1
|
Chawda K, Indoliya Y, Siddique W, Gautam N, Chakrabarty D. Identification and characterization of a rice expansin-like protein with metal-binding properties. Int J Biol Macromol 2024; 283:137791. [PMID: 39557252 DOI: 10.1016/j.ijbiomac.2024.137791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Heavy metal (HM) contamination poses significant threat to agricultural productivity. This study identified and characterized Os09g29690 (OsELP), a rice expansin-like protein. We demonstrated OsELP localizes to the cell wall and is upregulated under various abiotic stresses. Sequence analysis revealed a potential metal-binding CXXXC motif in its conserved domain. Heterologous expression of OsELP in yeast mutants (Δacr3 and Δycf1) enhanced metal tolerance under arsenate [As(V)], arsenite [As(III)], and cadmium [Cd] stress. Yeast cells expressing OsELP accumulated higher amounts of As and Cd, suggesting a potential metal-binding mechanism. This was confirmed through site-directed mutagenesis on the conserved cysteine and serine residues within OsELP. Mutants lacking cysteine residues (mutCS) reduced tolerance to As(III) and Cd but enhanced tolerance to As(V), indicating a role of cysteine in As(III) and Cd binding. Conversely, mutants lacking serine residues (mutSA) reduced tolerance to As(V), suggesting serine's involvement in As(V) binding. These findings reveal the roles of cysteine and serine residues in mediating HM tolerance and binding, confirming OsELP as a key player in HM detoxification through cell wall localization and chelation. This study provides novel insights into the molecular mechanisms of HM tolerance in plants, with potential applications in developing crops with enhanced resistance to HM toxicity.
Collapse
Affiliation(s)
- Khushboo Chawda
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Waseem Siddique
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Gautam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
3
|
Zhao Y, Zhao X, Duan L, Hou R, Gu Y, Liu Z, Chen J, Wu F, Yang L, Le XC, Wang Q, Yan X. Reinvent Aliphatic Arsenicals as Reversible Covalent Warheads toward Targeted Kinase Inhibition and Non-acute Promyelocytic Leukemia Cancer Treatment. J Med Chem 2024; 67:5458-5472. [PMID: 38556750 DOI: 10.1021/acs.jmedchem.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The success of arsenic in acute promyelocytic leukemia (APL) treatment is hardly transferred to non-APL cancers, mainly due to the low selectivity and weak binding affinity of traditional arsenicals to oncoproteins critical for cancer survival. We present herein the reinvention of aliphatic trivalent arsenicals (As) as reversible covalent warheads of As-based targeting inhibitors toward Bruton's tyrosine kinase (BTK). The effects of As warheads' valency, thiol protection, methylation, spacer length, and size on inhibitors' activity were studied. We found that, in contrast to the bulky and rigid aromatic As warhead, the flexible aliphatic As warheads were well compatible with the well-optimized guiding group to achieve nanomolar inhibition against BTK. The optimized As inhibitors effectively blocked the BTK-mediated oncogenic signaling pathway, leading to elevated antiproliferative activities toward lymphoma cells and xenograft tumor. Our study provides a promising strategy enabling rational design of new aliphatic arsenic-based reversible covalent inhibitors toward non-APL cancer treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyue Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lewei Duan
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
| | - Ruxue Hou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Gu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianbin Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feizhen Wu
- Laboratory of Epigenetics at Institutes of Biomedical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai 200032, China
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
4
|
Zhang L, Zhang J, Ye ZW, Muhammad A, Li L, Culpepper JW, Townsend DM, Tew KD. Adaptive changes in tumor cells in response to reductive stress. Biochem Pharmacol 2024; 219:115929. [PMID: 38000559 PMCID: PMC10895707 DOI: 10.1016/j.bcp.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-β-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Aslam Muhammad
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - John W Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Liu J, Chen B, Zhang R, Li Y, Chen R, Zhu S, Wen S, Luan T. Recent progress in analytical strategies of arsenic-binding proteomes in living systems. Anal Bioanal Chem 2023; 415:6915-6929. [PMID: 37410126 DOI: 10.1007/s00216-023-04812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Arsenic (As) is one of the most concerning elements due to its high exposure risks to organisms and ecosystems. The interaction between arsenicals and proteins plays a pivotal role in inducing their biological effects on living systems, e.g., arsenicosis. In this review article, the recent advances in analytical techniques and methods of As-binding proteomes were well summarized and discussed, including chromatographic separation and purification, biotin-streptavidin pull-down probes, in situ imaging using novel fluorescent probes, and protein identification. These analytical technologies could provide a growing body of knowledge regarding the composition, level, and distribution of As-binding proteomes in both cells and biological samples, even at the organellar level. The perspectives on analysis of As-binding proteomes are also proposed, e.g., isolation and identification of minor proteins, in vivo targeted protein degradation (TPD) technologies, and spatial As-binding proteomics. The application and development of sensitive, accurate, and high-throughput methodologies of As-binding proteomics would enable us to address the key molecular mechanisms underlying the adverse health effects of arsenicals.
