1
|
Hinaut A, Scherb S, Yao X, Liu Z, Song Y, Moser L, Marot L, Müllen K, Glatzel T, Narita A, Meyer E. Stable Au(111) Hexagonal Reconstruction Induced by Perchlorinated Nanographene Molecules. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18894-18900. [PMID: 39534759 PMCID: PMC11552072 DOI: 10.1021/acs.jpcc.4c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Surface reconstructions play a crucial role in surface science because of their influence on the adsorption and arrangement of molecules or nanoparticles. On the Au(111) surface, the herringbone reconstruction presents favorable anchoring at the elbow sites, where the highest reactivity is found. In this work, we deposited large organic perchlorinated molecules on a Au(111) surface via high-vacuum electrospray deposition. With noncontact atomic force microscopy measurements at room temperature, we studied the molecular structures formed on the surface before and after annealing at different temperatures. We found that a supramolecular layer is formed and that a hexagonal reconstruction of the Au(111) surface is induced. After high-temperature annealing, the molecules are removed, but the hexagonal Au(111) surface reconstruction is preserved. With the hexagonal Au(111) surface reconstruction, a periodic lattice of anchoring sites is formed.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sebastian Scherb
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Xuelin Yao
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhao Liu
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Yiming Song
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Lucas Moser
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Laurent Marot
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Zhang Z, Deng C, Fan X, Li M, Zhang M, Wang X, Chen F, Shi S, Zhou Y, Deng L, Gao H, Xiong W. 3D Directional Assembly of Liquid Crystal Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401533. [PMID: 38794830 DOI: 10.1002/adma.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The precise construction of hierarchically long-range ordered structures using molecules as fundamental building blocks can fully harness their anisotropy and potential. However, the 3D, high-precision, and single-step directional assembly of molecules is a long-pending challenge. Here, a 3D directional molecular assembly strategy via femtosecond laser direct writing (FsLDW) is proposed and the feasibility of this approach using liquid crystal (LC) molecules as an illustrative example is demonstrated. The physical mechanism for femtosecond (fs) laser-induced assembly of LC molecules is investigated, and precise 3D arbitrary assembly of LC molecules is achieved by defining the discretized laser scanning pathway. Additionally, an LC-based Fresnel zone plate array with polarization selection and colorization imaging functions is fabricated to further illustrate the potential of this method. This study not only introduces a 3D high-resolution alignment method for LC-based functional devices but also establishes a universal protocol for the precise 3D directional assembly of anisotropic molecules.
Collapse
Affiliation(s)
- Zexu Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minjing Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinger Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fayu Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaoxi Shi
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yining Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
3
|
Calcinelli F, Jeindl A, Hörmann L, Ghan S, Oberhofer H, Hofmann OT. Interfacial Charge Transfer Influences Thin-Film Polymorphism. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2868-2876. [PMID: 35178141 PMCID: PMC8842301 DOI: 10.1021/acs.jpcc.1c09986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Indexed: 05/05/2023]
Abstract
The structure and chemical composition are the key parameters influencing the properties of organic thin films deposited on inorganic substrates. Such films often display structures that substantially differ from the bulk, and the substrate has a relevant influence on their polymorphism. In this work, we illuminate the role of the substrate by studying its influence on para-benzoquinone on two different substrates, Ag(111) and graphene. We employ a combination of first-principles calculations and machine learning to identify the energetically most favorable structures on both substrates and study their electronic properties. Our results indicate that for the first layer, similar structures are favorable for both substrates. For the second layer, we find two significantly different structures. Interestingly, graphene favors the one with less, while Ag favors the one with more electronic coupling. We explain this switch in stability as an effect of the different charge transfer on the two substrates.
