1
|
Im MJ, Kim JI, Hyeong SK, Moon BJ, Bae S. From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304497. [PMID: 37496316 DOI: 10.1002/smll.202304497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based zero-dimensional materials that have received considerable scientific interest due to their exceptional optical, electrical, and optoelectrical properties. Their unique electronic band structures, influenced by quantum confinement and edge effects, differentiate the physical and optical characteristics of GQDs from other carbon nanostructures. Additionally, GQDs can be synthesized using various top-down and bottom-up approaches, distinguishing them from other carbon nanomaterials. This review discusses recent advancements in GQD research, focusing on their synthesis and functionalization for potential applications. Particularly, various methods for synthesizing functionalized GQDs using different doping routes are comprehensively reviewed. Based on previous reports, current challenges and future directions for GQDs research are discussed in detail herein.
Collapse
Affiliation(s)
- Min Ji Im
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Il Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byung Joon Moon
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| |
Collapse
|
2
|
Green Synthesis of Blue-Emitting Graphene Oxide Quantum Dots for In Vitro CT26 and In Vivo Zebrafish Nano-Imaging as Diagnostic Probes. Pharmaceutics 2023; 15:pharmaceutics15020632. [PMID: 36839953 PMCID: PMC9960939 DOI: 10.3390/pharmaceutics15020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Graphene oxide quantum dots (GOQDs) are prepared using black carbon as a feedstock and H2O2 as a green oxidizing agent in a straightforward and environmentally friendly manner. The process adopted microwave energy and only took two minutes. The GOQDs are 20 nm in size and have stable blue fluorescence at 440 nm. The chemical characteristics and QD morphology were confirmed by thorough analysis using scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Fourier transmission infra-red (FT-IR), and X-ray photoelectron spectroscopy (XPS). The biocompatibility test was used to evaluate the toxicity of GOQDs in CT26 cells in vitro and the IC50 was found to be 200 µg/mL with excellent survival rates. Additional in vivo toxicity assessment in the developing zebrafish (Danio rerio) embryo model found no observed abnormalities even at a high concentration of 400 μg/mL after 96 h post fertilization. The GOQDs luminescence was also tested both in vitro and in vivo. They showed excellent internal distribution in the cytoplasm, cell nucleus, and throughout the zebrafish body. As a result, the prepared GOQDs are expected to be simple and inexpensive materials for nano-imaging and diagnostic probes in nanomedicine.
Collapse
|
3
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
4
|
Chen G, Gong Z, Bin X, Agbolaghi S. Cutting-edge stability in perovskite solar cells through quantum dot-covered P3HT nanofibers. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guoning Chen
- Materials Science and Technology, China University of Petroleum, Qingdao, Shandong, China
- Materials Science and technology, University of Science and Technology Beijing, Beijing, Beijing, China
| | - Zhengqi Gong
- Materials Science and technology, Tongji University, Shanghai, Shanghai, China
| | - Xihan Bin
- Materials Science and technology, Tongji University, Shanghai, Shanghai, China
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
5
|
Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, Zaidi SJ. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234154. [PMID: 36500777 PMCID: PMC9735732 DOI: 10.3390/nano12234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 05/17/2023]
Abstract
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Aquib Wakeel Khan
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7723
| |
Collapse
|
6
|
Domán A, Battalgazy B, Dobos G, Kiss G, Tauanov Z, László K, Zorpas AA, Inglezakis VJ. Iodide Removal by Resorcinol-Formaldehyde Carbon Aerogels. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6885. [PMID: 36234226 PMCID: PMC9572706 DOI: 10.3390/ma15196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The adsorption technique is widely used in water purification, and its efficiency can be significantly improved by target-specific adsorbent design. Research on iodine and its ion removal from water has attracted a great deal of interest due to increased concentrations in the environment and acute toxic effects, e.g., in human thyroid cells. In this work, the iodide removal performance of two high-surface-area resorcinol-formaldehyde-based carbon aerogels was studied under acidic conditions. The BET surface area was 790 m2/g (RF_ac) and 375 m2/g (RMF-GO), with a corresponding micropore ratio of 36 and 26%, respectively. Both aerogels showed outstanding adsorption capacity, exceeding the reported performance of other carbons and Ag-doped materials. Owing to its basic nature, the RMF-GO carbon aerogel showed higher I- capacity, up to 97 mg/g, than the acidic RF_ac, which reached a capacity of 82 mg/g. The surface chemistry of the aerogels also played a distinct role in the removal. In terms of kinetics, RF_ac removed 60% of the iodide ions and RMF-GO 30% within 8 h. The removal kinetics was of the first order, with a half-life of 1.94 and 1.70 h, respectively.