Collapse
Affiliation(s)
- Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siqi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Sadee BA, Galali Y, Zebari SMS. Toxicity, arsenic speciation and characteristics of hyphenated techniques used for arsenic determination in vegetables. A review. RSC Adv 2023; 13:30959-30977. [PMID: 37876652 PMCID: PMC10591994 DOI: 10.1039/d3ra05770d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Arsenic (As) speciation is an interesting topic because it is well recognized that the toxicity of this metalloid ultimately depends on its chemical form. More than 300 arsenicals exist naturally. However, As can be present in four oxidation states: As-III, As0, AsIII and AsV. Long-term exposure to As from different sources, such as anthropogenic processes, or water, fauna and flora contaminated with As, has put human health at risk for decades. There are many side-effects correlated with exposure to InAs species, such as skin problems, respiratory diseases, kidney problems, cardiovascular diseases and even cancer. There are different levels and types of As in foods, particularly in vegetables. Furthermore, different chemical methods and techniques have been developed. Therefore, this review focuses on the general properties of various approaches used to identify As species in vegetation samples published worldwide. This includes various approaches (different solvents and techniques) used to extract As species from the matrix. Then, versatile chromatographic and non-chromatographic systems to separate different forms of As are reviewed. Finally, the general properties of the most common instruments used to detect As species from samples of interest are listed.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil KRG Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil KRG Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil KRG Iraq
| |
Collapse
|
7
|
Cho HH, Jung DH, Heo JH, Lee CY, Jeong SY, Lee JH. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19785-19806. [PMID: 37067786 DOI: 10.1021/acsami.3c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.
Collapse
Affiliation(s)
- Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Do Hyeon Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Yun Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Abstract
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Collapse
|
9
|
Virk RK, Garla R, Kaushal N, Bansal MP, Garg ML, Mohanty BP. The relevance of arsenic speciation analysis in health & medicine. CHEMOSPHERE 2023; 316:137735. [PMID: 36603678 DOI: 10.1016/j.chemosphere.2023.137735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Long term exposure to arsenic through consumption of contaminated groundwater has been a global issue since the last five decades; while from an alternate standpoint, arsenic compounds have emerged as unparallel chemotherapeutic drugs. This review highlights the contribution from arsenic speciation studies that have played a pivotal role in the progression of our understanding of the biological behaviour of arsenic in humans. We also discuss the limitations of the speciation studies and their association with the interpretation of arsenic metabolism. Chromatographic separation followed by spectroscopic detection as well as the utilization of biotinylated pull-down assays, protein microarray and radiolabelled arsenic have been instrumental in identifying hundreds of metabolic arsenic conjugates, while, computational modelling has predicted thousands of them. However, these species exhibit a variegated pattern, which supports more than one hypothesis for the metabolic pathway of arsenic. Thus, the arsenic species are yet to be integrated into a coherent mechanistic pathway depicting its chemicobiological fate. Novel biorelevant arsenic species have been identified due to significant evolution in experimental methodologies. However, these methods are specific for the identification of only a group of arsenicals sharing similar physiochemical properties; and may not be applicable to other constituents of the vast spectrum of arsenic species. Consequently, the identity of arsenic binding partners in vivo and the sequence of events in arsenic metabolism are still elusive. This resonates the need for additional focus on the extraction and characterization of both low and high molecular weight arsenicals in a combinative manner.
Collapse
Affiliation(s)
- Rajbinder K Virk
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Roobee Garla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohinder P Bansal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohan L Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Biraja P Mohanty
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Das M, Gangopadhyay D, Pelc R, Hadravová R, Šebestík J, Bouř P. Aggregation-aided SERS: Selective detection of arsenic by surface-enhanced Raman spectroscopy facilitated by colloid cross-linking. Talanta 2023; 253:123940. [DOI: 10.1016/j.talanta.2022.123940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
|
11
|
Research Progress in Fluorescent Probes for Arsenic Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238497. [PMID: 36500589 PMCID: PMC9740406 DOI: 10.3390/molecules27238497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Arsenic is a toxic non-metallic element that is widely found in nature. In addition, arsenic and arsenic compounds are included in the list of Group I carcinogens and toxic water pollutants. Therefore, rapid and efficient methods for detecting arsenic are necessary. In the past decade, a variety of small molecule fluorescent probes have been developed, which has been widely recognized for their rapidness, efficiency, convenience and sensitivity. With the development of new nanomaterials (AuNPs, CDs and QDs), organic molecules and biomolecules, the conventional detection of arsenic species based on fluorescence spectroscopy is gradually transforming from the laboratory to the portable kit. Therefore, in view of the current research status, this review introduces the research progress of both traditional and newly developed fluorescence spectrometry based on novel materials for arsenic detection, and discusses the potential of this technology in the rapid screening and field testing of water samples contaminated with arsenic. The review also discusses the problems that still exist in this field, as well as the expectations.
Collapse
|
12
|
Saadati A, Farshchi F, Hasanzadeh M, Liu Y, Seidi F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv 2022; 12:21836-21850. [PMID: 36091189 PMCID: PMC9358409 DOI: 10.1039/d2ra02820d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools in the environmental and biomedical diagnosis of As(iii).
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No. 4365 - Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
13
|
Dara M, Parisi MG, La Corte C, Benenati G, Parrinello D, Piazzese D, Cammarata M. Sabella spallanzanii mucus bacterial agglutinating activity after arsenic exposure. The equilibrium between predation safety and immune response stability. MARINE POLLUTION BULLETIN 2022; 181:113833. [PMID: 35716492 DOI: 10.1016/j.marpolbul.2022.113833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We report the Sabella spallanzanii mucus bacterial agglutination response after inorganic arsenic (As) exposure. As is actively adsorbed from the surrounding environment and accumulated at high concentrations in tissues as an anti-predatory strategy. Here we investigated the effect of high As concentrations on its immunobiological response. It may act on mucus lectins and on its ability to agglutinate bacteria. We concluded that As at high concentrations leads to the inhibition of pathogen recognition. Nevertheless, although its biological activity is significant reduced in winter, responses to As concentrations are very similar, and below a certain threshold do not induce alterations, supporting the hypothesis of adaptation to high As concentrations related to involvement in predation defence.
