1
|
Masyutin AG, Tarasova EK, Samsonov DA, Onishchenko GE, Erokhina MV. Biodegradation of Heterogeneous Industrial Multi-Walled Carbon Nanotubes by Pro-Inflammatory Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1616. [PMID: 39452953 PMCID: PMC11510322 DOI: 10.3390/nano14201616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Industrial multi-walled carbon nanotubes (ig-MWCNTs) make up the majority of carbon nanomaterials, and human contact with them is the most probable. At the same time, the biodegradation of ig-MWCNTs by phagocytes has not been studied-existing articles consider mainly laboratory-grade/functionalized MWCNTs (l-MWCNTs), in contrast to which ig-MWCNTs are a highly heterogeneous nanomaterial in terms of morphological and physicochemical characteristics. The aim of the present study was to analyze ig-MWCNTs' biodegradation by proinflammatory macrophages. We focused on both extra- and intracellular ig-MWCNTs' degradation. We analyzed biodegradation of two different types of ig-MWCNTs by human (THP-1) and murine (RAW264.7) macrophages. After 10 days of incubation, we studied nanoparticle localization within cells; isolated intra- and extracellular ig-MWCNTs were used for quantitative analysis. Ultrastructural and morphometric analysis were performed using transmission electron microscopy; electron diffraction was used for nanotube identification. To estimate chemical alterations, energy-dispersive X-ray spectroscopy and Raman spectroscopy were used. The study showed that both intra- and extracellular ig-MWCNTs undergo almost complete biodegradation, but in different ways: intracellular nanotubes become perforated and reduce to graphene flakes, while extracellular become thinner. We believe that the demonstrated variability in the destruction of ig-MWCNTs by cells suggests the possibility of creating nanomaterials with controlled biodegradation properties.
Collapse
Affiliation(s)
- Alexander G. Masyutin
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.A.S.); (G.E.O.); (M.V.E.)
- Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, 2 Yauzskaya Alleya, Moscow 107564, Russia;
| | - Ekaterina K. Tarasova
- Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, 2 Yauzskaya Alleya, Moscow 107564, Russia;
| | - Daniil A. Samsonov
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.A.S.); (G.E.O.); (M.V.E.)
| | - Galina E. Onishchenko
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.A.S.); (G.E.O.); (M.V.E.)
| | - Maria V. Erokhina
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia; (D.A.S.); (G.E.O.); (M.V.E.)
- Department of Pathology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute, 2 Yauzskaya Alleya, Moscow 107564, Russia;
| |
Collapse
|
2
|
Romo-Ávila SL, Márquez-Ruíz D, Guirado-López RA. ClO-driven degradation of graphene oxide: new insights from DFT calculations. Phys Chem Chem Phys 2024; 26:830-841. [PMID: 38099823 DOI: 10.1039/d3cp04015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We present an extensive investigation using density functional theory (DFT) calculations on various model graphene oxide (GO) nanostructures interacting with chlorine monoxide ClO, aiming to understand the role of this highly oxidizing species in C-C bond breakage and the formation of significant holes on GO sheets. During its function, the myeloperoxidase (MPO) enzyme abundantly generates chlorine-oxygen-containing species and their presence has been identified as the cause of degradation in carbon nanotubes of diverse sizes, morphologies, and chemical compositions, both in in vivo and in vitro samples. Notably, Kurapati et al. (Small, 2015, 11, 3985-3994) demonstrated efficient degradation of single GO monolayers through MPO catalysis, though the exact degradation mechanism remains unclear. In our study, we discover that breaking C-C bonds in a single graphene oxide sheet is achievable through a simple mechanism involving the dissociation of two ClO molecules that are chemically attached as nearest neighbor species but bonded to opposite sides of the GO layer (up/down configuration). Two new carbonyl oxygens appear on the surface and the Cl atoms can be transferred to the carbon layer or as physisorbed species near the GO surface. Relatively small energy barriers are associated with these molecular events. Continuing this process on neighboring sites leads to the presence of larger holes on the GO surface, accompanied by an increase in carbonyl species on the carbon network, consistent with X-ray photoelectron spectroscopy measurements. Indeed, the distribution of oxygen functionalities is found to be crucial in defining the damage pattern induced in the carbon layer. We emphasize the important role played by the local charge distribution in the stability or instability of chemical bonds, as well as in the energy barriers and reaction pathways. Finally, we explore the possibility of achieving chlorination of GO following MPO exposure. The here-reported predictions could be the root cause of the experimentally observed low stability of individual GO sheets during the MPO catalytic cycle.