Collapse
Affiliation(s)
- Andrea Domán
- Surface Chemistry Group, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Bekassyl Battalgazy
- Environmental Science & Technology Group (ESTg), Department of Chemical & Materials Engineering, School of Engineering, Nazarbayev University, Qabanbay Batyr Ave 53, Nur-Sultan 010000, Kazakhstan
| | - Gábor Dobos
- Surface Physics Laboratory, Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Gábor Kiss
- Surface Physics Laboratory, Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zhandos Tauanov
- Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Krisztina László
- Surface Chemistry Group, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Antonis A. Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Science, Open University of Cyprus, Giannou Kranidioti 33, Latsia, Nicosia 2220, Cyprus
| | - Vassilis J. Inglezakis
- Chemical and Process Engineering Department, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK
| |
Collapse
|
7
|
A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. J Fluoresc 2022; 32:2223-2236. [PMID: 36042154 DOI: 10.1007/s10895-022-03018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.
Collapse
|
8
|
Le M, Hu B, Wu M, Guo H, Wang L. Construction of Co,N-Coordinated Carbon Dots for Efficient Oxygen Reduction Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155021. [PMID: 35956969 PMCID: PMC9370474 DOI: 10.3390/molecules27155021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For the sake of the oxygen reduction reaction (ORR) catalytic performance, carbon dots (CDs) doped with metal atoms have accelerated their local electron flow for the past few years. However, the influence of CDs doped with metal atoms on binding sites and formation mechanisms is still uncertain. Herein, Co,N-doped CDs were facilely prepared by the low-temperature polymerization-solvent extraction strategy from EDTA-Co. The influence of Co doping on the catalytic performance of Co-CDs was explored, mainly in the following aspects: first, the pyridinic N atom content of Co-CDs significantly increased from 4.2 to 11.27 at% compared with the CDs, which indicates that the Co element in the precursor is advantageous in forming more pyridinic-N-active sites for boosting the ORR performance. Second, Co-CDs are uniformly distributed on the surface of carbon black (CB) to form Co-CDs@CB by the facile hydrothermal route, which can expose more active sites than the aggregation status. Third, the highest graphite N content of Co-CDs@CB was found, by limiting the current density of the catalyst towards the ORR. Composite nanomaterials formed by Co and CB are also used as air electrodes to manufacture high-performance zinc-air batteries. The battery has good cycle stability and realizes stable charges and discharges under different current densities. The outstanding catalytic activity of Co-CDs@CB is attributed to the Co,N synergistic effect induced by Co doping, which pioneer a new metal doping mechanism for gaining high-performance electrocatalysts.