Collapse
Affiliation(s)
- M Dara
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy
| | - G Benenati
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy
| | - D Piazzese
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 26, 90123 Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Building16, 90128 Palermo, Italy.
| |
Collapse
|
14
|
Kretzschmar J, Brendler E, Wagler J. Phenylarsonic acid-DMPS redox reaction and conjugation investigated by NMR spectroscopy and X-ray diffraction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103837. [PMID: 35248761 DOI: 10.1016/j.etap.2022.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The reaction between 2,3-dimercaptopropane-1-sulfonate (DMPS, unithiol) and four phenylarsonic(V) acids, i.e. phenylarsonic acid (PAA), 4-hydroxy-3-nitrophenylarsonic acid (HNPAA), 2-aminophenylarsonic acid (o-APAA) and 4-aminophenylarsonic acid (p-APAA), is investigated in aqueous solution. The pentavalent arsenic compounds are reduced by DMPS to their trivalent analogs and instantly chelated by the vicinal dithiol, forming covalent As-S bonds within a five-membered chelate ring. The different types and positions of polar substituents at the aromatic ring of the arsonic acids influence the reaction rates in the same way as observed for reaction with glutathione (GSH), as well as the syn/anti molar ratio of the diastereomeric products, which was analyzed using time- and temperature-dependent nuclear magnetic resonance (NMR) spectroscopy. Addition of DMPS to the conjugate formed by a phenylarsonic(V) acid and the biologically relevant tripeptide GSH showed the immediate replacement of GSH by chelating DMPS, underlining the importance of dithiols as detoxifying agent.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Erica Brendler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Jörg Wagler
- Institute of Inorganic Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
15
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
16
|
The Effect of Broccoli Extract in Arsenic-Induced Experimental Poisoning on the Hematological, Biochemical, and Electrophoretic Parameters of the Liver and Kidney of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3509706. [PMID: 35035501 PMCID: PMC8754608 DOI: 10.1155/2022/3509706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Heavy metals such as arsenic contribute to environmental pollution that can lead to systemic effects in various body organs. Some medicinal plants such as broccoli have been shown to reduce the harmful effects of these heavy metals. The main aim of the present study is to evaluate the effects of broccoli extract on liver and kidney toxicity, considering hematological and biochemical changes. The experimental study was performed in 28 days on 32 male Wistar rats classified into four groups: the control group (C), a group receiving 5 mg/kg oral arsenic (AS), a group receiving 300 mg/kg broccoli (B), and a group receiving arsenic and broccoli combination (AS + B). Finally, blood samples were taken to evaluate the hematological and biochemical parameters of the liver and kidney, as well as serum proteins' concentration. Liver and kidney tissue were fixed and stained by H&E and used for histopathological diagnosis. The results demonstrated a significant decrease in white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) in the AS group compared to other groups. However, in the B group, a significant increase in RBC and WBC was observed compared to the AS and C groups (P < 0.05). Moreover, RBC and WBC levels increased significantly in the AS + B group compared to the AS group (P = 0.046). However, in the AS group, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels increased, while total protein, albumin, and globulin decreased. This can be a result of liver and kidney damage, which was observed in the AS group. Furthermore, the increase in the concentration of albumin and globulin in the AS + B group was higher than that in the AS group. Infiltration of inflammatory cells and necrosis of the liver and kidney tissue in the pathological evaluation of the AS group were significantly higher than other groups. There was an increase in superoxide dismutases (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC); however, a decrease in malondialdehyde (MDA) concentration was seen in the AS + B group compared to the AS group. It seems that broccoli is highly effective at reducing liver and kidney damage and improving the hematological and biochemical factors in arsenic poisoning conditions.
Collapse
|
17
|
Mahawaththa MC, Orton HW, Adekoya I, Huber T, Otting G, Nitsche C. Organoarsenic probes to study proteins by NMR spectroscopy. Chem Commun (Camb) 2022; 58:701-704. [PMID: 34927186 DOI: 10.1039/d1cc06497e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arsenical probes enable structural studies of proteins. We report the first organoarsenic probes for nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to study proteins in solutions. These probes can be attached to irregular loop regions. A lanthanide-binding tag induces sizable pseudocontact shifts in protein NMR spectra of a magnitude never observed for small paramagnetic probes before.
Collapse
Affiliation(s)
- Mithun C Mahawaththa
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Henry W Orton
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Ibidolapo Adekoya
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
18
|
Oakley AJ. Proposed mechanism for monomethylarsonate reductase activity of human omega-class glutathione transferase GSTO1-1. Biochem Biophys Res Commun 2021; 590:7-13. [PMID: 34959192 DOI: 10.1016/j.bbrc.2021.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Contamination of drinking water with toxic inorganic arsenic is a major public health issue. The mechanisms of enzymes and transporters in arsenic elimination are therefore of interest. The human omega-class glutathione transferases have been previously shown to possess monomethylarsonate (V) reductase activity. To further understanding of this activity, molecular dynamics of human GSTO1-1 bound to glutathione with a monomethylarsonate isostere were simulated to reveal putative monomethylarsonate binding sites on the enzyme. The major binding site is in the active site, adjacent to the glutathione binding site. Based on this and previously reported biochemical data, a reaction mechanism for this enzyme is proposed. Further insights were gained from comparison of the human omega-class GSTs to homologs from a range of animals.