Collapse
Affiliation(s)
- S L Romo-Ávila
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - D Márquez-Ruíz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - R A Guirado-López
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| |
Collapse
|
3
|
Peng G, González V, Vázquez E, Lundberg JO, Fadeel B. Two-dimensional molybdenum disulfide nanosheets evoke nitric oxide-dependent antibacterial effects. NANOSCALE 2023; 15:17409-17421. [PMID: 37846587 DOI: 10.1039/d3nr03120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nanomaterials are currently being explored as novel antimicrobial agents. In this study, we first investigated the ability of two-dimensional (2D) molybdenum disulfide (MoS2) nanosheets to trigger neutrophil extracellular traps (NETs) using neutrophil-differentiated HL-60 cells as well as primary human peripheral blood neutrophils. We then addressed whether the MoS2 nanosheets themselves function as antibacterial agents. We found that MoS2 and Na2MoO4 both triggered NETs, as evidenced by the quantification of neutrophil elastase (NE) activity and immunofluorescence staining of extracellular NE, as well as scanning electron microscopy. The release of NETs was found to be nitric oxide (NO)-dependent. We also found that the MoS2 nanosheets but not the soluble salt prompted acellular NO production in the presence of NaNO2. The acellular generation of NO, suggestive of nanozyme properties of the MoS2 nanosheets, was demonstrated by electron paramagnetic resonance analysis. Electrochemical analysis using cyclic voltammetry confirmed the redox transition of the MoS2 nanosheets. Finally, MoS2 nanosheets inhibited the growth of Escherichia coli in the presence of sodium nitrate. Taken together, MoS2 nanosheets triggered cellular effects as well as acellular antibacterial effects, and we provided evidence for nitrite reductase-like properties of MoS2.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Viviana González
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Facultad de Ciencias y Teconologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
5
|
Muhammad W, Zhai Z, Wang S, Gao C. Inflammation-modulating nanoparticles for pneumonia therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1763. [PMID: 34713969 DOI: 10.1002/wnan.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
He X, White DL, Kapralov AA, Kagan VE, Star A. Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Anal Chem 2020; 92:12880-12890. [PMID: 32803946 DOI: 10.1021/acs.analchem.0c01380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myeloperoxidase (MPO), a key enzyme released by neutrophils during inflammation, has been shown to catalyze the biodegradation of carbon nanomaterials. In this work, we perform photoluminescence studies on the MPO-catalyzed oxidation of graphene oxide (GO) and surfactant-coated pristine (6,5) single-walled carbon nanotubes (SWCNTs). The enzymatic degradation mechanism involves the introduction of defects, which promotes further degradation. Interestingly, the photoluminescence responses of GO and SWCNTs to enzymatic degradation are counterposed. Although the near-infrared (NIR) fluorescence intensity of SWCNTs at 998 nm is either unchanged or decreases depending on the surfactant identity, the blue fluorescence intensity of GO at 440 nm increases with the progression of oxidation by MPO/H2O2/Cl- due to the formation of graphene quantum dots (GQDs). Turn-on GO fluorescence is also observed with neutrophil-like HL-60 cells, indicative of potential applications of GO for imaging MPO activity in live cells. Based on these results, we further construct two ratiometric sensors using SWCNT/GO nanoscrolls by incorporating surfactant-wrapped pristine SWCNTs as the internal either turn-off (with sodium cholate (SC)) or reference (with carboxymethylcellulose (CMC)) sensor. The ratiometric approach enables the sensors to be more stable to external noise by providing response invariant to the absolute intensity emitted from the sensors. Our sensors show linear response to MPO oxidative machinery and hold the promise to be used as self-calibrating carbon nanomaterial-based MPO activity indicators.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valerian E Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Institute for Regenerative Medicine, Sechenov First Moscow Medical State University, Moscow 119991, Russia
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Zhang M, Xu Y, Yang M, Yudasaka M, Okazaki T. Clearance of single-wall carbon nanotubes from the mouse lung: a quantitative evaluation. NANOSCALE ADVANCES 2020; 2:1551-1559. [PMID: 36132314 PMCID: PMC9419824 DOI: 10.1039/d0na00040j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 06/15/2023]
Abstract
Based on the characteristics of carbon nanotubes (CNTs) that absorb light in the near-infrared region, we have developed a method to quantify the biodistribution of CNTs in mouse tissues such as the liver, lungs and spleen. By using this method, the kinetic biodistribution of single-walled CNTs (SWNTs) after intravenous injection into mice for 60 days has been successfully investigated. The results show that the biodistribution of CNTs was diameter-dependent by comparing two different diameters of SWNTs. The SWNTs with larger diameters (1-5 nm) accumulated more in the liver or spleen but less in the lungs than those with smaller diameters (0.7-0.9 nm). The quantities of both SWNTs in the liver and lungs decreased with time and showed no significant change in the spleen, which is also confirmed by histological analysis. In particular, the results have demonstrated that both SWNTs are cleared from the lungs almost completely within 60 days, suggesting that the pulmonary toxicity of SWNTs would be low when low amounts of CNTs (<70 μg g-1 of tissue) enter inside the lungs. In addition, no obvious inflammatory responses are found from the measurement of the cytokines TGF-β1, IL-6, INF-γ, and TNF-α in the plasma and organs after the injection of both SWNTs into mice.
