar genes encoding Cu(I)/Cu(II)-ATPases P1 type (ATP7A and ATP7B) responsible for copper efflux from the cells and metallation of cuproenzymes formed in the Golgi complex are expressed in MG. This study aimed to characterize expression of these genes during pregnancy, lactation and forced involution in the rat MG. We found that Cp anchored to the plasma membrane and ATP7A were expressed during pregnancy and lactation. Soluble Cp and ATP7B were highly expressed in lactating MG decreasing to its ending. CTR1 activity increased during MG growth and reached its maximum at postpartum and then it decreased until the end of lactation. During early forced MG involution, Cp gene expression persisted; while a form of Cp that lacked exon 18 appeared. We suggest that Cp gene expressional changes at the transcriptional and posttranscriptional level reflect various physiological functions of Cp proteins during MG remodeling.
Collapse
Affiliation(s)
- Natalia A Platonova
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia
| | - Iurii A Orlov
- ITMO University, Kronverksky av., 49, St., Petersburg 197101, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St., Petersburg 195251, Russia.
| | - Sergey A Klotchenko
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia
| | - Victor S Babich
- School of Liberal Arts and Sciences, Mercy College of Health Sciences, Des Moines, IA, USA
| | - Ekaterina Y Ilyechova
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia; ITMO University, Kronverksky av., 49, St., Petersburg 197101, Russia
| | - Polina S Babich
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia
| | - Yuri P Garmai
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St., Petersburg 195251, Russia
| | - Andrey V Vasin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St., Petersburg 195251, Russia
| | - Nadezhda V Tsymbalenko
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia; ITMO University, Kronverksky av., 49, St., Petersburg 197101, Russia
| | - Liudmila V Puchkova
- Institute of Experimental Medicine, Pavlova str., 12, St., Petersburg 197376, Russia; ITMO University, Kronverksky av., 49, St., Petersburg 197101, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St., Petersburg 195251, Russia
| |
Collapse
|
18
|
Ilyechova EY, Tsymbalenko NV, Puchkova LV. The role of subcutaneous adipose tissue in supporting the copper balance in rats with a chronic deficiency in holo-ceruloplasmin. PLoS One 2017; 12:e0175214. [PMID: 28380026 PMCID: PMC5402356 DOI: 10.1371/journal.pone.0175214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that (1) an acute deficiency in blood
serum holo-ceruloplasmin (Cp) developed in rats that were fed fodder containing
silver ions (Ag-fodder) for one month and (2) the deficiency in
holo-Cp was compensated by non-hepatic holo-Cp synthesis in rats that were
chronically fed Ag-fodder for 6 months (Ag-rats). The purpose of the present
study is to identify the organ(s) that compensate for the hepatic holo-Cp
deficiency in the circulation. This study was performed on rats that were fed
Ag-fodder (40 mg Ag·kg-1 body mass daily) for 6 months. The relative
expression levels of the genes responsible for copper status were measured by
RT-PCR. The in vitro synthesis and secretion of
[14C]Cp were analyzed using a metabolic labeling approach. Oxidase
activity was determined using a gel assay with o-dianisidine.
Copper status and some hematological indexes were measured. Differential
centrifugation, immunoblotting, immunoelectrophoresis, and atomic absorption
spectrometry were included in the investigation. In the Ag-rats, silver
accumulation was tissue-specific. Skeletal muscles and internal (IAT) and
subcutaneous (SAT) adipose tissues did not accumulate silver significantly. In
SAT, the mRNAs for the soluble and glycosylphosphatidylinositol-anchored
ceruloplasmin isoforms were expressed, and their relative levels were increased
two-fold in the Ag-rats. In parallel, the levels of the genes responsible for Cp
metallation (Ctr1 and Atp7a/b) increased
correspondingly. In the SAT of the Ag-rats, Cp oxidase activity was observed in
the Golgi complex and plasma membrane. Moreover, full-length [14C]Cp
polypeptides were released into the medium by slices of SAT. The possibilities
that SAT is part of a system that controls the copper balance in mammals, and it
plays a significant role in supporting copper homeostasis throughout the body
are discussed.
Collapse
Affiliation(s)
- Ekaterina Y. Ilyechova
- Department of Molecular Genetics, Institute of Experimental Medicine, St.
Petersburg, Russia
- International Research and Education Center "Functional materials and
devices of optoelectronics and microelectronics", ITMO University, St.
Petersburg, Russia
- * E-mail:
| | - Nadezhda V. Tsymbalenko
- Department of Molecular Genetics, Institute of Experimental Medicine, St.
Petersburg, Russia
- International Research and Education Center "Functional materials and
devices of optoelectronics and microelectronics", ITMO University, St.
Petersburg, Russia
| | - Ludmila V. Puchkova
- Department of Molecular Genetics, Institute of Experimental Medicine, St.
Petersburg, Russia
- International Research and Education Center "Functional materials and
devices of optoelectronics and microelectronics", ITMO University, St.
Petersburg, Russia
- Department of Biophysics, Institute of Physics, Nanotechnology, and
Telecommunications, Peter the Great St. Petersburg Polytechnic University, St.
Petersburg, Russia
| |
Collapse
|
19
|
In vivo effect of copper status on cisplatin-induced nephrotoxicity. Biometals 2016; 29:841-9. [DOI: 10.1007/s10534-016-9955-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
20
|
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016; 10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Jui-Chen Tsai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health Ministry of Labor, Sijhih District, New Taipei City, Taiwan ROC,
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung City, Taiwan ROC,
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan ROC
| |
Collapse
|
21
|
|