Collapse
Affiliation(s)
- Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
19
|
Das M, Singh KK, Khan E, Sinha RK, Singh RK, Tandon P, Gangopadhyay D. N-Acetylcysteine versus arsenic poisoning: A mechanistic study of complexation by molecular spectroscopy and density functional theory. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
21
|
Paligaspe P, Weerasinghe S, Dissanayake D, Senthilnithy R. Identify the effect of As(III) on the structural stability of monomeric PKM2 and its carcinogenicity: A molecular dynamics and QM/MM based approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Harisha KS, Narayana B, Sangappa Y. Highly selective and sensitive colorimetric detection of arsenic(III) in aqueous solution using green synthesized unmodified gold nanoparticles. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1931286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- K. S. Harisha
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| | - Y. Sangappa
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| |
Collapse
|
23
|
Abstract
Reductive stress is defined as a condition characterized by excess accumulation of reducing equivalents (e.g., NADH, NADPH, GSH), surpassing the activity of endogenous oxidoreductases. Excessive reducing equivalents can perturb cell signaling pathways, change the formation of disulfide bonding in proteins, disturb mitochondrial homeostasis or decrease metabolism. Reductive stress is influenced by cellular antioxidant load, its flux and a subverted homeostasis that paradoxically can result in excess ROS induction. Balanced reducing equivalents and antioxidant enzymes that contribute to reductive stress can be regulated by Nrf2, typically considered as an oxidative stress induced transcription factor. Cancer cells may coordinate distinct pools of redox couples under reductive stress and these may link to biological consequences from both molecular and translational standpoints. In cancer, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic management and disease progression.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
24
|
Howlader AH, Suzol SH, Nadar VS, Galván AE, Nedovic A, Cudic P, Rosen BP, Yoshinaga M, Wnuk SF. Chemical synthesis of the organoarsenical antibiotic arsinothricin. RSC Adv 2021; 11:35600-35606. [PMID: 35493177 PMCID: PMC9043123 DOI: 10.1039/d1ra06770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
We report two routes of chemical synthesis of arsinothricin (AST), the novel organoarsenical antibiotic. One is by condensation of the 2-chloroethyl(methyl)arsinic acid with acetamidomalonate, and the second involves reduction of the N-acetyl protected derivative of hydroxyarsinothricin (AST-OH) and subsequent methylation of a trivalent arsenic intermediate with methyl iodide. The enzyme AST N-acetyltransferase (ArsN1) was utilized to purify l-AST from racemic AST. This chemical synthesis provides a source of this novel antibiotic for future drug development. Arsinothricin is prepared from 2-chloroethyl(methyl)arsinic acid or by reduction of N-acetyl protected derivative of hydroxyarsinothricin and methylation with methyl iodide.![]()
Collapse
Affiliation(s)
- A. Hasan Howlader
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Sazzad H. Suzol
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Adriana Emilce Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Aleksandra Nedovic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
25
|
Hu G, Jia H, Hou Y, Han X, Gan L, Si J, Cho DH, Zhang H, Fang J. Decrease of Protein Vicinal Dithiols in Parkinsonism Disclosed by a Monoarsenical Fluorescent Probe. Anal Chem 2020; 92:4371-4378. [DOI: 10.1021/acs.analchem.9b05232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guodong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huiyi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lu Gan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Jing Si
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu 41566, Republic of Korea
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
26
|
Reid MS, Hoy KS, Schofield JR, Uppal JS, Lin Y, Lu X, Peng H, Le XC. Arsenic speciation analysis: A review with an emphasis on chromatographic separations. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115770] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Li Y, Liu Y, Han X, Jin H, Ma S. Arsenic Species in Cordyceps sinensis and Its Potential Health Risks. Front Pharmacol 2019; 10:1471. [PMID: 31866869 PMCID: PMC6910106 DOI: 10.3389/fphar.2019.01471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
High arsenic residues make Cordyceps sinensis a concern in China. Arsenic toxicity is related to its species. Many studies have evaluated the toxicity of total arsenic, but few have studied its species. In this study, the species of arsenic in C. sinensis and its potential health risk were investigated. SEC-HPLC-ICP-MS was used to analysis of arsenic in C. sinensis and unknown arsenic (uAs) was discovered. Additionally, arsenic in C. sinensis was mainly found in alkali-soluble proteins. The trend of arsenic transformation indicated that unknown arsenic in C. sinensis may be converted into free inorganic arsenic, which enhanced toxicity. The result of risk assessment indicated that there were potential health risks of uAs. Hereon, we proposed recommendations for the use of C. sinensis and regulatory recommendations for arsenic standards. This study contributed to the toxicity reveal, safety evaluation, and risk assessment of arsenic in C. sinensis.