Collapse
Affiliation(s)
- Minfang Zhang
- CNT Application Research Center, National Institute of Advanced Science and Technology Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Ying Xu
- CNT Application Research Center, National Institute of Advanced Science and Technology Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Mei Yang
- CNT Application Research Center, National Institute of Advanced Science and Technology Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Masako Yudasaka
- Research Institute of Nanomaterials, National Institute of Advanced Science and Technology 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Faculty of Science & Technology, Meijo University 1-501 Shiogamaguchi, Tenpaku-ku Nagoya 468-8502 Japan
| | - Toshiya Okazaki
- CNT Application Research Center, National Institute of Advanced Science and Technology Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
8
|
Dong PX, Song X, Wu J, Cui S, Wang G, Zhang L, Sun H. The Fate of SWCNTs in Mouse Peritoneal Macrophages: Exocytosis, Biodegradation, and Sustainable Retention. Front Bioeng Biotechnol 2020; 8:211. [PMID: 32266238 PMCID: PMC7100583 DOI: 10.3389/fbioe.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of toxicological and pharmacological profiles of nanomaterials is an important step for the development and clinical application of nanomedicines. Carbon nanotubes (CNTs) have been extensively explored as a nanomedicine agent in pharmaceutical/biomedical applications, such as drug delivery, bioimaging, and tissue engineering. The biological durability of CNTs could affect the function of CNTs-based nanomedicines as well as their toxicity in cells and tissues. Therefore, it is crucial to assess the fate of nanomedicine in phagocytes. Herein, we investigated the candidate fate of acid-oxidized single-walled carbon nanotubes (SWNCTs) in non-activated primary mouse peritoneal macrophages (PMQ). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the intracellular SWCNTs continued growing from 4 to 36 h in PMQ. After replacing the exposure medium, we found the exosome induced by SWCNTs on the surface of macrophages according to scanning electron microscope (SEM) observation. The near-infrared (NIR) absorption increase of the supernatant samples after post-exposure indicates that SWCNTs exocytosis occurred in PMQ. The decreasing intracellular SWCNTs amount suggested the incomplete biodegradation in PMQ, which was confirmed by Raman spectroscopy and transmission electron microscopy (TEM). The combined data reveal that SWCNTs could be retained for more than 60 h in macrophages. Then sustainable retention of SWCNTs in primary macrophages was coexist with exocytosis and biodegradation. The findings of this work will shed light on the bioimaging, diagnosis and other biomedical applications of CNTs-based nanomedicines.
Collapse
Affiliation(s)
- Ping-Xuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Xinfeng Song
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Jiwei Wu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Shuqin Cui
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Guizhi Wang
- College of Medicine and Nursing, Dezhou University, Dezhou, China
| | - Lianying Zhang
- College of Life Science, Dezhou University, Dezhou, China
| | - Hanwen Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, China.,College of Medicine and Nursing, Dezhou University, Dezhou, China
| |
Collapse
|
9
|
Roy S, Liu Z, Sun X, Gharib M, Yan H, Huang Y, Megahed S, Schnabel M, Zhu D, Feliu N, Chakraborty I, Sanchez-Cano C, Alkilany AM, Parak WJ. Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjug Chem 2019; 30:2751-2762. [DOI: 10.1021/acs.bioconjchem.9b00645] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sathi Roy
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Xing Sun
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Mustafa Gharib
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Yalan Huang
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - Dingcheng Zhu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
| | | | | | - Alaaldin M. Alkilany
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, 11931 Amman, Jordan
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, 22607 Hamburg, Germany
- CIC Biomagune, 20014 San Sebastian, Spain
| |
Collapse
|
10
|
Ma Q, Yilihamu A, Ming Z, Yang S, Shi M, Ouyang B, Zhang Q, Guan X, Yang ST. Biotransformation of Pristine and Oxidized Carbon Nanotubes by the White Rot Fungus Phanerochaete chrysosporium. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1340. [PMID: 31546834 PMCID: PMC6781511 DOI: 10.3390/nano9091340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/19/2023]
Abstract
Carbon nanomaterials are widely studied and applied nowadays, with annual production increasing. After entering the environment, the complete degradation of these carbon nanomaterials by microorganisms is proposed as an effective approach for detoxification and remediation. In this study, we evaluated the degradation of pristine multiwalled carbon nanotubes (p-MWCNTs) and oxidized multiwalled carbon nanotubes (o-MWCNTs) by the white rot fungus Phanerochaete chrysosporium, which is a powerful decomposer in the carbon cycle and environmental remediation. Both p-MWCNTs and o-MWCNTs were partially oxidized by P. chrysosporium as indicated by the addition of oxygen atoms to the carbon skeleton in the forms of C=O and O-H bonds. The fungal oxidation led to the shortening of MWCNTs, where precipitated o-MWCNTs showed more short tubes. During the transformation, the defects on the tubes became detached from the carbon skeleton, resulting in decreases of the ID/IG (intensity of D-band/ intensity of G-band) values in Raman spectra. The transformation mechanism was attributed to the enzymatic degradation by laccase and manganese peroxidase excreted by P. chrysosporium. The results collectively indicated that MWCNTs could be transformed by P. chrysosporium, but complete degradation could not be achieved in a short time period. The implications on the environmental risks of carbon nanomaterials are discussed.
