1
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
3
|
Carbajo‐Gordillo AI, López‐Fernández J, Benito JM, Blanco JLJ, Santana‐Armas ML, Marcelo G, Giorgio CD, Przybylski C, Mellet CO, Ilarduya CT, Mendicuti F, Fernández JMG. Enhanced Gene Delivery Triggered by Dual pH/Redox Responsive Host‐Guest Dimerization of Cyclooligosaccharide Star Polycations. Macromol Rapid Commun 2022; 43:e2200145. [DOI: 10.1002/marc.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - José López‐Fernández
- Instituto de Investigaciones Químicas (IIQ) C/ Américo Vespucio 49 Sevilla 41092 Spain
| | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ) C/ Américo Vespucio 49 Sevilla 41092 Spain
| | - José L. Jiménez Blanco
- Department of Organic Chemistry Faculty of Chemistry University of Seville C/ Profesor García González 1 Seville 41012 Spain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona 31080 Spain
| | - Gema Marcelo
- Department of Analytical Chemistry Physical Chemistry and Chemical Engineering Faculty of Chemistry University of Alcalá Alcalá de Henares Madrid Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice UMR 7272 Université Côte d'Azur 28, Avenue de Valrose Nice F‐06108 France
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire (IPCM) CNRS Sorbonne Université Paris France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry Faculty of Chemistry University of Seville C/ Profesor García González 1 Seville 41012 Spain
| | - Conchita Tros Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition University of Navarra Pamplona 31080 Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry Physical Chemistry and Chemical Engineering Faculty of Chemistry University of Alcalá Alcalá de Henares Madrid Spain
| | | |
Collapse
|
4
|
Mostovaya O, Padnya P, Shiabiev I, Mukhametzyanov T, Stoikov I. PAMAM-calix-dendrimers: Synthesis and Thiacalixarene Conformation Effect on DNA Binding. Int J Mol Sci 2021; 22:ijms222111901. [PMID: 34769329 PMCID: PMC8585033 DOI: 10.3390/ijms222111901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/16/2022] Open
Abstract
A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.
Collapse
Affiliation(s)
| | - Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
5
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Lomazzi M, Franceschi V, Bagnacani V, Vezzoni CA, Donofrio G, Casnati A, Sansone F. A Structure‐Activity Investigation on Modified Analogues of an Argininocalixarene Based Non‐viral Gene Vector. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michela Lomazzi
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Valentina Franceschi
- Department of Veterinary Science University of Parma Via del Taglio 6 43126 Parma Italy
| | - Valentina Bagnacani
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Carlo Alberto Vezzoni
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Gaetano Donofrio
- Department of Veterinary Science University of Parma Via del Taglio 6 43126 Parma Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
7
|
Carbajo‐Gordillo AI, González‐Cuesta M, Jiménez Blanco JL, Benito JM, Santana‐Armas ML, Carmona T, Di Giorgio C, Przybylski C, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Trifaceted Mickey Mouse Amphiphiles for Programmable Self-Assembly, DNA Complexation and Organ-Selective Gene Delivery. Chemistry 2021; 27:9429-9438. [PMID: 33882160 PMCID: PMC8361672 DOI: 10.1002/chem.202100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.
Collapse
Affiliation(s)
| | - Manuel González‐Cuesta
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - José L. Jiménez Blanco
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Juan M. Benito
- Institute for Chemical ResearchIIQCSIC-Univ. SevillaC/ Américo Vespucio 4941092SevillaSpain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Thais Carmona
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | - Christophe Di Giorgio
- Institut de Chimie NiceUMR 7272Université Côte d'Azur28, Avenue de Valrose06108NiceFrance
| | - Cédric Przybylski
- CNRSInstitut Parisien de Chimie MoléculaireIPCMSorbonne UniversitéParisFrance
| | - Carmen Ortiz Mellet
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Francisco Mendicuti
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | | |
Collapse
|
8
|
Therapeutic Efficacy and Biodistribution of Paclitaxel-Bound Amphiphilic Cyclodextrin Nanoparticles: Analyses in 3D Tumor Culture and Tumor-Bearing Animals In Vivo. NANOMATERIALS 2021; 11:nano11020515. [PMID: 33670527 PMCID: PMC7922126 DOI: 10.3390/nano11020515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
The uniqueness of paclitaxel’s antimitotic action mechanism has fueled research toward its application in more effective and safer cancer treatments. However, the low water solubility, recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion, the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for intravenous paclitaxel delivery.