Collapse
Affiliation(s)
- Fabio Calcinelli
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Andreas Jeindl
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Lukas Hörmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Simiam Ghan
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
| | - Harald Oberhofer
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
- Chair
for Theoretical Physics VII and Bavarian Center for Battery Technology
(BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Oliver T. Hofmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| |
Collapse
|
4
|
Self-assembly and photoinduced fabrication of conductive nanographene wires on boron nitride. Nat Commun 2022; 13:442. [PMID: 35064113 PMCID: PMC8782843 DOI: 10.1038/s41467-021-27600-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Manufacturing molecule-based functional elements directly at device interfaces is a frontier in bottom-up materials engineering. A longstanding challenge in the field is the covalent stabilization of pre-assembled molecular architectures to afford nanodevice components. Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average width of 200 nm, electrical conductivities of 106 S m−1 and breakdown current densities of 1011 A m−2. Joint experiments and simulations reveal that hierarchical self-assembly promotes their formation and functional properties. Our approach demonstrates the feasibility of combined bottom-up supramolecular templating and top-down manufacturing protocols for graphene nanomaterials and interconnects, towards integrated carbon nanodevices. The bottom-up fabrication of structures with robust performance in the nm-to-μm scale usable for integrated carbon nanodevices is challenging. Here the authors report micrometer-long, highly conducting nanographene wires following self-assembly, photo-crosslinking and thermal annealing of anthracene derivatives on hexagonal boron nitride sheets.
Collapse
|
5
|
Tateishi T, Takahashi S, Kikuchi I, Aratsu K, Sato H, Hiraoka S. Unexpected Self-Assembly Pathway to a Pd(II) Coordination Square-Based Pyramid and Its Preferential Formation beyond the Boltzmann Distribution. Inorg Chem 2021; 60:16678-16685. [PMID: 34652136 DOI: 10.1021/acs.inorgchem.1c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental and theoretical investigations of the self-assembly process of a Pd(II) coordination M6L4 square-based pyramid (SP) were conducted. It was found that the probable self-assembly pathway, in which the dimerization of M2L2 with two M leads to SP, expected from the connectivity of the building blocks is not a major self-assembly pathway to the M6L4 SP. Whether the M6L4 SP is assembled or M2L2 is trapped is determined by an inter- or intramolecular reaction in a chain-like M2L2X, where X is a leaving ligand. The kinetically trapped state where the M6L4 SP is produced from M2L2 beyond the Boltzmann distribution was realized by a concentration-induced process and was kept for at least 2 months at 298 K.
Collapse
Affiliation(s)
- Tomoki Tateishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Isamu Kikuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Aratsu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Barrena E, Palacios-Rivera R, Martínez JI, Ocal C. From high quality packing to disordered nucleation or phase separation in donor/acceptor interfaces: ClAlPc-C 60 on Au(111). Phys Chem Chem Phys 2021; 23:14363-14371. [PMID: 34169951 DOI: 10.1039/d1cp01312b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation. The effect at the basis of such self-assembling seems to be released by the all upwards dipole orientation adopted on the ClAlPc second layer. The low electronic corrugation of the bilayer results in a higher mobility of the fullerenes which for similar coverages diffuse large distances to reach uncovered first layer regions. Density functional theory calculations corroborate the experimental observations indicating the relevance of charge transfer, potential energy surface corrugation, C60 on-surface diffusion barriers and screening. The structure of the co-adsorbed C60 and ClAlPc layers strongly depends on the deposition sequence. Phase-separation, where each molecule adopts the single-component assembly, occurs if C60 is deposited first. The present results contribute to understanding the influence of the dipolar nature of molecular layers on the electronic and structure of donor/acceptor heterojunctions, which is crucial for device design via engineering the energy level alignment at organic-organic and organic-metal interfaces.
Collapse
Affiliation(s)
- Esther Barrena
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193, Barcelona, Spain.
| | - Rogger Palacios-Rivera
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193, Barcelona, Spain.
| | - José I Martínez
- Dept. Nanostructures and Low-dimensional Materials, Institute of Material Science of Madrid (ICMM-CSIC), Campus UAM, C/Sor Juana Inés de la Cruz 3, E-28049 Madrid, Spain
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193, Barcelona, Spain.