Collapse
Affiliation(s)
- Qiang Ma
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Ailimire Yilihamu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Zhu Ming
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Shengnan Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Mengyao Shi
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Bowei Ouyang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Qiangqiang Zhang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Xin Guan
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
11
|
Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano-bio interactions: a neutrophil-centric view. Cell Death Dis 2019; 10:569. [PMID: 31358731 PMCID: PMC6662811 DOI: 10.1038/s41419-019-1806-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Neutrophils are key components of the innate arm of the immune system and represent the frontline of host defense against intruding pathogens. However, neutrophils can also cause damage to the host. Nanomaterials are being developed for a multitude of different purposes and these minute materials may find their way into the body through deliberate or inadvertent exposure; understanding nanomaterial interactions with the immune system is therefore of critical importance. However, whereas numerous studies have focused on macrophages, less attention is devoted to nanomaterial interactions with neutrophils, the most abundant leukocytes in the blood. We discuss the impact of engineered nanomaterials on neutrophils and how neutrophils, in turn, may digest certain carbon-based materials such as carbon nanotubes and graphene oxide. We also discuss the role of the corona of proteins adsorbed onto the surface of nanomaterials and whether nanomaterials are sensed as pathogens by cells of the immune system.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Lu N, Sui Y, Tian R, Peng YY. Adsorption of Plasma Proteins on Single-Walled Carbon Nanotubes Reduced Cytotoxicity and Modulated Neutrophil Activation. Chem Res Toxicol 2018; 31:1061-1068. [PMID: 30207453 DOI: 10.1021/acs.chemrestox.8b00141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Proteins in the bloodstream bind to carbon nanotubes (CNTs) through noncovalent interactions to form a protein corona, thereby effectively influencing the biological properties and blood biocompatibility of the CNTs. Here, we investigated the binding of common plasma proteins (i.e., human immunoglobulin G (IgG), human serum albumin (HSA), and fibrinogen (FG)) to carboxylated single-walled CNTs (SWCNTs), and evaluated the effects of these different protein coronas on cytotoxicity to endothelial cells and immune response to neutrophils in the bloodstream. Measurements of adsorption parameters revealed tight binding of proteins to SWCNTs, and the SWCNTs adsorption capacities followed the order FG > HSA > IgG. In addition, the basic residues (Arg, Lys, His) were found to play an important role in the formation of protein-SWCNTs corona complexes and determine their adsorption capacity. Consistent with the higher protein adsorption capacity, FG more significantly reduced the cytotoxicity of CNTs to human umbilical vein endothelial cells than the other two proteins. However, only treatment of SWCNTs with IgG resulted in the enhancement of CNT-induced myeloperoxidase (MPO) release (i.e., neutrophil activation) in neutrophils, while MPO-dependent degradation of CNTs induced less cytotoxicity than initial nanomaterials. Consistent with these effects of protein coronas, the presence of serum attenuated the cytotoxicity of CNTs and CNTs could induce neutrophil activation in human blood plasma. Our study demonstrates the ability of adsorbed plasma proteins to influence cytotoxicity and neutrophil response caused by CNTs in the bloodstream.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang , 330022 , China
| | - Yinhua Sui
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang , 330022 , China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang , 330022 , China
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang , 330022 , China
| |
Collapse
|
13
|
Lu N, Sui Y, Ding Y, Tian R, Peng YY. Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:115. [PMID: 30019251 DOI: 10.1007/s10856-018-6123-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nanotubes are widely used in the area of biomedicine, and the binding of protein to carbon nanotubes are believed to play an important role in the potential cytotoxicity of nanomaterials. In this work, we investigated the effects of human fibrinogen-surface coatings on the biodegradation and cytotoxicity of carboxylated single-walled carbon nanotubes (SWCNTs). It was found that the electrostatic and π-π stacking interactions might be the crucial factors in stabilizing the binding of fibrinogen with SWCNTs by both theoretical and experimental approaches. Although naked SWCNTs could induce