1
|
Sun M, Xie Y, Huang J, Liu C, Dong Y, Li S, Zeng C. Oxygen-deficient AgIO 3 for efficiently photodegrading organic contaminants under natural sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121393. [PMID: 38850920 DOI: 10.1016/j.jenvman.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.
Collapse
Affiliation(s)
- Miaofei Sun
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiayang Huang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yujing Dong
- School of Science and Technology, Xinyang College, Xinyang, 464000, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
2
|
Ciocarlan RG, Blommaerts N, Lenaerts S, Cool P, Verbruggen SW. Recent Trends in Plasmon-Assisted Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202201647. [PMID: 36626298 DOI: 10.1002/cssc.202201647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4 , CO, CH3 OH/CH3 CH2 OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Natan Blommaerts
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Silvia Lenaerts
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sammy W Verbruggen
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
3
|
Composite of α-FeOOH and Mesoporous Carbon Derived from Indian Blackberry Seeds as Low-Cost and Recyclable Photocatalyst for Degradation of Ciprofloxacin. Catalysts 2023. [DOI: 10.3390/catal13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study aims to analyse the use of biowaste-derived carbon in enhancing the photocatalytic effect of Earth-abundant visible light active goethite (α−FeOOH). The biowaste material used in this case is seeds of the Indian blackberry fruit. The FeOOH/C composite has been synthesized using an assisted sonochemical technique. The photocatalysts have been characterized using powder x-ray diffraction, nitrogen adsorption isotherms and scanning electron microscopy technique. FTIR and Raman studies have been carried out to understand the structure bonding correlation. The band gap has been ascertained using Tauc plots. The adsorption and consequent photodegradation of CIP have been studied via UV-visible spectroscopy and the mechanism has been ascertained by using radical quenching techniques. The charge separation efficiency has been ascertained through photoluminescence (PL) studies and electrochemical impedance studies (EIS). The pivotal role played by photogenerated holes (h+) in the photocatalytic degradation of CIP has been highlighted. The low cost biowaste-derived carbon as a constituent of the FeOOH/C composite shows great promise as a supporting material for enhancing the photocatalytic properties of such semiconductor materials.
Collapse
|
4
|
Su Y, Ding H, Sun M, Liu X, Dai C, Li Y, Xu G, Zeng C. Construction of BiOIO 3/AgIO 3 Z-Scheme Photocatalysts for the Efficient Removal of Persistent Organic Pollutants under Natural Sunlight Illumination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16163-16171. [PMID: 36520846 DOI: 10.1021/acs.langmuir.2c02903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient removal of persistent organic pollutants (POPs) in natural waters is vital for human survival and sustainable development. Photocatalytic degradation is a feasible and cost-effective strategy to completely disintegrate POPs at room temperature. Herein, we develop a series of direct Z-scheme BiOIO3/AgIO3 hybrid photocatalysts via a facile deposition-precipitation method. Under natural sunlight irradiation, the light intensity of which is ∼40 mW/cm2, a considerable rate constant of 0.185 min-1 for photodecomposing 40 mg/L MO is obtained over 0.5 g/L Bi@Ag-5 composite photocatalyst powder, about 92.5 and 5.3 times higher than those of pristine AgIO3 and BiOIO3. The photoactivity of Bi@Ag-5 for photodecomposing MO under natural sunlight illumination surpasses most of the reported photocatalysts under Xe lamp illumination. After natural sunlight irradiation for 20 min, 95% of MO, 82% of phenol, 78% of 2,4-DCP, 54% of ofloxacin, and 88% of tetracycline hydrochloride can be photodecomposed over Bi@Ag-5. Relative to the commercial photocatalyst TiO2 (P25), Bi@Ag-5 exhibits greatly higher photoactivity for the treatment of MO-phenol-tetracycline hydrochloride mixture pollutants in the scale-up experiment of 500 mL of solution, decreasing COD, TOC, and chromaticity value by 52, 19, and 76%, respectively, after natural sunlight irradiation for 40 min. The photodegradation process and mechanism of MO have been systematically investigated and proposed. This work provides an archetype for designing efficient photocatalysts to remove POPs.