| |
Collapse
|
7
|
Hofmann OT, Zojer E, Hörmann L, Jeindl A, Maurer RJ. First-principles calculations of hybrid inorganic-organic interfaces: from state-of-the-art to best practice. Phys Chem Chem Phys 2021; 23:8132-8180. [PMID: 33875987 PMCID: PMC8237233 DOI: 10.1039/d0cp06605b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
The computational characterization of inorganic-organic hybrid interfaces is arguably one of the technically most challenging applications of density functional theory. Due to the fundamentally different electronic properties of the inorganic and the organic components of a hybrid interface, the proper choice of the electronic structure method, of the algorithms to solve these methods, and of the parameters that enter these algorithms is highly non-trivial. In fact, computational choices that work well for one of the components often perform poorly for the other. As a consequence, default settings for one materials class are typically inadequate for the hybrid system, which makes calculations employing such settings inefficient and sometimes even prone to erroneous results. To address this issue, we discuss how to choose appropriate atomistic representations for the system under investigation, we highlight the role of the exchange-correlation functional and the van der Waals correction employed in the calculation and we provide tips and tricks how to efficiently converge the self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for interface simulations that should especially serve as a useful starting point for less experienced users and newcomers to the field.
Collapse
Affiliation(s)
- Oliver T Hofmann
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Egbert Zojer
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Lukas Hörmann
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Andreas Jeindl
- Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petersgasse 16/II, 8010 Graz, Austria.
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Packwood DM. Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning. Sci Rep 2020; 10:5868. [PMID: 32246027 PMCID: PMC7125295 DOI: 10.1038/s41598-020-62782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Computational methods for exploring the atomic configuration spaces of surface materials will lead to breakthroughs in nanotechnology and beyond. In order to develop such methods, especially ones utilizing machine learning approaches, descriptors which encode the structural features of the candidate configurations are required. In this paper, we propose the use of time-dependent electron diffraction simulations to create descriptors for the configurations of surface materials. Our proposal utilizes the fact that the sub-femtosecond time-dependence of electron diffraction patterns are highly sensitive to the arrangement of atoms in the surface region of the material, allowing one to distinguish configurations which possess identical symmetry but differ in the locations of the atoms in the unit cell. We demonstrate the effectiveness of this approach by considering the simple cases of copper(111) and an organic self-assembled monolayer system, and use it to search for metastable configurations of these materials.
Collapse
Affiliation(s)
- Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Freibert A, Dieterich JM, Hartke B. Exploring self-organization of molecular tether molecules on a gold surface by global structure optimization. J Comput Chem 2019; 40:1978-1989. [PMID: 31069834 DOI: 10.1002/jcc.25853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/11/2022]
Abstract
We employ nondeterministic global cluster structure optimization, based on the evolutionary algorithms paradigm, to model the self-assembly of complex molecules on a surface. As a real-life application example directly related to many recent experiments, we use this approach for the assembly of triazatriangulene "platform" molecules on the Au(111) surface. Without additional restrictions like spatial discretizations, coarse-graining or precalculated adsorption poses, and despite the proof-of-principle character of this study, we achieve satisfactory qualitative agreement with several experimental observations and can provide answers to questions that experiments on these species had left open so far. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonia Freibert
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.,Department of Chemistry, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Johannnes M Dieterich
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
10
|
Pérez-Fuentes L, Drummond C, Faraudo J, Bastos-González D. Adsorption of Milk Proteins (β-Casein and β-Lactoglobulin) and BSA onto Hydrophobic Surfaces. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E893. [PMID: 28767100 PMCID: PMC5578259 DOI: 10.3390/ma10080893] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Abstract
Here, we study films of proteins over planar surfaces and protein-coated microspheres obtained from the adsorption of three different proteins ( β -casein, β -lactoglobulin and bovine serum albumin (BSA)). The investigation of protein films in planar surfaces is performed by combining quartz crystal microbalance (QCM) and atomic force microscopy (AFM) measurements with all-atomic molecular dynamics (MD) simulations. We found that BSA and β -lactoglobulin form compact monolayers, almost without interstices between the proteins. However, β -casein adsorbs forming multilayers. The study of the electrokinetic mobility of protein-coated latex microspheres shows substantial condensation of ions from the buffer over the complexes, as predicted from ion condensation theories. The electrokinetic behavior of the latex-protein complexes is dominated by the charge of the proteins and the phenomenon of ion condensation, whereas the charge of the latex colloids plays only a minor role.
Collapse
Affiliation(s)
- Leonor Pérez-Fuentes
- Biocolloid and Fluid Physics Group, Department of Applied Physics, University of Granada, Av. Fuentenueva 2, E-18001 Granada, Spain.
| | - Carlos Drummond
- CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F3300 Pessac, France.