significant toxicity to macrophages, coating these nanomaterials with fibrinogen could greatly attenuate their toxicity. On the other hand, although SWCNTs and fibrinogen-preincubated SWCNTs were resistant to biodegradation in resting macrophages, both naked and fibrinogen-coated SWCNTs could be effectively and similarly degraded through myeloperoxidase (MPO) and peroxynitrite (ONOO-)-dependent pathways in activated macrophages, where NADPH oxidase played a determinant role in the biodegradation process. Importantly, degraded SWCNTs by ONOO- pathway in vitro induced less cytotoxicity than non-degraded nanotubes. These findings demonstrated that the binding of fibrinogen to SWCNTs could reduce cytotoxicity without affecting the biodegradation of nanotubes in activated inflammatory cells, providing a new route to design the safer nanotubes for future biomedical applications.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| | - Yinhua Sui
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yun Ding
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
14
|
Bhattacharya K, Sacchetti C, Costa PM, Sommertune J, Brandner BD, Magrini A, Rosato N, Bottini N, Bottini M, Fadeel B. Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Implications for Intra-Articular Delivery. Adv Healthc Mater 2018; 7:e1700916. [PMID: 29334180 DOI: 10.1002/adhm.201700916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Indexed: 01/08/2023]
Abstract
Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Cristiano Sacchetti
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Pedro M. Costa
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Jens Sommertune
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Birgit D. Brandner
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Andrea Magrini
- Department of Biopathology and Imaging Diagnostics University of Rome Tor Vergata Rome 00173 Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
| | - Nunzio Bottini
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA 92037 USA
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| |
Collapse
|
15
|
Mukherjee SP, Gliga AR, Lazzaretto B, Brandner B, Fielden M, Vogt C, Newman L, Rodrigues AF, Shao W, Fournier PM, Toprak MS, Star A, Kostarelos K, Bhattacharya K, Fadeel B. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. NANOSCALE 2018; 10:1180-1188. [PMID: 29271441 DOI: 10.1039/c7nr03552g] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim T, Lemaster JE, Chen F, Li J, Jokerst JV. Photoacoustic Imaging of Human Mesenchymal Stem Cells Labeled with Prussian Blue-Poly(l-lysine) Nanocomplexes. ACS NANO 2017; 11:9022-9032. [PMID: 28759195 PMCID: PMC5630123 DOI: 10.1021/acsnano.7b03519] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acoustic imaging is affordable and accessible without ionizing radiation. Photoacoustic imaging increases the contrast of traditional ultrasound and can offer good spatial resolution when used at high frequencies with excellent temporal resolution. Prussian blue nanoparticles (PBNPs) are an emerging photoacoustic contrast agent with strong optical absorption in the near-infrared region. In this study, we developed a simple and efficient method to label human mesenchymal stem cells (hMSCs) with PBNPs and imaged them with photoacoustic imaging. First, PBNPs were synthesized by the reaction of FeCl3 with K4[Fe(CN)6] in the presence of citric acid and complexed with the cationic transfection agent poly-l-lysine (PLL). The PLL-coated PBNPs (PB-PLL nanocomplexes) have a maximum absorption peak at 715 nm and could efficiently label hMSCs. Cellular uptake of these nanocomplexes was studied using bright field, fluorescence, and transmission electron microscopy. The labeled stem cells were successfully differentiated into two downstream lineages of adipocytes and osteocytes, and they showed positive expression for surface markers of CD73, CD90, and CD105. No changes in viability or proliferation of the labeled cells were observed, and the secretome cytokine analysis indicated that the expression levels of 12 different proteins were not dysregulated by PBNP labeling. The optical properties of PBNPs were preserved postlabeling, suitable for the sensitive and quantitative detection of implanted cells. Labeled hMSCs exhibited strong photoacoustic contrast in vitro and in vivo when imaged at 730 nm, and the detection limit was 200 cells/μL in vivo. The photoacoustic signal increased as a function of cell concentration, indicating that the number of labeled cells can be quantified during and after cell transplantations. In hybrid ultrasound/photoacoustic imaging, this approach offers real-time and image-guided cellular injection even through an intact skull for brain intraparenchymal injections. Our labeling and imaging technique allowed the detection and monitoring of 5 × 104 mesenchymal stem cells in living mice over a period of 14 days.