Collapse
Affiliation(s)
- Yao Su
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Haojia Ding
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Miaofei Sun
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xin Liu
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Yuqin Li
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Guodong Xu
- Institute of Advanced Scientific Research (iASR), Analysis and Testing Center, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Chao Zeng
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Su Y, Dong Y, Bao L, Dai C, Liu X, Liu C, Ma D, Jia Y, Jia Y, Zeng C. Increasing electron density by surface plasmon resonance for enhanced photocatalytic CO 2 reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116236. [PMID: 36150351 DOI: 10.1016/j.jenvman.2022.116236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The photocatalytic CO2 reduction reaction is a multi-electron process, which is greatly affected by the surface electron density. In this work, we synthesize Ag clusters supported on In2O3 plasmonic photocatalysts. The Ag-In2O3 compounds show remarkedly enhanced photocatalytic activity for CO2 conversion to CO compared to pristine In2O3. In the absence of any co-catalyst or sacrificial agent, the CO evolution rate of optimal Ag-In2O3-10 is 1.56 μmol/g/h, achieving 5.38-folds higher than that of In2O3 (0.29 μmol/g/h). Experimental verification and DFT calculation demonstrate that electrons transfer from Ag clusters to In2O3 on Ag-In2O3 compounds. In Ag-In2O3 compounds, Ag clusters serving as electron donators owing to the SPR behaviour are not helpful to decline photo-induced charge recomnation rate, but can provide more electron for photocatalytic reaction. Overall, the Ag clusters promote visible-light absorption and accelerate photocatalytic reaction kinetic for In2O3, resulting in the photocatalytic activity enhancement of Ag-In2O3 compounds. This work puts insight into the function of plasmonic metal on enhancing photocatalysis performance, and provides a feasible strategy to design and fabricate efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Yujing Su
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yujing Dong
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Linping Bao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Xin Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai ,264005, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China.
| | - Yushuai Jia
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
6
|
Ding H, Bao L, Su Y, Li Y, Xu G, Dai C, Zeng C. Core-shell structured Z-scheme Ag 2S/AgIO 3 composites for photocatalytic organic pollutants degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115008. [PMID: 35397465 DOI: 10.1016/j.jenvman.2022.115008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Constructing direct Z-scheme system is a promising strategy to boost the photocatalytic performance for pollution waters restoration, but it is of great challenge because of the requirement of appropriately staggered energy band alignment and intimate interfacial interaction between semiconductors. Herein, a class of core-shell structured Ag2S-AgIO3 Z-scheme heterostructure photocatalysts are designed and developed. Ag2S is generated by the in-situ ion exchange reaction and anchored on the surface of AgIO3, so the intimate interface between AgIO3 and Ag2S is realized. Integration of AgIO3 and Ag2S extends the ultraviolet absorption of AgIO3 to Vis-NIR region, and also promote the charge separation and migration efficiency, contributing to the enhanced photocatalysis activity for composite catalysts. The optimal Ag2S-AgIO4-4 catalyst exhibits a MO photo-degradation rate constant of 0.298 h-1, which reaches 5.77 and 11.4-folds higher than that of AgIO3 (0.044 h-1) and Ag2S (0.024 h-1). The as-obtained composite catalyst exhibits universally photocatalytic activity in disintegrating diverse industrial pollutants and pharmaceuticals. Particularly, driven by natural sunlight, the Ag2S-AgIO4-4 can effectively decompose MO. A plausible Z-scheme photocatalytic mechanism and reaction pathways of MO degradation over composite catalyst are systemically investigated and proposed.