- Université de Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France.
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
| | - Delfi Bastos-González
- Biocolloid and Fluid Physics Group, Department of Applied Physics, University of Granada, Av. Fuentenueva 2, E-18001 Granada, Spain.
| |
Collapse
|
11
|
Obersteiner V, Scherbela M, Hörmann L, Wegner D, Hofmann OT. Structure Prediction for Surface-Induced Phases of Organic Monolayers: Overcoming the Combinatorial Bottleneck. NANO LETTERS 2017; 17:4453-4460. [PMID: 28640634 PMCID: PMC5512157 DOI: 10.1021/acs.nanolett.7b01637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/17/2017] [Indexed: 05/24/2023]
Abstract
Structure determination and prediction pose a major challenge to computational material science, demanding efficient global structure search techniques tailored to identify promising and relevant candidates. A major bottleneck is the fact that due to the many combinatorial possibilities, there are too many possible geometries to be sampled exhaustively. Here, an innovative computational approach to overcome this problem is presented that explores the potential energy landscape of commensurate organic/inorganic interfaces where the orientation and conformation of the molecules in the tightly packed layer is close to a favorable geometry adopted by isolated molecules on the surface. It is specifically designed to sample the energetically lowest lying structures, including the thermodynamic minimum, in order to survey the particularly rich and intricate polymorphism in such systems. The approach combines a systematic discretization of the configuration space, which leads to a huge reduction of the combinatorial possibilities with an efficient exploration of the potential energy surface inspired by the Basin-Hopping method. Interfacing the algorithm with first-principles calculations, the power and efficiency of this approach is demonstrated for the example of the organic molecule TCNE (tetracyanoethylene) on Au(111). For the pristine metal surface, the global minimum structure is found to be at variance with the geometry found by scanning tunneling microscopy. Rather, our results suggest the presence of surface adatoms or vacancies that are not imaged in the experiment.
Collapse
Affiliation(s)
- Veronika Obersteiner
- Institute of Solid
State Physics, NAWI Graz, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| | - Michael Scherbela
- Institute of Solid
State Physics, NAWI Graz, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| | - Lukas Hörmann
- Institute of Solid
State Physics, NAWI Graz, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| | - Daniel Wegner
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Oliver T. Hofmann
- Institute of Solid
State Physics, NAWI Graz, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| |
Collapse
|
12
|
Packwood DM, Han P, Hitosugi T. Chemical and entropic control on the molecular self-assembly process. Nat Commun 2017; 8:14463. [PMID: 28195175 PMCID: PMC5316874 DOI: 10.1038/ncomms14463] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/31/2016] [Indexed: 11/09/2022] Open
Abstract
Molecular self-assembly refers to the spontaneous assembly of molecules into larger structures. In order to exploit molecular self-assembly for the bottom-up synthesis of nanomaterials, the effects of chemical control (strength of the directionality in the intermolecular interaction) and entropic control (temperature) on the self-assembly process should be clarified. Here we present a theoretical methodology that unambiguously distinguishes the effects of chemical and entropic control on the self-assembly of molecules adsorbed to metal surfaces. While chemical control simply increases the formation probability of ordered structures, entropic control induces a variety of effects. These effects range from fine structure modulation of ordered structures, through to degrading large, amorphous structures into short, chain-shaped structures. Counterintuitively, the latter effect shows that entropic control can improve molecular ordering. By identifying appropriate levels of chemical and entropic control, our methodology can, therefore, identify strategies for optimizing the yield of desired nanostructures from the molecular self-assembly process.
