1
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang S, Wu Y, Zhong W, Chen R, Wang M, Chen M. GSH/pH Dual Activatable Cross-linked and Fluorinated PEI for Cancer Gene Therapy Through Endogenous Iron De-Hijacking and in Situ ROS Amplification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304098. [PMID: 37689975 DOI: 10.1002/adma.202304098] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Ferroptosis-related cancer therapy is limited by insufficient Fe2+ /Fe3+ redox pair and hydrogen peroxide (H2 O2 ) for producing lethal hydroxyl radicals (·OH). Although exogenous iron or ROS-producing drugs can enhance ferroptosis, exploiting endogenous iron (labile iron pool, LIP) stored in ferritin and promoting ROS generation may be safer. Herein, a metal/drug-free nanomedicine is developed for responsive LIP release and H2 O2 generation on the mitochondria membranes, amplifying hydroxyl radical production to enhance ferroptosis-mediated antitumor effects. A glutathione(GSH)/pH dual activatable fluorinated and cross-linked polyethyleneimine (PEI) with dialdehyde polyethylene glycol layer nanocomplex loaded with MTS-KR-SOD (Mitochondria-targeting-sequence-KillerRed-Superoxide Dismutase) and CRISPR/Cas9-CA IX (Carbonic anhydrase IX (CA IX)) plasmids (FP@MC) are developed for enhanced ferroptosis through endogenous iron de-hijacking and in situ ROS amplification. Two plasmids are constructed to knockdown CA IX and translate KillerRed-SOD recombinant protein specifically on mitochondria membranes, respectively. The CA IX knockdown acidifies the intracellular environment, leading the release of LIP from ferritin as a "flare" to initiate endogenous chemodynamic therapy. Meanwhile, MTS-KR-SOD generates H2 O2 when irradiated by a 590 nm laser to assist chemodynamic therapy, leading to ROS amplification for mitochondria damage and lipid peroxide accumulation. The combined therapeutic effects aggravate cancer ferroptosis and suppress tumor growth, providing a new paradigm for amplifying ROS and iron ions to promote ferroptosis-related cancer therapy.
Collapse
Affiliation(s)
- Suleixin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Ruie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Meilin Wang
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
3
|
Shi Y, Yang M, Pan X, Yu S, Wang X. Fabrication and characterization of glutathione‐responsive nanoparticles from the disulfide bond‐bridged block copolymer. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongli Shi
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Mingbo Yang
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Xiaofei Pan
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Shasha Yu
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Xiao Wang
- College of Pharmacy Xinxiang Medical University Xinxiang China
| |
Collapse
|
4
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Wang J, Chen Q, Shan Y, Pan X, Zhang J. Activity-based proteomic profiling: application of releasable linker in photoaffinity probes. Drug Discov Today 2020; 25:133-140. [DOI: 10.1016/j.drudis.2019.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
|
6
|
Li K, Dong W, Qiu L, Liu Q, Lv G, Peng Y, Xie M, Lin J. A new GSH-responsive prodrug of 5-aminolevulinic acid for photodiagnosis and photodynamic therapy of tumors. Eur J Med Chem 2019; 181:111582. [PMID: 31398615 DOI: 10.1016/j.ejmech.2019.111582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
5-Aminolevulinic acid (5-ALA) and its two ester derivatives (5-ALA-OMe and 5-ALA-OHex) have been approved for photodiagnosis and photodynamic therapy (PDT) of tumors in the clinical. However, their pharmacological activities are limited by their instability under physiological conditions and lack of tumor selectivity. With the aim to overcome these shortcomings, a glutathione-responsive 5-ALA derivative (SA) was designed based on the fact that many types of tumor cells have higher intracellular glutathione level than normal cells. SA was synthesized by masking the 5-amion group of 5-ALA methyl ester (5-ALA-OMe) with a self-immolative disulfide linker. Compared with 5-ALA and 5-ALA-OMe, SA exhibited higher stability under physiological conditions, and it can efficiently release the parent compound 5-ALA-OMe in response to glutathione. In tumor cells, SA displayed excellent protoporphyrin IX (PpIX) production activity at low concentrations while 5-ALA and 5-ALA-OMe were ineffective at the same concentration. The SA-induced PpIX production was positively correlated with the intracellular glutathione level, and SA exhibited enhanced phototoxicity due to its excellent PpIX generation activity. This study indicates that modification of the amino group in 5-ALA derivatives with a self-immolative disulfide linker is an effective strategy to improve their chemical stability and pharmacological activities, and SA is a potential photosensitizer for photodiagnosis and PDT of tumors.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenyi Dong
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Qingzhu Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Gaochao Lv
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China; The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, PR China.
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, PR China.
| |
Collapse
|
7
|
Zheng N, Xie D, Zhang Z, Kuang J, Zheng Y, Wang Q, Li Y. Thioketal-crosslinked: ROS-degradable polycations for enhanced in vitro and in vivo gene delivery with self-diminished cytotoxicity. J Biomater Appl 2019; 34:326-338. [DOI: 10.1177/0885328219845081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dan Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jia Kuang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Dai Y, Zhang X. MicroRNA Delivery with Bioreducible Polyethylenimine as a Non‐Viral Vector for Breast Cancer Gene Therapy. Macromol Biosci 2019; 19:e1800445. [DOI: 10.1002/mabi.201800445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| | - Xiaojin Zhang
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan 430074 China
| |
Collapse
|
9
|
Hu LZ, Wan N, Ma XX, Jing ZW, Zhang YX, Li C, Zhou SY, Zhang BL. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin. NANOTECHNOLOGY 2017; 28:125102. [PMID: 28163261 DOI: 10.1088/1361-6528/aa5e56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.