Collapse
Affiliation(s)
- Yaolei Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Pharmacy, Beihua University, Jilin, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
28
|
Zhou L, Xie L, Liu C, Xiao Y. New trends of molecular probes based on the fluorophore 4-amino-1,8-naphthalimide. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Fan C, Liu G, Long Y, Rosen B, Cai Y. Thiolation in arsenic metabolism: a chemical perspective. Metallomics 2019; 10:1368-1382. [PMID: 30207373 DOI: 10.1039/c8mt00231b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, methylated thioarsenicals have been widely detected in various biological and environmental matrices, suggesting their broad involvement and biological importance in arsenic metabolism. However, very little is known about the formation mechanism of methylated thioarsenicals and the relation between arsenic methylation and thiolation processes. It is timely and necessary to summarize and synthesize the reported information on thiolated arsenicals for an improved understanding of arsenic thiolation. To this end, we examined the proposed formation pathways of methylated oxoarsenicals and thioarsenicals from a chemical perspective and proposed a novel arsenic metabolic scheme, in which arsenic thiolation is integrated with methylation (instead of being separated from methylation as currently reported). We suggest in the new scheme that protein-bound pentavalent arsenicals are critical intermediates that connect methylation and thiolation, with protein binding of pentavalent methylated thioarsenical being a key step for arsenic thiolation. This informative review on arsenic thiolation from the chemical perspective will be helpful to better understand the arsenic metabolism at the molecular level and the toxicological effects of arsenic species.
Collapse
Affiliation(s)
- Changjun Fan
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|
30
|
Kaiming C, Sheng Y, Zheng S, Yuan S, Huang G, Liu Y. Arsenic trioxide preferentially binds to the ring finger protein PML: understanding target selection of the drug. Metallomics 2019; 10:1564-1569. [PMID: 30259936 DOI: 10.1039/c8mt00202a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Arsenic trioxide (ATO) is used in the clinic for the treatment of acute promyelocytic leukemia by targeting the protein PML. However, many zinc-finger proteins could also be reactive to arsenic in cells. Here we found that ATO preferentially binds to the ring-finger domain of PML in a protein mixture with zinc-finger domains. These results provide the molecular basis of the target selection of ATO in cells.
Collapse
Affiliation(s)
- Cao Kaiming
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
31
|
Soleja N, Manzoor O, Khan P, Mohsin M. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As 3+) dynamics in living cells. Sci Rep 2019; 9:11240. [PMID: 31375744 PMCID: PMC6677752 DOI: 10.1038/s41598-019-47682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arsenic poisoning has been a major concern that causes severe toxicological damages. Therefore, intricate and inclusive understanding of arsenic flux rates is required to ascertain the cellular concentration and establish the carcinogenetic mechanism of this toxicant at real time. The lack of sufficiently sensitive sensing systems has hampered research in this area. In this study, we constructed a fluorescent resonance energy transfer (FRET)-based nanosensor, named SenALiB (Sensor for Arsenic Linked Blackfoot disease) which contains a metalloregulatory arsenic-binding protein (ArsR) as the As3+ sensing element inserted between the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus. SenALiB takes advantage of the ratiometic FRET readout which measures arsenic with high specificity and selectivity. SenALiB offers rapid detection response, is stable to pH changes and provides highly accurate, real-time optical readout in cell-based assays. SenALiB-676n with a binding constant (Kd) of 0.676 × 10−6 M is the most efficient affinity mutant and can be a versatile tool for dynamic measurement of arsenic concentration in both prokaryotes and eukaryotes in vivo in a non-invasive manner.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ovais Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
32
|
Mittal M, Chatterjee S, Flora SJS. Combination therapy with vitamin C and DMSA for arsenic-fluoride co-exposure in rats. Metallomics 2019; 10:1291-1306. [PMID: 30140832 DOI: 10.1039/c8mt00192h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Arsenic and fluoride are recognized globally as the most serious inorganic contaminants in drinking water. As there is no safe and effective treatment for the cases of fluoride poisoning and combined arsenic-fluoride toxicity, the present study was planned to assess (i) the mechanism of combined exposure to arsenic and fluoride via biochemical and spectroscopic data; (ii) the effect of a thiol chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), either individually or in combination with the antioxidant vitamin C in reversing arsenic-fluoride toxicity; and (iii) whether combination therapy enhances arsenic and fluoride removal from blood and soft tissues. METHODS Rats were exposed to arsenic (50 mg l-1) and fluoride (50 mg l-1) individually and in combination for 9 months and later administered DMSA (50 mg kg-1) via an i.p. route and vitamin C (25 mg kg-1) orally for 5 days. Biochemical parameters suggestive of alterations in the heme synthesis pathway, oxidative stress in blood, the liver and the kidneys, and concentrations of arsenic and fluoride in blood and soft tissues were studied. We also studied the infrared (IR) spectra of DNA extracted from the livers and kidneys of the normal and exposed animals. RESULTS It was found that chronic arsenic and fluoride exposure led to an increased oxidative stress condition and impaired heme synthesis (67% inhibition in δ-aminolevulinic acid dehydratase activity and 38% increase in δ-aminolevulinic acid synthetase activity). The decreased antioxidant defense mechanism was marked by a 2.25 fold increased concentration of Reactive Oxygen Species (ROS) and a 28% decrease in the Glutathione (GSH) level. Interestingly, concomitant exposure to arsenic and fluoride did not lead to antagonistic effects as the toxic effects were the same as those seen during the individual exposure to both the toxicants. It suggests that toxicity depends on the dose and duration of exposure. Combination therapy with DMSA and vitamin C showed a better efficacy than monotherapy in terms of reducing the arsenic and fluoride burden (more than 70% in blood and soft tissues) as well as reversal in the altered biochemical variables indicative of oxidative stress and tissue damage (80-85%). The infrared (IR) spectra of DNA isolated from the liver and kidneys suggested that the treatment with vitamin C and DMSA had no beneficial effects in terms of reversing DNA damage. CONCLUSION On the basis of the above observations, we suggest that the combinational therapy of DMSA and vitamin C would be more effective in arsenic and/or fluoride toxicity; however, more detailed studies are required to address recoveries in DNA damage.