Collapse
|
9
|
Ball-Milled Graphene Quantum Dots for Enhanced Anti-Cancer Drug Delivery. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yang A, Su Y, Zhang Z, Wang H, Qi C, Ru S, Wang J. Preparation of Graphene Quantum Dots by Visible-Fenton Reaction and Ultrasensitive Label-Free Immunosensor for Detecting Lipovitellin of Paralichthys Olivaceus. BIOSENSORS 2022; 12:bios12040246. [PMID: 35448306 PMCID: PMC9024531 DOI: 10.3390/bios12040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
The increasing levels of environmental estrogens are causing negative effects on water, soil, wildlife, and human beings; label-free immunosensors with high specificities and sensitivities are being developed to test estrogeneous chemicals in complex environmental conditions. For the first time, highly fluorescent graphene quantum dots (GQDs) were prepared using a visible-Fenton catalysis reaction with graphene oxide (GO) as a precursor. Different microscopy and spectroscopy techniques were employed to characterize the physical and chemical properties of the GQDs. Based on the fluorescence resonance energy transfer (FRET) between amino-functionalized GQDs conjugated with anti-lipovitellin monoclonal antibodies (Anti-Lv-mAb) and reduced graphene oxide (rGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor for the detection of lipovitellin (Lv), a sensitive biomarker derived from Paralichthys olivaceus for environmental estrogen, has been established. The immunosensor has a wide linear test range (0.001–1500 ng/mL), a lower limit of detection (LOD, 0.9 pg/mL), excellent sensitivity (26,407.8 CPS/(ng/mL)), and high selectivity and reproducibility for Lv quantification. The results demonstrated that the visible-Fenton is a simple, mild, green, efficient, and general approach to fabricating GQDs, and the fluorescent “ON-OFF” immunosensor is an easy-to-use, time-saving, ultrasensitive, and accurate detection method for weak estrogenic activity.
Collapse
Affiliation(s)
- Ailing Yang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| | - Yue Su
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Huaidong Wang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Chong Qi
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| |
Collapse
|
11
|
Dutta K, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker. ACS Biomater Sci Eng 2021; 7:5541-5554. [PMID: 34802226 DOI: 10.1021/acsbiomaterials.1c00753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, a novel electrochemical immunosensor based on nitrogen doped graphene quantum dot (N-GQD) and single-walled carbon nanohorns (SWCNHs) was developed for the detection of α-fetoprotein (AFP), a cancer biomarker. Thus, to fabricate the platform of the immunosensor, nanocomposite architecture was developed by decorating N-GQD on the surface of the SWCNHs. The resulting hybrid architecture (N-GQD@SWCNHs) functioned as an exceptional base for the immobilization of antibody (Anti-AFP) through carbodiimide reaction with good stability and bioactivity. The immunosensor was prepared by evenly distributing the bioconjugates (N-GQD@SWCNHs/Anti-AFP) dispersion on the surface of the glassy carbon electrode, and subsequently blocking the remaining active sites by bovine serum albumin to prevent the nonspecific adsorption. Cyclic voltammetry and electrochemical impedance spectroscopy technique was employed to investigate the assembly process of the immunosensor. Under optimal conditions, the immunosensor exhibited a broad dynamic range in between 0.001 ng/mL to 200 ng/mL and a low detection limit of 0.25 pg/mL. Furthermore, the sensor showed high selectivity, desirable stability, and reproducibility. Measurements of AFP in human serum gave outstanding recovery within 99.2% and 102.1%. Thus, this investigation and the amplification strategy exhibited a potential role of the developed nanocomposite based sensor for early clinical screening of cancer biomarkers.
Collapse
Affiliation(s)
- Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700129, India
| | - Beauty Das
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Suman Bera
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Biswanath Guria
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Mir Sahidul Ali
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
12
|
Ravi PV, Subramaniyam V, Pattabiraman A, Pichumani M. Do amino acid functionalization stratagems on carbonaceous quantum dots imply multiple applications? A comprehensive review. RSC Adv 2021; 11:35028-35045. [PMID: 35494767 PMCID: PMC9043014 DOI: 10.1039/d1ra05571b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Amino acids are the noteworthy entity among biological molecules with diverse properties such as zwitterionic and amphoteric. Functionalizing carbon-based quantum dots using amino acids might be used for the extreme enhancement of electronic and optical properties of quantum dots and improve the performance of the resultant amino acid-functionalized quantum dots. The amino acid-functionalized quantum dots are highly soluble, sustainable, and biocompatible with virtuous optical and electrical performance, which makes them potential and suitable candidates for fabricating optoelectronic devices. The tenacity of using amino acids as functional groups to functionalize quantum dots and their novel properties are conferred to attain their multiple applications. The goal of this review is to provide the choices of amino acids based on the desired applications and a variety of functionalization techniques to make them a noteworthy material for future applications. The method of one-step and two-step functionalization strategies along with the properties of the resultant functionalized quantum dots and their plausible applications and future scope of the material are highlighted. Amidation is the basic principle behind the functionalization of quantum dots with amino acids. This review would be an exciting prospect to explore the pathways of the possible applications in different domains, in which the amino acid-functionalized quantum dots have not yet been explored. Further, this review article helps in pitching a variety of prominent applications right from sensors to energy storage systems either using the optical property or electronic property of amino acid-functionalized quantum dots.