Collapse
|
9
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
10
|
|
11
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
12
|
Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed Engl 2020; 60:2768-2794. [DOI: 10.1002/anie.201916380] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Ostos FJ, Lebrón JA, López-Cornejo P, López-López M, García-Calderón M, García-Calderón CB, Rosado IV, Kalchenko VI, Rodik RV, Moyá ML. Self-aggregation in aqueous solution of amphiphilic cationic calix[4]arenes. Potential use as vectors and nanocarriers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
An L, Wang JW, Liu JD, Zhao ZM, Song YJ. Design, Preparation, and Characterization of Novel Calix[4]arene Bioactive Carrier for Antitumor Drug Delivery. Front Chem 2019; 7:732. [PMID: 31788467 PMCID: PMC6855266 DOI: 10.3389/fchem.2019.00732] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/14/2019] [Indexed: 01/12/2023] Open
Abstract
An amphiphilic and bioactive calix[4]arene derivative 8 (CA) is designed and successfully synthesized from tert-butyl calix[4] arene 1 by sequential inverse F-C alkylation, nitration, O-alkylation, esterification, aminolysis, reduction, and acylation reaction. The blank micelles of FA-CA and doxorubicin (DOX) loaded micelles FA-CA-DOX are prepared subsequently undergoing self-assembly and dialysis of CA and DSPE-PEG2000-FA. The drug release kinetics curve of the encapsulated-DOX micelle demonstrates a rapid release under mild conditions, indicating the good pH-responsive ability. Furthermore, the cytotoxicity of DOX-loaded micelle respect to the blank micelle against seven different human carcinoma (A549, HeLa, HepG2, HCT116, MCF-7, MDA-MB231, and SW480) cells has been also investigated. The results confirm the more significant inhibitory effect of DOX-loaded micelle than those of DOX and the blank micelles. The CDI calculations show a synergistic effect between blank micelles and DOX in inducing tumor cell death. In conclusion, FA-CA micelles reported in this work was a promising drug delivery vehicle for tumor targeting therapy.
Collapse
Affiliation(s)
- Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Wei Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Dong Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Ming Zhao
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan-Jian Song
- Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Gohlsch K, Mückter H, Steinritz D, Aufderheide M, Hoffmann S, Gudermann T, Breit A. Exposure of 19 substances to lung A549 cells at the air liquid interface or under submerged conditions reveals high correlation between cytotoxicity in vitro and CLP classifications for acute lung toxicity. Toxicol Lett 2019; 316:119-126. [DOI: 10.1016/j.toxlet.2019.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
|
18
|
Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:748-763. [PMID: 31733592 PMCID: PMC6859282 DOI: 10.1016/j.omtn.2019.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules acting as gene regulators by repressing translation or by inducing degradation of the target RNA transcripts. Altered expression of miRNAs may be involved in the pathogenesis of many severe human diseases, opening new avenues in the field of therapeutic strategies, i.e., miRNA targeting or miRNA mimicking. In this context, the efficient and non-toxic delivery of premiRNA and antimiRNA molecules might be of great interest. The aim of the present paper is to determine whether an argininocalix[4]arene is able to efficiently deliver miRNA, premiRNA, and antimiRNA molecules to target cells, preserving their biological activity. This study points out that (1) the toxicity of argininocalix[4]arene 1 is low, and it can be proposed for long-term treatment of target cells, being that this feature is a pre-requisite for the development of therapeutic protocols; (2) the delivery of premiRNA and antimiRNA molecules is efficient, being higher when compared with reference gold standards available; and (3) the biological activity of the premiRNAs and antimiRNAs is maintained. This was demonstrated using the argininocalix[4]arene 1 in miRNA therapeutic approaches performed on three well-described experimental model systems: (1) the induction of apoptosis by antimiR-221 in glioma U251 cells; (2) the induction of apoptosis by premiR-124 in U251 cells; and (3) the inhibition of pro-inflammatory IL-8 and IL-6 genes in cystic fibrosis IB3-1 cells. Our results demonstrate that the argininocalix[4]arene 1 should be considered a very useful delivery system for efficient transfer to target cells of both premiRNA and antimiRNA molecules, preserving their biological activity.