Collapse
Affiliation(s)
- Megha Mittal
- Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India
| | | | | |
Collapse
|
33
|
Cassone G, Chillè D, Giacobello F, Giuffrè O, Mollica Nardo V, Ponterio RC, Saija F, Sponer J, Trusso S, Foti C. Interaction between As(III) and Simple Thioacids in Water: An Experimental and ab Initio Molecular Dynamics Investigation. J Phys Chem B 2019; 123:6090-6098. [DOI: 10.1021/acs.jpcb.9b04901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Donatella Chillè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Fausta Giacobello
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | | | | | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Sebastiano Trusso
- CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
34
|
Sher S, Rehman A. Use of heavy metals resistant bacteria-a strategy for arsenic bioremediation. Appl Microbiol Biotechnol 2019; 103:6007-6021. [PMID: 31209527 DOI: 10.1007/s00253-019-09933-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
A large number of industries release their untreated wastes in the environment causing an increase in the concentration of toxic pollutants including heavy metal ions in ground and drinking water which is above the WHO limit. The presence of toxic pollutants in the industrial wastes pollutes our environment. Arsenic (As) is a ubiquitous toxic metalloid. Its amount varies in different parts on the earth, and its concentration is increasing in our environment day by day both by natural and anthropogenic activities. It is found in two forms; one is arsenate (As5+) and other is arsenite (As3+) and the latter is more toxic due to high mobility across the cell membrane. The long-term use of arsenic-containing water causes arsenicosis. High arsenic consumption, revealed by skin harms, color change, and spots on hands and feet, may cause skin cancer and affect lungs and kidneys. Hypertension, a state of high blood pressure, and lack of insulin which causes diabetes and many other disorders which relate to reproduction are the consequences of arsenic contamination. Several methods have been employed to decontaminate arsenic pollution, but the bioremediation by using biomass of bacteria, algae, fungi, and yeasts is the most compromising approach and has gained much attention from researchers in the last few decades. The microbial detoxification of arsenic can be achieved by reduction, oxidation, and methylation. High bioremediation potential and feasibility of the process make bacteria an impending foundation for green chemistry to exterminate arsenic in the environment.
Collapse
Affiliation(s)
- Shahid Sher
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
35
|
Xu X, Wang H, Li H, Hu X, Zhang Y, Guan X, Toy PH, Sun H. S-Dimethylarsino-glutathione (darinaparsin®) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chem Commun (Camb) 2019; 55:13120-13123. [DOI: 10.1039/c9cc07605k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone H3.3 was identified as an arsenic-binding protein of S-dimethylarsino-glutathione (ZIO-101, darinaparsin®) in leukemia cells by GE-ICP-MS, leading to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Haibo Wang
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Hongyan Li
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Xuqiao Hu
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Yu Zhang
- Department of Clinical Oncology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Patrick H. Toy
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| |
Collapse
|
36
|
Berberich J, Li T, Sahle-Demessie E. Biosensors for Monitoring Water Pollutants: A Case Study With Arsenic in Groundwater. SEP SCI TECHNOL 2019. [DOI: 10.1016/b978-0-12-815730-5.00011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Trewin AJ, Berry BJ, Wei AY, Bahr LL, Foster TH, Wojtovich AP. Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 2018; 128:157-164. [PMID: 29425690 PMCID: PMC6078816 DOI: 10.1016/j.freeradbiomed.2018.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Oxidants play an important role in the cell and are involved in many redox processes. Oxidant concentrations are maintained through coordinated production and removal systems. The dysregulation of oxidant homeostasis is a hallmark of many disease pathologies. The local oxidant microdomain is crucial for the initiation of many redox signaling events; however, methods to control oxidant product are limited. Some fluorescent proteins, including GFP, TagRFP, KillerRed, miniSOG, and their derivatives, generate oxidants in response to light. These genetically-encoded photosensitizers produce singlet oxygen and superoxide upon illumination and offer spatial and temporal control over oxidant production. In this review, we will examine the photosensitization properties of fluorescent proteins and their application to redox biology. Emerging concepts of selective oxidant species production via photosensitization and the impact of light on biological systems are discussed.
Collapse
Affiliation(s)
- Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Brandon J Berry
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Laura L Bahr
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States; University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States.