Collapse
Affiliation(s)
- Pavithra V Ravi
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| | - Vinodhini Subramaniyam
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| | - Ajay Pattabiraman
- Government Primary Health Center Anaikatti Coimbatore 641 108 Tamilnadu India
| | - Moorthi Pichumani
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| |
Collapse
|
13
|
Dorontić S, Jovanović S, Bonasera A. Shedding Light on Graphene Quantum Dots: Key Synthetic Strategies, Characterization Tools, and Cutting-Edge Applications. MATERIALS 2021; 14:ma14206153. [PMID: 34683745 PMCID: PMC8539078 DOI: 10.3390/ma14206153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
During the last 20 years, the scientific community has shown growing interest towards carbonaceous nanomaterials due to their appealing mechanical, thermal, and optical features, depending on the specific nanoforms. Among these, graphene quantum dots (GQDs) recently emerged as one of the most promising nanomaterials due to their outstanding electrical properties, chemical stability, and intense and tunable photoluminescence, as it is witnessed by a booming number of reported applications, ranging from the biological field to the photovoltaic market. To date, a plethora of synthetic protocols have been investigated to modulate the portfolio of features that GQDs possess and to facilitate the use of these materials for target applications. Considering the number of publications and the rapid evolution of this flourishing field of research, this review aims at providing a broad overview of the most widely established synthetic protocols and offering a detailed review of some specific applications that are attracting researchers’ interest.
Collapse
Affiliation(s)
- Slađana Dorontić
- “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia;
| | - Svetlana Jovanović
- “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia;
- Correspondence: (S.J.); (A.B.)
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Correspondence: (S.J.); (A.B.)
| |
Collapse
|
14
|
Huang YJ, Sahoo PK, Tsai DS, Lee CP. Recent Advances on Pt-Free Electro-Catalysts for Dye-Sensitized Solar Cells. Molecules 2021; 26:5186. [PMID: 34500618 PMCID: PMC8433667 DOI: 10.3390/molecules26175186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm-2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.
Collapse
Affiliation(s)
- Yi-June Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Siksha ‘O’ Anusandhan, Deemed to Be University, Bhubaneswar 751030, India;
| | - Dung-Sheng Tsai
- Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Chuan-Pei Lee
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| |
Collapse
|
15
|
Chung S, Revia RA, Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904362. [PMID: 31833101 PMCID: PMC7289657 DOI: 10.1002/adma.201904362] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Indexed: 05/05/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, nanoscale particles that exhibit excellent chemical, physical, and biological properties that allow them to excel in a wide range of applications in nanomedicine. The unique electronic structure of GQDs confers functional attributes onto these nanomaterials such as strong and tunable photoluminescence for use in fluorescence bioimaging and biosensing, a high loading capacity of aromatic compounds for small-molecule drug delivery, and the ability to absorb incident radiation for use in the cancer-killing techniques of photothermal and photodynamic therapy. Recent advances in the development of GQDs as novel, multifunctional biomaterials are presented with a focus on their physicochemical, electronic, magnetic, and biological properties, along with a discussion of technical progress in the synthesis of GQDs. Progress toward the application of GQDs in bioimaging, biosensing, and therapy is reviewed, along with a discussion of the current limitations and future directions of this exciting material.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Abstract
Carbon quantum dots (CDs) are a new class of fluorescent carbonaceous nanomaterials that were casually discovered in 2004. Since then, they have become object of great interest in the scientific community because of their peculiar optical properties (e.g., size-dependent and excitation wavelength-dependent fluorescence), which make them very similar to the well-known semiconductor quantum dots and suitable for application in photovoltaic devices (PVs). In fact, with appropriate structural engineering, it is possible to modulate CDs photoluminescence properties, band gap, and energy levels in order to realize the band matching suitable to enable the desired directional flow of charge carriers within the PV device architecture in which they are implanted. Considering the latest developments, in the present short review, the employment of CDs in organic photovoltaic devices (OPVs) will be summarized, in order to study the role played by these nanomaterials in the improvement of the performances of the devices. After a first brief summary of the strategies of structural engineering of CDs and the effects on their optical properties, the attention will be devoted to the recent highlights of CDs application in organic solar cells (OSCs) and in dye sensitized solar cells (DSSCs), in order to guide the users towards the full exploitation of the use of these nanomaterials in such OPV devices.