Collapse
|
19
|
Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev 2019; 119:9657-9721. [DOI: 10.1021/acs.chemrev.8b00605] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Paolo Suating
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyoung Sunwoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
20
|
Geng WC, Huang Q, Xu Z, Wang R, Guo DS. Gene delivery based on macrocyclic amphiphiles. Theranostics 2019; 9:3094-3106. [PMID: 31244943 PMCID: PMC6567961 DOI: 10.7150/thno.31914] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Gene therapy, with an important role in biomedicine, often requires vectors for gene condensation in order to avoid degradation, improve membrane permeation, and achieve targeted delivery. Macrocyclic molecules are a family of artificial receptors that can selectively bind a variety of guest species. Amphiphilic macrocycles, particularly those bearing cationic charges and their various assemblies represent a new class of promising non-viral vectors with intrinsic advantages in gene condensation and delivery. The most prominent examples include amphiphilic cyclodextrins, calixarenes and pillararenes. Herein, we systemically reviewed reported assemblies of amphiphilic macrocycles for gene delivery and therapy. The advantages and disadvantages of each type of macrocyclic amphiphiles for gene delivery, as well as the perspectives on the future development of this area are discussed.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Neva T, Ortiz Mellet C, Fernández JMG, Benito JM. Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1609020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC–University of Seville, Seville, Spain
| |
Collapse
|
22
|
Carbajo-Gordillo AI, Rodríguez-Lavado J, Jiménez Blanco JL, Benito JM, Di Giorgio C, Vélaz I, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chem Commun (Camb) 2019; 55:8227-8230. [DOI: 10.1039/c9cc04489b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trehalose Siamese twin vectors, encompassing gemini and facial amphiphilicity, promote pDNA compaction into core–shell nanocomplexes and selective delivery in the lungs.
Collapse
Affiliation(s)
| | - Julio Rodríguez-Lavado
- Department of Organic Chemistry
- Faculty of Chemistry, University of Seville
- 41012 Seville
- Spain
| | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- 41092 Sevilla
- Spain
| | | | - Itziar Vélaz
- Department of Chemistry
- Faculty of Sciences
- University of Navarra
- Pamplona
- Spain
| | - Concepción Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry
- School of Pharmacy and Nutrition
- University of Navarra
- 31080 Pamplona
- Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry
- Faculty of Chemistry, University of Seville
- 41012 Seville
- Spain
| | | |
Collapse
|
23
|
Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Gallego-Yerga L, Benito JM, Blanco-Fernández L, Martínez-Negro M, Vélaz I, Aicart E, Junquera E, Ortiz Mellet C, Tros de Ilarduya C, García Fernández JM. Plasmid-Templated Control of DNA-Cyclodextrin Nanoparticle Morphology through Molecular Vector Design for Effective Gene Delivery. Chemistry 2018; 24:3825-3835. [PMID: 29341305 DOI: 10.1002/chem.201705723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Engineering self-assembled superstructures through complexation of plasmid DNA (pDNA) and single-isomer nanometric size macromolecules (molecular nanoparticles) is a promising strategy for gene delivery. Notably, the functionality and overall architecture of the vector can be precisely molded at the atomic level by chemical tailoring, thereby enabling unprecedented opportunities for structure/self-assembling/pDNA delivery relationship studies. Beyond this notion, by judiciously preorganizing the functional elements in cyclodextrin (CD)-based molecular nanoparticles through covalent dimerization, here we demonstrate that the morphology of the resulting nanocomplexes (CDplexes) can be tuned, from spherical to ellipsoidal, rod-type, or worm-like nanoparticles, which makes it possible to gain understanding of their shape-dependent transfection properties. The experimental findings are in agreement with a shift from chelate to cross-linking interactions on going from primary-face- to secondary-face-linked CD dimers, the pDNA partner acting as an active payload and as a template. Most interestingly, the transfection efficiency in different cells was shown to be differently impacted by modifications of the CDplex morphology, which has led to the identification of an optimal prototype for tissue-selective DNA delivery to the spleen in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - María Martínez-Negro
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Itziar Vélaz
- Department of Chemistry, Faculty of Sciences, University of Navarra, E-31080, Pamplona, Spain