Collapse
Affiliation(s)
- Haojia Ding
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Linping Bao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Yao Su
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Yuqin Li
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Guodong Xu
- Institute of Advanced Scientific Research (iASR), Analysis and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, PR China
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China.
| |
Collapse
|
7
|
Study on the antibacterial properties of BiOIO3/graphene oxide (GO) modified fluorocarbon resin coating (PEVE) under UV light. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zeng C, Ding H, Bao L, Su Y, Wang Z. Intimate Coupling AgI/AgIO 3 Heterojunction Photocatalysts with Excellent Visible-Light-Driven Photocatalytic Activity. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi 330022, China
| | - Haojia Ding
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi 330022, China
| | - Linping Bao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi 330022, China
| | - Yujing Su
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi 330022, China
| |
Collapse
|
9
|
Al-Zubaidi A, Kobayashi K, Ishii Y, Kawasaki S. One-step synthesis of visible light CO 2 reduction photocatalyst from carbon nanotubes encapsulating iodine molecules. Sci Rep 2021; 11:10140. [PMID: 33980949 PMCID: PMC8115251 DOI: 10.1038/s41598-021-89706-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022] Open
Abstract
We describe the synthesis and visible-light CO2 photoreduction catalytic properties of a three-component composite consisting of AgI, AgIO3, and single-walled carbon nanotubes (SWCNTs). The catalyst is synthesized by immersing SWCNTs encapsulating iodine molecules in AgNO3 aqueous solution, during which neutral iodine (I2) molecules encapsulated in SWCNTs transform disproportionately to I5+ (AgIO3) and I- (AgI), as revealed from the characterization of the composite by Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, photoirradiation experiments using a solar-simulator (AM1.5G) showed that the obtained three-component composite works as a CO2 photoreduction catalyst under visible light despite the wide band gap of AgIO3, suggesting possible transfer of the visible light-excited electron from AgI via SWCNTs.
Collapse
Affiliation(s)
- Ayar Al-Zubaidi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Kenta Kobayashi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Yosuke Ishii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.
| | - Shinji Kawasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
10
|
Xiao JQ, Mdlovu NV, Lin KS, Chang CJ, Chen ZW. Degradation of rhodamine B under visible-light with nanotubular Ag@AgCl@AgI photocatalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Vu NN, Kaliaguine S, Do TO. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO 2 : Details, Developments, and Perspectives. CHEMSUSCHEM 2020; 13:3967-3991. [PMID: 32476290 DOI: 10.1002/cssc.202000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Plasmonic photocatalysis is among the most efficient processes for the photoreduction of CO2 into valuable fuels. The formation of localized surface plasmon resonance (LSPR), energy transfer, and surface reaction are the significant steps in this process. LSPR plays an essential role in the performance of plasmonic photocatalysts as it promotes an excellent, light absorption over a broad wavelength range while simultaneously facilitating an efficient energy transfer to semiconductors. The LSPR transfers energy to a semiconductor through various mechanisms, which have both advantages and disadvantages. This work points out four critical features for plasmonic photocatalyst design, that is, plasmonic materials, size, shape of plasmonic nanoparticles (PNPs), and the contact between PNPs and semiconductor. Various developed plasmonic photocatalysts, as well as their photocatalytic performance in CO2 photoreduction, are reviewed and discussed. Finally, perspectives of advanced architectures and structural engineering for plasmonic photocatalyst design are put forward with high expectations to achieve an efficient CO2 photoreduction shortly.