Collapse
|
17
|
Zhao M, Song X, Lv W, Wu Y, Dai C. The preparation and spontaneous imbibition of carbon-based nanofluid for enhanced oil recovery in tight reservoirs. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Gan G, Li X, Fan S, Wang L, Qin M, Yin Z, Chen G. Carbon Aerogels for Environmental Clean-Up. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
- Department of Chemical and Biological Engineering; The Hong Kong University of Science and Technology; China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Meichun Qin
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Zhifan Yin
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Guohua Chen
- Department of Chemical and Biological Engineering; The Hong Kong University of Science and Technology; China
| |
Collapse
|
19
|
Wang J, Zheng Y, Teng Q, Wu D. Facile Synthesis of Functional Graphene Quantum Dots and Their Application to Cu(II) Ion Sensing. CHEM LETT 2019. [DOI: 10.1246/cl.180967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jingwei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yongji Zheng
- Hangzhou Unitest Technology Co., Ltd., Hangzhou 310000, P. R. China
| | - Qiaoqiao Teng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
20
|
Hu C, Li M, Qiu J, Sun YP. Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 2019; 48:2315-2337. [DOI: 10.1039/c8cs00750k] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the recent advances of carbon dots for versatile energy-oriented applications.
Collapse
Affiliation(s)
- Chao Hu
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Mingyu Li
- Liaoning Key Lab for Energy Materials and Chemical Engineering
- School of Chemical Engineering
- State Key Lab of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
| | - Jieshan Qiu
- Liaoning Key Lab for Energy Materials and Chemical Engineering
- School of Chemical Engineering
- State Key Lab of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials & Technology
- Clemson University
- Clemson
- USA
| |
Collapse
|
21
|
Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 2018; 47:586-625. [DOI: 10.1039/c7cs00500h] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review critically summarizes recent progress in the categories, synthetic routes, properties, functionalization and applications of 2D materials-based quantum dots (QDs).
Collapse
Affiliation(s)
- Yuanhong Xu
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Xiaoxia Wang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Wen Ling Zhang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Fan Lv
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Shaojun Guo
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
22
|
Gao T, Wang X, Yang LY, He H, Ba XX, Zhao J, Jiang FL, Liu Y. Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24846-24856. [PMID: 28675929 DOI: 10.1021/acsami.7b05569] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their excellent photoluminescence (PL) properties, good biocompatibility, and low toxicity, graphene quantum dots (GQDs) are widely applied in bioimaging, biosensing, and so forth. However, further development of GQDs is limited by their synthetic methodology and unclear PL mechanism. Therefore, it is urgent to find efficient and universal methods for the synthesis of GQDs with high stability, controllable surface properties, and tunable PL emission wavelength. By coating with polyethyleneimine (PEI) of different molecular weights, blue-, yellow-, and red-emitting GQDs were successfully prepared. By transmission electron microscopy, atomic force microscopy, and dynamic light scattering, the characterization of size and morphology revealed that blue-emitting PEI1800 GQDs were monocoated, like jelly beans, and red-emitting PEI600 GQDs were multicoated, like capsules. The amidation reaction between carboxyl and amide functional groups played an important role in the coating process, as evidenced by IR spectroscopy and theoretical calculation with density functional theory B3LYP/6-31G*. The PL-tunable GQDs exhibited an excellent chemical stability and extremely low cytotoxicity, and they had been shown to be feasible for bioimaging, making these GQDs highly attractive for a wide variety of applications, including multicolor imaging and bioanalysis.