| | - Emilio Aicart
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Elena Junquera
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - Jose M García Fernández
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
25
|
Wang J, Hu X, Wang D, Xie C, Lu W, Song J, Wang R, Gao C, Liu M. 2-Aminoimidazole facilitates efficient gene delivery in a low molecular weight poly(amidoamine) dendrimer. Org Biomol Chem 2018; 16:4464-4470. [DOI: 10.1039/c8ob00953h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Aminoimidazole greatly improved the transfection efficiency of G2. It contributes to condensing DNA into small, monodisperse nanostructures, enhancing cellular penetration and endosome/lysosome escape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Xuefeng Hu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Dongli Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Cao Xie
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Weiyue Lu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Jie Song
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Ruifeng Wang
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| | - Chunli Gao
- Department of Otolaryngology-Head and Neck Surgery
- Eye and ENT Hospital
- Fudan University
- P.R. China
| | - Min Liu
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- Shanghai
| |
Collapse
|
26
|
Yakimova LS, Puplampu JB, Evtugin GA, Stoikov II. Polyfunctional branched nitrogen-containing p-tert-butylthiacalix[4]arene derivatives as efficient agents for packaging calf thymus DNA. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1917-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Wan N, Huan ML, Ma XX, Jing ZW, Zhang YX, Li C, Zhou SY, Zhang BL. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors. NANOTECHNOLOGY 2017; 28:465101. [PMID: 28905810 DOI: 10.1088/1361-6528/aa8c9c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Collapse
Affiliation(s)
- Ning Wan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, People's Republic of China. Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Manzanares D, Araya-Durán I, Gallego-Yerga L, Játiva P, Márquez-Miranda V, Canan J, Jiménez Blanco JL, Mellet CO, González-Nilo FD, García Fernández JM, Ceña V. Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection. Nanomedicine (Lond) 2017. [PMID: 28621615 DOI: 10.2217/nnm-2017-0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIM To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. MATERIALS & METHODS siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. RESULTS The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. CONCLUSION The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector.
Collapse
Affiliation(s)
- Darío Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Ingrid Araya-Durán
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - Laura Gallego-Yerga
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valeria Márquez-Miranda
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - Jonathan Canan
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - José Luis Jiménez Blanco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Fernando Danilo González-Nilo
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile.,Fundación Fraunhofer Chile Research, Las Condes, 7550296, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Vda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Sestito SE, Facchini FA, Morbioli I, Billod JM, Martin-Santamaria S, Casnati A, Sansone F, Peri F. Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling. J Med Chem 2017; 60:4882-4892. [PMID: 28471658 DOI: 10.1021/acs.jmedchem.7b00095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported on the activity of cationic amphiphiles in inhibiting TLR4 activation and subsequent production of inflammatory cytokines in cells and in animal models. Starting from the assumption that opportunely designed cationic amphiphiles can behave as CD14/MD-2 ligands and therefore modulate the TLR4 signaling, we present here a panel of amphiphilic guanidinocalixarenes whose structure was computationally optimized to dock into MD-2 and CD14 binding sites. Some of these calixarenes were active in inhibiting, in a dose-dependent way, the LPS-stimulated TLR4 activation and TLR4-dependent cytokine production in human and mouse cells. Moreover, guanidinocalixarenes also inhibited TLR4 signaling when TLR4 was activated by a non-LPS stimulus, the plant lectin PHA. While the activity of guanidinocalixarenes in inhibiting LPS toxic action has previously been related to their capacity to bind LPS, we suggest a direct antagonist effect of calixarenes on TLR4/MD-2 dimerization, pointing at the calixarene moiety as a potential scaffold for the development of new TLR4-directed therapeutics.