Collapse
Affiliation(s)
- Taeho Kim
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jeanne E. Lemaster
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Materials Science Program, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jin Li
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Materials Science Program, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Corresponding Author
| |
Collapse
|
17
|
Chiu CF, Dar HH, Kapralov AA, Robinson RAS, Kagan VE, Star A. Nanoemitters and innate immunity: the role of surfactants and bio-coronas in myeloperoxidase-catalyzed oxidation of pristine single-walled carbon nanotubes. NANOSCALE 2017; 9:5948-5956. [PMID: 28440832 PMCID: PMC6584033 DOI: 10.1039/c6nr07706d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are experimentally utilized in in vivo imaging and photothermal cancer therapy owing to their unique physicochemical and electronic properties. For these applications, pristine carbon nanotubes are often modified by polymer surfactant coatings to improve their biocompatibility, adding more complexity to their recognition and biodegradation by immuno-competent cells. Here, we investigate the oxidative degradation of SWCNTs catalyzed by neutrophil myeloperoxidase (MPO) using bandgap near-infrared (NIR) photoluminescence and Raman spectroscopy. Our results show diameter-dependence at the initial stages of the oxidative degradation of sodium cholate-, DNA-, and albumin-coated SWCNTs, but not phosphatidylserine-coated SWCNTs. Moreover, sodium deoxycholate- and phospholipid-polyethylene glycol coated SWCNTs were not oxidized under the same reaction conditions, indicating that a surfactant can greatly impact the biodegradability of a nanomaterial. Our data also revealed that possible binding between MPO and surfactant coated-SWCNTs was unfavorable, suggesting that oxidation is likely caused by a hypochlorite generated through halogenation cycles of free MPO, and not MPO bound to the surface of SWCNTs. The identification of SWCNT diameters and coatings that retain NIR fluorescence during the interactions with the components of an innate immune system is important for their applications in in vivo imaging.
Collapse
Affiliation(s)
- Cheuk Fai Chiu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Chen M, Qin X, Zeng G. Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives. Trends Biotechnol 2017; 35:836-846. [PMID: 28063621 DOI: 10.1016/j.tibtech.2016.12.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs), graphene (GRA), and their derivatives are promising materials for a wide range of applications such as pollutant removal, enzyme immobilization, bioimaging, biosensors, and drug delivery and are rapidly increasing in use and increasingly mass produced. The biodegradation of carbon nanomaterials by microbes and enzymes is now of great importance for both reducing their toxicity to living organisms and removing them from the environment. Here we review recent progress in the biodegradation field from the point of view of the primary microbes and enzymes that can degrade these nanomaterials, along with experimental and molecular simulation methods for the exploration of nanomaterial degradation. Further efforts should primarily aim toward expanding the repertoire of microbes and enzymes and exploring optimal conditions for the degradation of nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
| | - Xiaosheng Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
19
|
Chen M, Qin X, Zeng G. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature. CHEMOSPHERE 2016; 163:217-226. [PMID: 27529386 DOI: 10.1016/j.chemosphere.2016.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/30/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p < 0.01), by increasing or decreasing the water number near them. SWCNT tended to significantly enhance or reduce the stability of atom pairs that formed the HBs and HYs (p < 0.01). N- and C-terminus conformations underwent transitions between positive and negative states or between positive state or between negative state in all analyzed complexes. Significant conformational transitions were found for all C-terminus, but only for a part of N-terminus after the inclusion of the SWCNT. These results showed that SWCNT release would significantly affect the microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaosheng Qin
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
20
|
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 2016; 241:200-219. [DOI: 10.1016/j.jconrel.2016.09.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
|
21
|
Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-Kolon A, Skepper JN, Müller KH. In Vitro Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomater Sci Eng 2016; 2:1273-1285. [DOI: 10.1021/acsbiomaterials.6b00197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sławomir Boncel
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Artur P. Herman
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Sebastian Budniok
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Rafał G. Jędrysiak
- Department
of Organic Chemistry, Biochemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| | - Agata Jakóbik-Kolon
- Department
of Inorganic Chemistry, Analytical Chemistry and Electrochemistry,
Faculty of Chemistry, Silesian University of Technology, Krzywoustego
6, Gliwice 44-100, Poland
| | - Jeremy N. Skepper
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| | - Karin H. Müller
- Cambridge
Advanced Imaging Centre, Department of Physiology, Development and
Neuroscience, Anatomy Building, University of Cambridge, Downing
Street, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
22
|
Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Front Neurosci 2016; 10:250. [PMID: 27375413 PMCID: PMC4899452 DOI: 10.3389/fnins.2016.00250] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
Collapse
Affiliation(s)
- Michele Baldrighi
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Silvia Giordani
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
23
|
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299:78-89. [PMID: 26739622 PMCID: PMC4811709 DOI: 10.1016/j.taap.2015.12.022] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA.
| | - Michael Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anna A Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
24
|
Vlasova II, Kapralov AA, Michael ZP, Burkert SC, Shurin MR, Star A, Shvedova AA, Kagan VE. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol 2016; 299:58-69. [PMID: 26768553 PMCID: PMC4811710 DOI: 10.1016/j.taap.2016.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/01/2016] [Accepted: 01/02/2016] [Indexed: 12/22/2022]
Abstract
Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells - myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase - to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the "dormant" peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and 'unmasking' of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation.