| |
Collapse
|
38
|
Zhou Y, Wang H, Tse E, Li H, Sun H. Cell Cycle-Dependent Uptake and Cytotoxicity of Arsenic-Based Drugs in Single Leukemia Cells. Anal Chem 2018; 90:10465-10471. [DOI: 10.1021/acs.analchem.8b02444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eric Tse
- Department of Medcine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, P.R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
39
|
Liu Q, Lu X, Peng H, Popowich A, Tao J, Uppal JS, Yan X, Boe D, Le XC. Speciation of arsenic – A review of phenylarsenicals and related arsenic metabolites. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Tanaka J, Davis TP, Wilson P. Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science. Macromol Rapid Commun 2018; 39:e1800205. [PMID: 29806240 DOI: 10.1002/marc.201800205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Arsenic (As) exhibits diverse (bio)chemical reactivity and biological activity depending upon its oxidation state. However, this distinctive reactivity has been largely overlooked across many fields owing to concerns regarding the toxicity of arsenic. Recently, a clinical renaissance in the use of arsenicals, including organic arsenicals that are known to be less toxic than inorganic arsenicals, alludes to the possibility of broader acceptance and application in the field of polymer and biomaterials science. Here, current examples of polymeric/macromolecular arsenicals are reported to stimulate interest and highlight their potential as a novel platform for functional, responsive, and bioactive materials.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Thomas P Davis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| |
Collapse
|
41
|
Noy JM, Lu H, Hogg PJ, Yang JL, Stenzel M. Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjug Chem 2018; 29:546-558. [DOI: 10.1021/acs.bioconjchem.8b00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Philip J. Hogg
- The
Centenary Institute and National Health and Medical Research Council
Clinical Trials Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
42
|
Arsenic trioxide: insights into its evolution to an anticancer agent. J Biol Inorg Chem 2018; 23:313-329. [DOI: 10.1007/s00775-018-1537-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
|
43
|
Cassone G, Chillé D, Foti C, Giuffré O, Ponterio RC, Sponer J, Saija F. Stability of hydrolytic arsenic species in aqueous solutions: As3+vs. As5+. Phys Chem Chem Phys 2018; 20:23272-23280. [DOI: 10.1039/c8cp04320e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
By combining ab initio molecular dynamics simulations and experiments, the stable hydrolytic species formed by As3+ and As5+ have been identified both in natural waters and in biologically relevant systems.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences
- 61265, Brno
- Czech Republic
| | - Donatella Chillé
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- Viale F. Stagno d’Alcontres 31
| | - Claudia Foti
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- Viale F. Stagno d’Alcontres 31
| | - Ottavia Giuffré
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- Viale F. Stagno d’Alcontres 31
| | | | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences
- 61265, Brno
- Czech Republic
| | - Franz Saija
- CNR-IPCF
- Viale Ferdinando Stagno d’Alcontres 37
- 98158 Messina
- Italy
| |
Collapse
|
44
|
Haraguchi H. Metallomics: the history over the last decade and a future outlook. Metallomics 2017; 9:1001-1013. [PMID: 28758652 DOI: 10.1039/c7mt00023e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2004, the term "metallomics" was coined to describe integrated biometal science (H. Haraguchi, Metallomics as Integrated Biometal Science, J. Anal. At. Spectrom., 2004, 19, 5-14). Around 10 years have passed since then, and the history of metallomics over the last decade is reviewed here, discussing the development of metallomics before and after the proposal. Furthermore, the future outlook of metallomics research will be considered, in terms of topics such as the organization of platforms for metallomics research related to trace metal sciences, a simplified model of the biological system and omics-sciences, research subjects in metallomics, recent trends of metallomics research, and the challenge of single biological cell analysis.
Collapse
|
45
|
Zhang YK, Dai C, Yuan CG, Wu HC, Xiao Z, Lei ZN, Yang DH, Le XC, Fu L, Chen ZS. Establishment and characterization of arsenic trioxide resistant KB/ATO cells. Acta Pharm Sin B 2017; 7:564-570. [PMID: 28924550 PMCID: PMC5595296 DOI: 10.1016/j.apsb.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) is used as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, increasing drug resistance is reducing its efficacy. Therefore, a better understanding of ATO resistance mechanism is required. In this study, we established an ATO-resistant human epidermoid carcinoma cell line, KB/ATO, from its parental KB-3-1 cells. In addition to ATO, KB/ATO cells also exhibited cross-resistance to other anticancer drugs such as cisplatin, antimony potassium tartrate, and 6-mercaptopurine. The arsenic accumulation in KB/ATO cells was significantly lower than that in KB-3-1 cells. Further analysis indicated that neither application of P-glycoprotein inhibitor, breast cancer resistant protein (BCRP) inhibitor, or multidrug resistance protein 1 (MRP1) inhibitor could eliminate ATO resistance. We found that the expression level of ABCB6 was increased in KB/ATO cells. In conclusion, ABCB6 could be an important factor for ATO resistance in KB/ATO cells. The ABCB6 level may serve as a predictive biomarker for the effectiveness of ATO therapy.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Chunling Dai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chun-gang Yuan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Hsiang-Chun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zhijie Xiao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - X. Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Liwu Fu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Corresponding author. Tel.: +1 718 990 1432; fax: +1 718 990 1877.