Collapse
Affiliation(s)
- Daniel M Packwood
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Japan Science and Technology Agency (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Patrick Han
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,California NanoSystems Institute and Departments of Chemistry and Biochemistry and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Taro Hitosugi
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8352, Japan
| |
Collapse
|
13
|
Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent Supramolecular Architectures at the Vacuum–Solid Interface. Chem Rev 2017; 117:1407-1444. [DOI: 10.1021/acs.chemrev.6b00389] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xavier Bouju
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | | | - Grégory Franc
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Adeline Pujol
- Université de Toulouse, UPS, CNRS, CEMES, 118 route de Narbonne, 31062 Toulouse, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
14
|
Schwartz JJ, Mendoza AM, Wattanatorn N, Zhao Y, Nguyen VT, Spokoyny AM, Mirkin CA, Baše T, Weiss PS. Surface Dipole Control of Liquid Crystal Alignment. J Am Chem Soc 2016; 138:5957-67. [PMID: 27090503 DOI: 10.1021/jacs.6b02026] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detailed understanding and control of the intermolecular forces that govern molecular assembly are necessary to engineer structure and function at the nanoscale. Liquid crystal (LC) assembly is exceptionally sensitive to surface properties, capable of transducing nanoscale intermolecular interactions into a macroscopic optical readout. Self-assembled monolayers (SAMs) modify surface interactions and are known to influence LC alignment. Here, we exploit the different dipole magnitudes and orientations of carboranethiol and -dithiol positional isomers to deconvolve the influence of SAM-LC dipolar coupling from variations in molecular geometry, tilt, and order. Director orientations and anchoring energies are measured for LC cells employing various carboranethiol and -dithiol isomer alignment layers. The normal component of the molecular dipole in the SAM, toward or away from the underlying substrate, was found to determine the in-plane LC director orientation relative to the anisotropy axis of the surface. By using LC alignment as a probe of interaction strength, we elucidate the role of dipolar coupling of molecular monolayers to their environment in determining molecular orientations. We apply this understanding to advance the engineering of molecular interactions at the nanoscale.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Physics & Astronomy, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Alexandra M Mendoza
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Natcha Wattanatorn
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Yuxi Zhao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Vinh T Nguyen
- Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry and the International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Tomáš Baše
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. , č.p. 1001, 250 68 Husinec-Řež, Czech Republic
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Materials Science & Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Calmettes B, Estrampes N, Coudret C, Roussel TJ, Faraudo J, Coratger R. Observation and modeling of conformational molecular structures driving the self-assembly of tri-adamantyl benzene on Ag(111). Phys Chem Chem Phys 2016; 18:20281-9. [DOI: 10.1039/c5cp06733b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A STM image of the hexagonal network of tri-adamantyl benzene molecules on Ag(111).
Collapse
Affiliation(s)
| | | | | | - Thomas J. Roussel
- Institut de Ciència de Materials de Barcelona
- Consejo Superior de Investigaciones Científicas (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra
- Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona
- Consejo Superior de Investigaciones Científicas (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra
- Spain
| | | |
Collapse
|
16
|
Kasperski A, Szabelski P. Theoretical Modeling of Surface Confined Chiral Nanoporous Networks: Cruciform Molecules as Versatile Building Blocks. Chirality 2015; 27:397-404. [PMID: 25728050 DOI: 10.1002/chir.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/28/2015] [Indexed: 11/07/2022]
Abstract
Patterning of solid surfaces with functional organic molecules has been a convenient route to fabricate two-dimensional materials with programmed architecture and activities. One example is the chiral nanoporous networks that can be created via controlled self-assembly of star-shaped molecules under 2D confinement. In this contribution we use computer modeling to predict the formation of molecular networks in adsorbed overlayers comprising cruciform molecular building blocks equipped with discrete interaction centers. To that end, we employ the Monte Carlo simulation method combined with a coarse-grained representation of the adsorbed molecules which are treated as collections of interconnected segments. The interaction centers within the molecules are represented by active segments whose number and distribution are adjusted. Our particular focus is on those distributions that produce prochiral molecules able to occur in adsorbed configurations being mirror images of each other (surface enantiomers). We demonstrate that, depending on size, aspect ratio, and intramolecular distribution of active sites, the surface enantiomers can co-crystallize or segregate into extended homochiral domains with largely diversified nanosized cavities. The insights from our theoretical studies can be helpful in designing 2D chiral porous networks with potential applications in enantioselective adsorption and asymmetric heterogeneous catalysis.
Collapse
Affiliation(s)
- Adam Kasperski
- Department of Theoretical Chemistry, Maria-Curie Skłodowska University, Lublin, Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Maria-Curie Skłodowska University, Lublin, Poland
| |
Collapse
|