Collapse
Affiliation(s)
- Irina I Vlasova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453, Russia
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Zachary P Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505, United States.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
25
|
Bottini M, Magrini A, Fadeel B, Rosato N. Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Ther 2016; 23:560-4. [DOI: 10.1038/gt.2016.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|
26
|
Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4. Sci Rep 2016; 6:21316. [PMID: 26899743 PMCID: PMC4761960 DOI: 10.1038/srep21316] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/21/2016] [Indexed: 11/30/2022] Open
Abstract
We report a detailed computational and experimental study of the interaction of
single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450
enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model
compound, testosterone, to its major metabolite, 6β-hydroxy testosterone
was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also
provided. The inhibition of enzyme activity was alleviated when SWCNTs were
pre-coated with bovine serum albumin. Furthermore, covalent functionalization of
SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4
enzymatic activity. Molecular dynamics simulations suggested that inhibition of the
catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for
substrates/products through a complex binding mechanism. This work suggests that
SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a
molecular mechanism for this toxicity. Our study also suggests means to reduce this
toxicity, eg., by surface modification.
Collapse
|
27
|
Bottini M, Bhattacharya K, Fadeel B, Magrini A, Bottini N, Rosato N. Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:255-68. [PMID: 26707894 DOI: 10.1016/j.nano.2015.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 01/12/2023]
|
28
|
Rammohan A, Mishra G, Mahaling B, Tayal L, Mukhopadhyay A, Gambhir S, Sharma A, Sivakumar S. PEGylated Carbon Nanocapsule: A Universal Reactor and Carrier for In Vivo Delivery of Hydrophobic and Hydrophilic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:350-362. [PMID: 26646711 DOI: 10.1021/acsami.5b08885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have developed PEGylated mesoporous carbon nanocapsule as a universal nanoreactor and carrier for the delivery of highly crystalline hydrophobic/hydrophilic nanoparticles (NPs) which shows superior biocompatibility, dispersion in body fluids, good biodistribution and NPs independent cellular uptake mechanism. The hydrophobic/hydrophilic NPs without surface modification were synthesized in situ inside the cavities of mesoporous carbon capsules (200-850 nm). Stable and inert nature of carbon capsules in a wide range of reaction conditions like high temperature and harsh solvents, make it suitable for being used as nano/microreactors for the syntheses of a variety of NPs for bioimaging applications, such as NaYF4:Eu(3+)(5%), LaVO4:Eu(3+)(10%), GdVO4:Eu(3+)(10%), Y2O3:Eu(3+)(5%), GdF3:Tb(3+)(10%), Mo, Pt, Pd, Au, and Ag. Multiple types of NPs (Y2O3:Eu(3+)(5%) (hydrophobic) and GdF3:Tb(3+)(10%) (hydrophilic)) were coloaded inside the carbon capsules to create a multimodal agent for magneto-fluorescence imaging. Our in vivo study clearly suggests that carbon capsules have biodistribution in many organs including liver, heart, spleen, lungs, blood pool, and muscles.
Collapse
Affiliation(s)
- Amritha Rammohan
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Gargi Mishra
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Binapani Mahaling
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Lokesh Tayal
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Ahana Mukhopadhyay
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Sanjay Gambhir
- Sanjay Gandhi Post Graduate Institute of Medical Sciences , Lucknow, Uttar Pradesh India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Centre for Environmental Science & Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
- Materials Science Programme, Indian Institute of Technology , Kanpur, Uttar Pradesh-208016, India
| |
Collapse
|
29
|
Current Perspective of Carbon Nanotubes Application in Neurology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:229-63. [DOI: 10.1016/bs.irn.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:333-51. [PMID: 26707820 DOI: 10.1016/j.nano.2015.11.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. FROM THE CLINICAL EDITOR Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sourav P Mukherjee
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Audrey Gallud
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Bistarelli
- National Institute of Nuclear Physics-INFN, Frascati, Province of Rome, Italy
| | - Stefano Bellucci
- National Institute of Nuclear Physics-INFN, Frascati, Province of Rome, Italy
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes. Biomaterials 2015; 72:20-8. [DOI: 10.1016/j.biomaterials.2015.08.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 12/26/2022]
|
32
|
It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm 2015; 95:3-12. [DOI: 10.1016/j.ejpb.2015.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
|
33
|
Kurapati R, Russier J, Squillaci MA, Treossi E, Ménard-Moyon C, Del Rio-Castillo AE, Vazquez E, Samorì P, Palermo V, Bianco A. Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3985-94. [PMID: 25959808 DOI: 10.1002/smll.201500038] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/08/2015] [Indexed: 05/20/2023]
Abstract
Understanding human health risk associated with the rapidly emerging graphene-based nanomaterials represents a great challenge because of the diversity of applications and the wide range of possible ways of exposure to this type of materials. Herein, the biodegradation of graphene oxide (GO) sheets is reported by using myeloperoxidase (hMPO) derived from human neutrophils in the presence of a low concentration of hydrogen peroxide. The degradation capability of the enzyme on three different GO samples containing different degree of oxidation on their graphenic lattice, leading to a variable dispersibility in aqueous media is compared. hMPO fails in degrading the most aggregated GO, but succeeds to completely metabolize highly dispersed GO samples. The spectroscopy and microscopy analyses provide unambiguous evidence for the key roles played by hydrophilicity, negative surface charge, and colloidal stability of the aqueous GO in their biodegradation by hMPO catalysis.