Collapse
Affiliation(s)
- Li-Zhong Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Taranejoo S, Chandrasekaran R, Cheng W, Hourigan K. Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydr Polym 2016; 153:160-168. [DOI: 10.1016/j.carbpol.2016.07.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
|
11
|
Lee J, Min D, Oh ET, Yoon H, Park HJ, Kim C. Self-Assembled Dendron-Cyclodextrin Nanotubes with a Polyethylenimine Surface and Their Gene Delivery Capability. Chempluschem 2016; 81:229-234. [PMID: 31968771 DOI: 10.1002/cplu.201500376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/16/2015] [Indexed: 11/06/2022]
Abstract
Self-assembled dendron-cyclodextrin nanotubes (Den-CD-NTs) with selected surface functionalities can serve as templates for the formation of complexes with polymers, and the resulting nanotube-polymer complexes can be utilized as gene carriers. The negatively charged surfaces of Den-CD-NTs were covered with a positively charged polyethylenimine (PEI) layer using electrostatic interactions, and the resulting nanotube-PEI complex, having a positively charged surface exhibited intracellular uptake. Furthermore, the nanotube-PEI complex exhibited the capability for DNA complexation with reduced enzymatic degradation, and also showed higher transfection efficiency and lower cytotoxicity than PEI. Therefore, Den-CD-NTs, in simple complexation with a surface PEI layer, are potentially useful gene delivery vectors.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| | - Doohong Min
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| | - Haerry Yoon
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-Related Disease Research Center, College of Medicine, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Inha University, Yonghyun-dong, Nam-Gu, Incheon, 402-751, Republic of Korea
| |
Collapse
|
12
|
Liu Y, Li S, Feng L, Yu H, Qi X, Wei W, Li J, Dong W. Novel Disulfide-Containing Poly(β-amino ester)-Functionalised Magnetic Nanoparticles for Efficient Gene Delivery. Aust J Chem 2016. [DOI: 10.1071/ch15293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly(β-amino ester)s (PBAEs) have been proved to effectively transfer DNA to various cell types. However, PBAEs with high molecular weights also show considerable toxicities, partly resulting from inadequate degradation of their polyester backbone. In this study, we created novel poly(β-amino ester)s (SF-1, 2, 3, and 4; notation SFs refers to all the four polymers) which were characterised by the cleavable disulfide bonds. Moreover, a new technique, termed magnetofection that uses magnetic nanoparticles to enhance gene expression, has recently been well developed. The negatively charged magnetic nanoparticles (MNPs) with good biocompatibility in vitro were prepared here to subsequently combine with SFs and DNA via electrostatic interaction, leading to the formation of the magnetic gene complexes MNP/SFs/DNA. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and transfection experiments were performed in A549 cells to investigate all the resulting complexes. Studies indicated that the synthesised PBAEs exhibited good biodegradation and regulated release of DNA as a result of the reductive cleavage of the disulfide bonds, giving higher transfection efficiency along with much lower cytotoxicity compared with commercially available transfection agent polyethylenimine (Mw 25 kDa). Furthermore, when MNP was involved at a MNP/DNA weight ratio of 0.5, the magnetic gene complexes MNP/SFs/DNA showed enhanced levels of gene expression while maintaining low cytotoxicity.
Collapse
|
13
|
Taranejoo S, Liu J, Verma P, Hourigan K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42096] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shahrouz Taranejoo
- Department of Chemical Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
- Laboratory for Biomedical Engineering/Fluids Laboratory for Aeronautical and Industrial Research; Department of Mechanical and Aerospace Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
| | - Jun Liu
- Stem Cell and Genetic Engineering Group; Department of Materials Engineering; Faculty of Engineering; Monash University Melbourne; Victoria Australia 3800
| | - Paul Verma
- Stem Cell and Genetic Engineering Group; Department of Materials Engineering; Faculty of Engineering; Monash University Melbourne; Victoria Australia 3800
- Turretfield Research Center South Australian Research and Development Institute; Adelaide South Australia Australia 5350
| | - Kerry Hourigan
- Laboratory for Biomedical Engineering/Fluids Laboratory for Aeronautical and Industrial Research; Department of Mechanical and Aerospace Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
| |
Collapse
|
14
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
15
|
Yu H, Li S, Feng L, Liu Y, Qi X, Wei W, Li J, Dong W. Diglycidyl Esters Cross-Linked with Low Molecular Weight Polyethyleneimine for Magnetofection. Aust J Chem 2015. [DOI: 10.1071/ch14731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Magnetic polyethyleneimine (PEI) complexes have demonstrated to be simple and efficient vectors for enhancing gene transfection. However, the high cytotoxicity of PEI restricts its further application in vivo. In this study, we synthesized several low cytotoxicity biodegradable cationic polymers derived from PEI (Mw 600) linked with diglycidyl tartrate (DT-PEI) or its analogues (diglycidyl succinate (DS-PEI) and diglycidyl malate (DM-PEI); D-PEIs for all 3 polymers). Moreover, a type of biocompatible magnetic nanoparticles (MNPs) with negative charges was prepared to assemble with D-PEIs/DNA complexes via electrostatic interactions. The magnetic ternary complexes have appropriate sizes of 120–150 nm and zeta potential values of ~20–25 mV. The transfection ability and cell viability of D-PEIs increased as the amount of hydroxyl groups increased in the repeat unit, which indicated that increasing the hydroxyl number in the backbone of D-PEIs can enhance gene expression and decrease cytotoxicity in A549 cells. Magnetofection of DT-PEI showed similar transfection efficiency with 30 min incubation; in contrast, the standard incubation time was 4 h. All three magnetic complexes displayed lower cytotoxicity when compared with those of PEI complexes in COS-7 and A549. These results indicated that these series of magnetic PEI derivatives complexes could be potential nanocarriers for gene delivery.
Collapse
|