Collapse
Affiliation(s)
- Nhu-Nang Vu
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Serge Kaliaguine
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
12
|
Zhang M, Li Y, Wang Q, Jin R, Xu H, Gao S. Effect of different reductants on the composition and photocatalytic performances of Ag/AgIO3 hybrids prepared by in-situ reduction method. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Dong XD, Yao GY, Liu QL, Zhao QM, Zhao ZY. Spontaneous Polarization Effect and Photocatalytic Activity of Layered Compound of BiOIO3. Inorg Chem 2019; 58:15344-15353. [DOI: 10.1021/acs.inorgchem.9b02328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu-Dong Dong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Guo-Ying Yao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Qing-Lu Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Qing-Meng Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Zong-Yan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| |
Collapse
|
14
|
Cao F, Wang J, Wang Y, Zhou J, Li S, Qin G, Fan W. An in situ Bi-decorated BiOBr photocatalyst for synchronously treating multiple antibiotics in water. NANOSCALE ADVANCES 2019; 1:1124-1129. [PMID: 36133199 PMCID: PMC9473170 DOI: 10.1039/c8na00197a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 05/30/2023]
Abstract
Currently, there is an urgent demand for developing new materials to remove antibiotics in the water environment, especially for the simultaneous degradation of multiple antibiotics. Here, we fabricated a novel Bi/BiOBr heterostructure via an in situ solvothermal strategy, and it exhibited excellent visible-light-responsive photocatalytic activity for synchronously removing multiple antibiotics coexisting in water. The Bi nanoparticles could extend the light absorption spectra of the sample and further facilitate electron-hole pair separation. The in-depth electron spin resonance (ESR) results confirm that the active species in Bi/BiOBr are holes (h+) and superoxide radicals (·O2 -) under irradiation, and it is also proved that Bi could selectively reduce the formation of ·O2 - in the BiOBr matrix. The coexisting system of TC (tetracycline hydrochloride), CIP (ciprofloxacin) and DOX (doxycycline) could be simultaneously photodegraded to approximately 0% within 30 min by the Bi/BiOBr photocatalyst.
Collapse
Affiliation(s)
- Feng Cao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Jianmin Wang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Yunan Wang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Jun Zhou
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Song Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University Shenyang 110819 China
| | - Weiqiang Fan
- School of Chemistry & Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
15
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 218.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
16
|
Xiao JQ, Lin KS, Yu Y. Novel Ag@AgCl@AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Zhang J, Ma Z. Ag-Ag3VO4/AgIO3 composites with enhanced visible-light-driven catalytic activity. J Colloid Interface Sci 2018; 524:16-24. [DOI: 10.1016/j.jcis.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 11/25/2022]
|
18
|
Mo Q, Liu F, Gao J, Zhao M, Shao N. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 2017; 1003:49-55. [PMID: 29317029 DOI: 10.1016/j.aca.2017.11.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
In this work, we developed a sensitive and highly selective fluorescent approach for the detection of ascorbic acid (AA) by taking advantage of the oxidative etching effect of iodine (I2) on the lysozyme-stabilized silver nanoclusters (dLys-AgNCs) with fluorescence quenching. I2 could be produced from the redox reaction between iodate (IO3-) and AA, and thus the fluorescence intensity of dLys-AgNCs was turned off significantly in the coexistence of IO3- and AA. The fluorescence quenching of dLys-AgNCs had a good linear relationship with AA concentration, which allowed the detection of AA in the range from 0.05 to 45.0 μmol L-1 with a detection limit of 20 nmol L-1. The quenching mechanism was elucidated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) measurements, confirming that the fluorescence quenching of the dLys-AgNCs was attributed to the oxidative etching of the in situ generated I2, inducing aggregation of the dLys-AgNCs probe by forming Ag@AgI nanocomposite. The dLys-AgNCs probe exhibited excellent selectivity for AA sensing over several common reducing agents tested. Moreover, this approach was extended to the detection of AA in orange juice and urine with recovery rates in the range of 96.0% (RSD: 4.11) to 100.9% (RSD: 3.28) and 94.5% (RSD: 6.40) to 99.2% (RSD: 5.36), respectively.
Collapse
Affiliation(s)
- Qinchao Mo
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Fang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Jing Gao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Na Shao
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
19
|
Xie J, Cao Y, Jia D, Li Y, Wang K, Xu H. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO 3 with improved UV-to-visible photocatalytic performance. Sci Rep 2017; 7:12365. [PMID: 28959028 PMCID: PMC5620062 DOI: 10.1038/s41598-017-12625-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
The AgCl/AgI/AgIO3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO3 and AgI/AgIO3. In addition, the AgCl/AgI/AgIO3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h+ and •O2− play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO3 nanoplates in AgCl/AgI/AgIO3 composites.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China.