Collapse
Affiliation(s)
- Stefania E Sestito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza, 2, 20126 Milano, Italy
| | - Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza, 2, 20126 Milano, Italy
| | - Ilaria Morbioli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma , Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology, Centro de Investigaciones Biologicas, CIB-CSIC , C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Sonsoles Martin-Santamaria
- Department of Chemical and Physical Biology, Centro de Investigaciones Biologicas, CIB-CSIC , C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma , Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma , Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza, 2, 20126 Milano, Italy
| |
Collapse
|
31
|
Gallego-Yerga L, Posadas I, de la Torre C, Ruiz-Almansa J, Sansone F, Ortiz Mellet C, Casnati A, García Fernández JM, Ceña V. Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Front Pharmacol 2017; 8:249. [PMID: 28533751 PMCID: PMC5420566 DOI: 10.3389/fphar.2017.00249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/19/2017] [Indexed: 01/26/2023] Open
Abstract
Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Departamento de Química Orgánica, Facultad de Química, Universidad de SevillaSevilla, Spain
| | - Inmaculada Posadas
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Cristina de la Torre
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Jesús Ruiz-Almansa
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Francesco Sansone
- Dipartimento di Chimica, Università degli Studi di ParmaParma, Italy
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de SevillaSevilla, Spain
| | | | | | - Valentín Ceña
- CIBERNED, Instituto de Salud Carlos IIIMadrid, Spain.,Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
32
|
Kwok A, Eggimann GA, Heitz M, Reymond JL, Hollfelder F, Darbre T. Efficient Transfection of siRNA by Peptide Dendrimer-Lipid Conjugates. Chembiochem 2016; 17:2223-2229. [DOI: 10.1002/cbic.201600485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Albert Kwok
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Gabriela A. Eggimann
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Marc Heitz
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Florian Hollfelder
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Tamis Darbre
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
33
|
Synthesis and investigation of catalytic affinities of water-soluble amphiphilic calix[n]arene surfactants in the coupling reaction of some heteroaromatic compounds. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Junquera E, Aicart E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 2016; 233:161-175. [PMID: 26265376 DOI: 10.1016/j.cis.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
Due to the potential use as transfecting agents of nucleic acids (DNA or RNA), multivalent cationic non-viral vectors have received special attention in the last decade. Much effort has been addressed to synthesize more efficient and biocompatible gene vectors able to transport nucleic acids into the cells without provoking an immune response. Among them, the mostly explored to compact and transfect nucleic acids are: (a) gemini and multivalent cationic lipids, mixed with a helper lipid, by forming lipoplexes; and (b) cationic polymers, polycations, and polyrotaxanes, by forming polyplexes. This review is focused on the progress and recent advances experimented in this area, mainly during the present decade, devoting special attention to the lipoplexes and polyplexes, as follows: (a) to its biophysical characterization (mainly electrostatics, structure, size and morphology) using a wide variety of experimental methods; and (b) to its biological activity (transfection efficacy and cytotoxicity) addressed to confirm the optimum formulations and viability of these complexes as very promising gene vectors of nucleic acids in nanomedicine.
Collapse
Affiliation(s)
- Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
35
|
Sayed M, Shinde K, Shah R, Pal H. pH-Responsive Indicator Displacement Assay of Acetylcholine Based on Acridine-p-Sulfonatocalix[4]arene Supramolecular System: Fluorescence Off/On Switching and Reversible pKaShift. ChemistrySelect 2016. [DOI: 10.1002/slct.201600226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Ketaki Shinde
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Ramesh Shah
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | - Haridas Pal
- Radiation & Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| |
Collapse
|
36
|
Galukhin A, Imatdinov I, Osin Y. p-tert-Butylthiacalix[4]arenes equipped with guanidinium fragments: aggregation, cytotoxicity, and DNA binding abilities. RSC Adv 2016. [DOI: 10.1039/c6ra04733e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thiacalix[4]arenes in 1,3-alternate conformation functionalized with guanidinium groups showed a strong dependence of the aggregation properties with the ratio of guanidinium/n-decyl fragments attached to phenolic groups.