| |
Collapse
|
46
|
Huang P, Zhang YH, Zheng XW, Liu YJ, Zhang H, Fang L, Zhang YW, Yang C, Islam K, Wang C, Naranmandura H. Phenylarsine oxide (PAO) induces apoptosis in HepG2 cells via ROS-mediated mitochondria and ER-stress dependent signaling pathways. Metallomics 2017; 9:1756-1764. [PMID: 28831476 DOI: 10.1039/c7mt00179g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Arsenic trioxide (As2O3) is an old drug that has recently been reintroduced as a therapeutic agent for acute promyelocytic leukemia (APL). Although As2O3 is also applied to treat other types of cancer in vitro and in vivo, it has been reported that single agent As2O3 has poor efficacy against non-hematologic malignant cancers in clinical trials. Recently, a few reports have indicated that organic arsenic compounds can be a possible alternative for the treatment of As2O3-resistant cancers. In this study, we aimed to investigate whether the organic arsenic compound phenylarsine oxide (PAO) has potent cytotoxic effects against human hepatocellular carcinoma (HCC) HepG2 cells. Our results showed that PAO not only had a potent inhibitory effect on the proliferation of HepG2 cells but also activated apoptosis-related proteins (e.g., caspase-3 and -9 and poly-ADP ribose polymerase) in a dose- and time-dependent manner. Furthermore, intracellular ROS were specifically accumulated in the mitochondria and endoplasmic reticulum (ER) after exposure to PAO, implying that they are the target organelles for PAO-induced cytotoxicity. Additionally, when the cells were pretreated with antioxidant N-acetylcysteine (NAC), apoptosis and ER-stress were attenuated significantly, suggesting that induction of apoptosis and cell death probably occurs through the ROS-mediated mitochondria and ER-stress dependent signaling pathways.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yu Hua Zhang
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Xiao Wei Zheng
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yu Jia Liu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Hong Zhang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi Wen Zhang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China and Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Khairul Islam
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China and Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma 2017; 59:1051-1063. [PMID: 28797197 DOI: 10.1080/10428194.2017.1359740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Michal Kulinski
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Iman W Achkar
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Mohammad Haris
- b Translational Medicine Research Branch , Sidra Medical and Research Center , Doha , Qatar
| | - Said Dermime
- c National Center for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
48
|
Yang T, Zhang XX, Yang JY, Wang YT, Chen ML. Screening arsenic(III)-binding peptide for colorimetric detection of arsenic(III) based on the peptide induced aggregation of gold nanoparticles. Talanta 2017; 177:212-216. [PMID: 29108578 DOI: 10.1016/j.talanta.2017.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
A suitable As(III)-binding ligand is the key to realize selective and sensitive As(III) sensing. In this study, phage display technique was used for the screening of As(III)-binding peptide. By negative screening against some representative metal cations and positive screening against target As(III), phages that bind to foreign metal cations were eliminated, while those bearing As(III)-binding peptides were kept and enriched. After DNA sequencing and phage ELISA analysis, 5 sets of As(III)-binding peptides were identified, with high content of N-containing functional groups as their predominate feature. A highly specific peptide (sequence: T-Q-S-Y-K-H-G) with the highest frequency of occurrence and best selectivity for As(III) was finally chosen. This peptide with a cysteine added at the C-terminal induces the aggregation of gold nanoparticles (AuNPs), whereas the competitive binding of As(III) to the peptide prevents the aggregation of AuNPs. Based on this observation, a simple and sensitive colorimetric sensing assay was developed, with a limit of detection (LOD) of 54nM (4μgL-1) for As(III). The As(III) sensor showed high selectivity over other metal ions including As(V), and was validated by As(III) analysis in certified reference material and environmental water samples.
Collapse
Affiliation(s)
- Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao-Xiao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Yu Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
49
|
Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 2017; 8:23905-23926. [PMID: 28108741 PMCID: PMC5410354 DOI: 10.18632/oncotarget.14733] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 01/17/2023] Open
Abstract
A variety of studies indicated that inorganic arsenic and its methylated metabolites have paradoxical effects, namely, carcinogenic and anticancer effects. Epidemiological studies have shown that long term exposure to arsenic can increase the risk of cancers of lung, skin or bladder in man, which is probably associated with the arsenic metabolism. In fact, the enzymatic conversion of inorganic arsenic by Arsenic (+3 oxidation state) methyltransferase (AS3MT) to mono- and dimethylated arsenic species has long been considered as a major route for detoxification. However, several studies have also indicated that biomethylation of inorganic arsenic, particularly the production of trivalent methylated metabolites, is a process that activates arsenic as a toxin and a carcinogen. On the other hand, arsenic trioxide (As2O3) has recently been recognized as one of the most effective drugs for the treatment of APL. However, elaboration of the cytotoxic mechanisms of arsenic and its methylated metabolites in eradicating cancer is sorely lacking. To provide a deeper understanding of the toxicity and carcinogenicity along with them use of arsenic in chemotherapy, caution is required considering the poor understanding of its various mechanisms of exerting toxicity. Thereby, in this review, we have focused on arsenic metabolic pathway, the roles of the methylated arsenic metabolites in toxicity and in the therapeutic efficacy for the treatments of solid tumors, APL and/or non-APL malignancies.
Collapse
Affiliation(s)
- Islam Khairul
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Han Jiang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Ellison PA, Chen F, Goel S, Barnhart TE, Nickles RJ, DeJesus OT, Cai W. Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6772-6781. [PMID: 28165700 PMCID: PMC5597940 DOI: 10.1021/acsami.6b14049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of new image-guided drug delivery tools to improve the therapeutic efficacy of chemotherapeutics remains an important goal in nanomedicine. Using labeling strategies that involve radioelements that have theranostic pairs of diagnostic positron-emitting isotopes and therapeutic electron-emitting isotopes has promise in achieving this goal and further enhancing drug performance through radiotherapeutic effects. The isotopes of radioarsenic offer such theranostic potential and would allow for the use of positron emission tomography (PET) for image-guided drug delivery studies of the arsenic-based chemotherapeutic arsenic trioxide (ATO). Thiolated mesoporous silica nanoparticles (MSN) are shown to effectively and stably bind cyclotron-produced radioarsenic. Labeling studies elucidate that this affinity is a result of specific binding between trivalent arsenic and nanoparticle thiol surface modification. Serial PET imaging of the in vivo murine biodistribution of radiolabeled silica nanoparticles shows very good stability toward dearsenylation that is directly proportional to silica porosity. Thiolated MSNs are found to have a macroscopic arsenic loading capacity of 20 mg of ATO per gram of MSN, sufficient for delivery of chemotherapeutic quantities of the drug. These results show the great potential of radioarsenic-labeled thiolated MSN for the preparation of theranostic radiopharmaceuticals and image-guided drug delivery of ATO-based chemotherapeutics.
Collapse
Affiliation(s)
- Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Feng Chen
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Shreya Goel
- Materials Science Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Robert J. Nickles
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Onofre T. DeJesus
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
- Materials Science Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|