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China.
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Hui Xu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| |
Collapse
|
20
|
A study on the effect of transition metal (Ti 4+ , Mn 2+ , Cu 2+ and Zn 2+ )-doping on visible light photocatalytic activity of Bi 2 MoO 6 nanorods. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Advances in Photocatalytic CO₂ Reduction with Water: A Review. MATERIALS 2017; 10:ma10060629. [PMID: 28772988 PMCID: PMC5553537 DOI: 10.3390/ma10060629] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
In recent years, the increasing level of CO₂ in the atmosphere has not only contributed to global warming but has also triggered considerable interest in photocatalytic reduction of CO₂. The reduction of CO₂ with H₂O using sunlight is an innovative way to solve the current growing environmental challenges. This paper reviews the basic principles of photocatalysis and photocatalytic CO₂ reduction, discusses the measures of the photocatalytic efficiency and summarizes current advances in the exploration of this technology using different types of semiconductor photocatalysts, such as TiO₂ and modified TiO₂, layered-perovskite Ag/ALa₄Ti₄O15 (A = Ca, Ba, Sr), ferroelectric LiNbO₃, and plasmonic photocatalysts. Visible light harvesting, novel plasmonic photocatalysts offer potential solutions for some of the main drawbacks in this reduction process. Effective plasmonic photocatalysts that have shown reduction activities towards CO₂ with H₂O are highlighted here. Although this technology is still at an embryonic stage, further studies with standard theoretical and comprehensive format are suggested to develop photocatalysts with high production rates and selectivity. Based on the collected results, the immense prospects and opportunities that exist in this technique are also reviewed here.
Collapse
|
22
|
Ahn W, Ratchford DC, Pehrsson PE, Simpkins BS. Surface plasmon polariton-induced hot carrier generation for photocatalysis. NANOSCALE 2017; 9:3010-3022. [PMID: 28182184 DOI: 10.1039/c6nr09280b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO2) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.
Collapse
Affiliation(s)
- Wonmi Ahn
- National Research Council Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Daniel C Ratchford
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Pehr E Pehrsson
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Blake S Simpkins
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
23
|
Cao QW, Zheng YF, Song XC. Enhanced visible-light-driven photocatalytic degradation of RhB by AgIO3/WO3 composites. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Li K, Peng B, Peng T. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02089] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kan Li
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bosi Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Tianyou Peng
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
25
|
Huang H, Xiao K, Yu S, Dong F, Zhang T, Zhang Y. Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chem Commun (Camb) 2016; 52:354-7. [DOI: 10.1039/c5cc08239k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodide surface decoration enables the wide-band-gap Bi2O2CO3 to possess a continuously tunable band gap and profoundly boosted visible-light photocatalytic performance for dye degradation and NO removal.
Collapse
Affiliation(s)
- Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Ke Xiao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Shixin Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Fan Dong
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- College of Environmental and Biological Engineering
- Chongqing Technology and Business University
- Chongqing
- China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| |
Collapse
|
26
|
Li Z, Wang M, Shen J, Zhu Z, Liu Y. Synthesis of BiOI nanosheet/coarsened TiO2 nanobelt heterostructures for enhancing visible light photocatalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra01426g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BiOI nanosheet/coarsened TiO2 nanobelt heterostructure composites (BiOI/TiO2 CNHs) were prepared via an efficient hydrothermal method.
Collapse
Affiliation(s)
- Zhanjun Li
- Institute of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China
| | - Meiting Wang
- Institute of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China
| | - Jianxing Shen
- Institute of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China
| | - Zhiwen Zhu
- Institute of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China
| | - Yu Liu
- Institute of Materials Science and Engineering
- Qilu University of Technology
- Jinan 250353
- China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China
| |
Collapse
|