Collapse
Affiliation(s)
- Andrey Galukhin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| | - Ilnaz Imatdinov
- State Science Institution National Research Institute of Veterinary Virology and Microbiology of Russian Academy of Agricultural Sciences
- Russian Federation
| | - Yuri Osin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| |
Collapse
|
37
|
Heydari A, Sheibani H. Facile polymerization of β-cyclodextrin functionalized graphene or graphene oxide nanosheets using citric acid crosslinker by in situ melt polycondensation for enhanced electrochemical performance. RSC Adv 2016. [DOI: 10.1039/c5ra24685g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we report a facile, environmental friendly route to synthesize water-insoluble β-cyclodextrin (β-CD)/graphene oxide (GO) or reduced graphene oxide (rGO) nanocomposite hydrogels.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman 76169
- Iran
- Young Researchers Society
| | - Hassan Sheibani
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman 76169
- Iran
| |
Collapse
|
38
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
39
|
Jiménez Blanco JL, Ortega-Caballero F, Blanco-Fernández L, Carmona T, Marcelo G, Martínez-Negro M, Aicart E, Junquera E, Mendicuti F, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Trehalose-based Janus cyclooligosaccharides: the “Click” synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chem Commun (Camb) 2016; 52:10117-20. [DOI: 10.1039/c6cc04791b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Trehalose-based Janus cyclooligosaccharides undergo DNA-promoted self-assembling.
Collapse
Affiliation(s)
| | | | - L. Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology
- University of Navarra
- E-31008 Pamplona
- Spain
| | - T. Carmona
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- Universidad de Alcalá
- E-28871 Alcalá de Henares
- Spain
| | - G. Marcelo
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- Universidad de Alcalá
- E-28871 Alcalá de Henares
- Spain
| | - M. Martínez-Negro
- Department of Physical Chemistry I
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - E. Aicart
- Department of Physical Chemistry I
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - E. Junquera
- Department of Physical Chemistry I
- Universidad Complutense
- E-28040 Madrid
- Spain
| | - F. Mendicuti
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
- Universidad de Alcalá
- E-28871 Alcalá de Henares
- Spain
| | - C. Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology
- University of Navarra
- E-31008 Pamplona
- Spain
| | - C. Ortiz Mellet
- Department of Organic Chemistry
- University of Sevilla
- E-41012 Sevilla
- Spain
| | - J. M. García Fernández
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| |
Collapse
|
40
|
Giuliani M, Morbioli I, Sansone F, Casnati A. Moulding calixarenes for biomacromolecule targeting. Chem Commun (Camb) 2015; 51:14140-59. [PMID: 26286064 DOI: 10.1039/c5cc05204a] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After their successful use as a preorganized platform for the preparation of receptors for metal ions and small neutral molecules over the last 15 years, calixarenes are enjoying a renaissance of popularity as scaffolds for ligands that are able to efficiently and selectively target macromolecules such as proteins/enzymes, nucleic acids and lipids. This feature article summarizes the peculiar factors characterizing the calixarene structure and properties, as well as outlines the main rules that can be used to turn such macrocycles into efficient and successful ligands for these classes of biomacromolecules. Factors that affect the multivalent properties of calixarenes, such as the size, conformation and stereochemical presentation of binding groups or their amphiphilicity and hybrid character, are described in detail with the use of a few selected examples from the literature. Perspectives and applications of these ligands in bionanotechnology and nanomedicine, such as protein sensing and inhibition, gene-delivery, targeted drug-delivery and cell imaging, are also discussed.
Collapse
Affiliation(s)
- Marta Giuliani
- Dip. to di Chimica, Università di Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
41
|
Gallego-Yerga L, Blanco-Fernández L, Urbiola K, Carmona T, Marcelo G, Benito JM, Mendicuti F, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry 2015; 21:12093-104. [PMID: 26184887 DOI: 10.1002/chem.201501678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a β-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain)
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain).
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain).
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain).
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain).
| |
Collapse
|
42
|
Méndez-Ardoy A, Díaz-Moscoso A, Ortiz Mellet C, Di Giorgio C, Vierling P, Benito JM, García Fernández JM. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra16087a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Pierre Vierling
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Univ. Sevilla
- E-41092 Sevilla
- Spain
| | | |
Collapse
|