Collapse
Affiliation(s)
- Rajendra Kurapati
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| | - Julie Russier
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| | - Marco A Squillaci
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | | | - Cécilia Ménard-Moyon
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| | - Antonio Esaú Del Rio-Castillo
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vazquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Paolo Samorì
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | | | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| |
Collapse
|
34
|
Seo W, Kapralov AA, Shurin GV, Shurin MR, Kagan VE, Star A. Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated oxidations: pharmacokinetic implications. NANOSCALE 2015; 7:8689-94. [PMID: 25902750 PMCID: PMC4582775 DOI: 10.1039/c5nr00251f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With the advancement of nanocarriers for drug delivery into biomedical practice, assessments of drug susceptibility to oxidative degradation by enzymatic mechanisms of inflammatory cells become important. Here, we investigate oxidative degradation of a carbon nanotube-based drug carrier loaded with Doxorubicin. We employed myeloperoxidase-catalysed and peroxynitrite-mediated oxidative conditions to mimic the respiratory burst of neutrophils and macrophages, respectively. In addition, we revealed that the cytostatic and cytotoxic effects of free Doxorubicin, but not nanotube-carried drug, on melanoma and lung carcinoma cell lines were abolished in the presence of tumor-activated myeloid regulatory cells that create unique myeloperoxidase- and peroxynitrite-induced oxidative conditions. Both ex vivo and in vitro studies demonstrate that the nanocarrier protects the drug against oxidative biodegradation.
Collapse
Affiliation(s)
- Wanji Seo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J Control Release 2015; 210:230-45. [PMID: 25910580 DOI: 10.1016/j.jconrel.2015.04.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer.
Collapse
Affiliation(s)
- Daiqin Chen
- Center for Molecular Imaging, University of Michigan Health Systems, Ann Arbor, MI 48109, United States; Department of Radiology, University of Michigan Health Systems, Ann Arbor, MI 48109, United States
| | - Casey A Dougherty
- Center for Molecular Imaging, University of Michigan Health Systems, Ann Arbor, MI 48109, United States; Department of Radiology, University of Michigan Health Systems, Ann Arbor, MI 48109, United States
| | - Kaicheng Zhu
- Center for Molecular Imaging, University of Michigan Health Systems, Ann Arbor, MI 48109, United States; Department of Radiology, University of Michigan Health Systems, Ann Arbor, MI 48109, United States
| | - Hao Hong
- Center for Molecular Imaging, University of Michigan Health Systems, Ann Arbor, MI 48109, United States; Department of Radiology, University of Michigan Health Systems, Ann Arbor, MI 48109, United States; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
36
|
Sacchetti C, Liu-Bryan R, Magrini A, Rosato N, Bottini N, Bottini M. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS NANO 2014; 8:12280-91. [PMID: 25415768 PMCID: PMC4373402 DOI: 10.1021/nn504537b] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Osteoarthritis (OA) is a common and debilitating degenerative disease of articular joints for which no disease-modifying medical therapy is currently available. Inefficient delivery of pharmacologic agents into cartilage-resident chondrocytes after systemic administration has been a limitation to the development of anti-OA medications. Direct intra-articular injection enables delivery of high concentrations of agents in close proximity to chondrocytes; however, the efficacy of this approach is limited by the fast clearance of small molecules and biomacromolecules after injection into the synovial cavity. Coupling of pharmacologic agents with drug delivery systems able to enhance their residence time and cartilage penetration can enhance the effectiveness of intra-articularly injected anti-OA medications. Herein we describe an efficient intra-articular delivery nanosystem based on single-walled carbon nanotubes (SWCNTs) modified with polyethylene glycol (PEG) chains (PEG-SWCNTs). We show that PEG-SWCNTs are capable to persist in the joint cavity for a prolonged time, enter the cartilage matrix, and deliver gene inhibitors into chondrocytes of both healthy and OA mice. PEG-SWCNT nanoparticles did not elicit systemic or local side effects. Our data suggest that PEG-SWCNTs represent a biocompatible and effective nanocarrier for intra-articular delivery of agents to chondrocytes.
Collapse
Affiliation(s)
- Cristiano Sacchetti
- Inflammatory and Infectious Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037, United States
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Ru Liu-Bryan
- Department of Medicine, VA Medical Center, University of California San Diego, San Diego, California 92093, United States, an
| | - Andrea Magrini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
- Address correspondence to ,
| | - Massimo Bottini
- Inflammatory and Infectious Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037, United States
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00173, Italy
- Address correspondence to ,
| |
Collapse
|