Collapse
Affiliation(s)
- Tian Gao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Xi Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Li-Yun Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Huan He
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Xiao-Xu Ba
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Jie Zhao
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology , Wuhan 430081, P. R. China
- College of Chemistry and Material Science, Guangxi Teachers Education University , Nanning 530001, P. R. China
| |
Collapse
|
23
|
Geng B, Yang D, Zheng F, Zhang C, Zhan J, Li Z, Pan D, Wang L. Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. NEW J CHEM 2017. [DOI: 10.1039/c7nj03005c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our work has provided a way for the conversion of low-value coal tar into high-value fluorescent carbon materials.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Dewen Yang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Fengfeng Zheng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Chen Zhang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jing Zhan
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Zhen Li
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
24
|
A simple one-step synthesis of melanin-originated red shift emissive carbonaceous dots for bioimaging. J Colloid Interface Sci 2016; 480:85-90. [DOI: 10.1016/j.jcis.2016.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
25
|
Zhou S, Xu H, Gan W, Yuan Q. Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv 2016. [DOI: 10.1039/c6ra24349e] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This paper reviews recent activities in the preparation and fluorescence sensing applications of graphene quantum dots.
Collapse
Affiliation(s)
- Shenghai Zhou
- College of Chemistry and Chemical Engineering
- Hebei Normal University for Nationalities
- Chengde 067000
- China
- Laboratory of Environmental Science and Technology
| | - Hongbo Xu
- College of Chemistry and Chemical Engineering
- Hebei Normal University for Nationalities
- Chengde 067000
- China
- Laboratory of Environmental Science and Technology
| | - Wei Gan
- School of Natural Sciences and Humanities
- Harbin Institute of Technology
- Shenzhen 518055
- China
- Laboratory of Environmental Science and Technology
| | - Qunhui Yuan
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen 518055
- China
- Laboratory of Environmental Science and Technology
| |
Collapse
|
26
|
Gholinejad M, Seyedhamzeh M, Razeghi M, Najera C, Kompany-Zareh M. Iron Oxide Nanoparticles Modified with Carbon Quantum Nanodots for the Stabilization of Palladium Nanoparticles: An Efficient Catalyst for the Suzuki Reaction in Aqueous Media under Mild Conditions. ChemCatChem 2015. [DOI: 10.1002/cctc.201500925] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| | - Mohammad Seyedhamzeh
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| | - Mehran Razeghi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| | - Carmen Najera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad de Alicante; Apdo. 99 E-03080- Alicante Spain
| | - Mohsen Kompany-Zareh
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-6731 Iran
| |
Collapse
|
27
|
Roy AK, Kim SM, Paoprasert P, Park SY, In I. Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Adv 2015. [DOI: 10.1039/c5ra01506e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Green or yellow emitting carbon quantum dots (CQDs) were prepared through the combination of bottom-up and top-down approaches from resorcinol and formaldehyde.
Collapse
Affiliation(s)
- Arup Kumer Roy
- Department of Polymer Science and Engineering
- Korea National University of Transportation
- Chungju 380-702
- South Korea
| | - Sung-Min Kim
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- South Korea
| | - Peerasak Paoprasert
- Department of Chemistry
- Faculty of Science and Technology
- Thammasat University
- Pathumthani 12121
- Thailand
| | - Sung-Young Park
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- South Korea
- Department of IT Convergence (Brain Korea PLUS 21)
| | - Insik In
- Department of Polymer Science and Engineering
- Korea National University of Transportation
- Chungju 380-702
- South Korea
- Department of IT Convergence (Brain Korea PLUS 21)
| |
Collapse
|