1
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Mondal P, Chatterjee K. Multibiofunctional Self-healing Adhesive Injectable Nanocomposite Polysaccharide Hydrogel. Biomacromolecules 2024; 25:4762-4779. [PMID: 38989826 DOI: 10.1021/acs.biomac.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Injectable hydrogels with good antimicrobial and antioxidant properties, self-healing characteristics, suitable mechanical properties, and therapeutic effects have great practical significance for developing treatments for pressing healthcare challenges. Herein, we have designed a novel, self-healing injectable hydrogel composite incorporating cross-linked biofunctional nanomaterials by mixing alginate aldehyde (Ox-Alg), quaternized chitosan (QCS), adipic acid dihydrazide (ADH), and copper oxide nanosheets surface functionalized with folic acid as the bioligand (F-CuO). Gelation was achieved under physiological conditions via the dynamic Schiff base cross-linking mechanism. The developed nanocomposite injectable hydrogel demonstrated the fast self-healing ability essential to bear deformation and outstanding antibacterial properties along with ROS scavenging ability. Furthermore, the optimized formulation of our F-CuO-embedded injectable hydrogel exhibited excellent cytocompatibility, blood compatibility, and in vitro wound healing performance. Taken together, the F-CuO nanosheet cross-linked injectable hydrogel composite presented herein offers a promising candidate biomaterial with multifunctional properties to develop solutions for addressing clinical challenges.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
3
|
Kim M, Schöbel L, Geske M, Boccaccini AR, Ghorbani F. Bovine serum albumin-modified 3D printed alginate dialdehyde-gelatin scaffolds incorporating polydopamine/SiO 2-CaO nanoparticles for bone regeneration. Int J Biol Macromol 2024; 264:130666. [PMID: 38453119 DOI: 10.1016/j.ijbiomac.2024.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Three-dimensional (3D) printing allows precise manufacturing of bone scaffolds for patient-specific applications and is one of the most recently developed and implemented technologies. In this study, bilayer and multimaterial alginate dialdehyde-gelatin (ADA-GEL) scaffolds incorporating polydopamine (PDA)/SiO2-CaO nanoparticle complexes were 3D printed using a pneumatic extrusion-based 3D printing technology and further modified on the surface with bovine serum albumin (BSA) for application in bone regeneration. The morphology, chemistry, and in vitro bioactivity of PDA/SiO2-CaO nanoparticle complexes were characterized (n = 3) and compared with those of mesoporous SiO2-CaO nanoparticles. Successful deposition of the PDA layer on the surface of the SiO2-CaO nanoparticles allowed better dispersion in a liquid medium and showed enhanced bioactivity. Rheological studies (n = 3) of ADA-GEL inks consisting of PDA/SiO2-CaO nanoparticle complexes showed results that may indicate better injectability and printability behavior compared to ADA-GEL inks incorporating unmodified nanoparticles. Microscopic observations of 3D printed scaffolds revealed that PDA/SiO2-CaO nanoparticle complexes introduced additional topography onto the surface of 3D printed scaffolds. Additionally, the modified scaffolds were mechanically stable and elastic, closely mimicking the properties of natural bone. Furthermore, protein-coated bilayer scaffolds displayed controllable absorption and biodegradation, enhanced bioactivity, MC3T3-E1 cell adhesion, proliferation, and higher alkaline phosphatase (ALP) activity (n = 3) compared to unmodified scaffolds. Consequently, the present results confirm that ADA-GEL scaffolds incorporating PDA/SiO2-CaO nanoparticle complexes modified with BSA offer a promising approach for bone regeneration applications.
Collapse
Affiliation(s)
- MinJoo Kim
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Schöbel
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Michael Geske
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Department of Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| |
Collapse
|
4
|
Zhu B, Zong T, Zheng R, Chen X, Zhou Y, Liu Y, Yan J, Zhao B, Yin J. Acid and Glutathione Dual-Responsive, Injectable and Self-Healing Hydrogels for Controlled Drug Delivery. Biomacromolecules 2024; 25:1838-1849. [PMID: 38378470 DOI: 10.1021/acs.biomac.3c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Considering the complexity of physiological microenvironments and the risks of surgical infection, there still remains critical demand to develop a hydrogel as a drug release platform with multifunctional properties, including good neutral stability and sensitive multiple stimuli-responsive behaviors, as well as injectable and self-healing properties. Herein, we present a facile preparation of injectable, self-healing hydrogels with acid and glutathione (GSH) dual-responsiveness for controlled drug delivery. Initially, the anticancer drug camptothecin (CPT) was premodified with disulfide bonds and attached to poly(ethylenimine) (PEI) via the Schiff base reaction, resulting in PEI-CPT. Subsequently, OSA-IR780 was synthesized through the Schiff base reaction involving IR780 with amine groups (IR780-NH2) and oxidized sodium alginate with aldehyde groups (OSA). The formation of PEI-CPT/OSA-IR780 hydrogels with various solid contents occurred rapidly within 40 s through a simple mixing process of the aqueous solution of PEI-CPT and OSA-IR780. These hydrogels exhibited remarkable stability under neutral conditions and controlled release of CPT upon exposure to simulated tumor environments characterized by acidic conditions and elevated GSH concentrations. Furthermore, they had significant injectable and self-healing properties due to the dynamically imine-cross-linked networks. In addition, the prepared hydrogels exhibited long-term biodegradability and biocompatibility. Collectively, these features indicate the great potential of PEI-CPT/OSA-IR780 hydrogels as therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Benshun Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Tong Zong
- AECC Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China
| | - Ruifu Zheng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xing Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yakun Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Yuandong Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | | | | | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
5
|
Jitpasutham S, Sinsomsak W, Chuesiang P, Ryu V, Siripatrawan U. Green active coating from chitosan incorporated with spontaneous cinnamon oil nanoemulsion: Effects on dried shrimp quality and shelf life. Int J Biol Macromol 2024; 262:129711. [PMID: 38278379 DOI: 10.1016/j.ijbiomac.2024.129711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Green active film from chitosan (C) incorporated with spontaneous emulsified cinnamon oil nanoemulsion (CONE; droplet size of 79.27 nm and polydispersity index of 0.27) was developed. The obtained chitosan film containing CONE (C + CONE) had tensile elongation and light protective effect higher than C film due to the incorporation of bioactive compounds from cinnamon oil as proven by Fourier Transform Infrared Spectroscopy. The effect of C + CONE as active edible coating on the physical, chemical, and microbiological properties of dried shrimp was then investigated. The quality of samples coated with C + CONE (DS + C + CONE) was compared to those coated with C (DS + C) and without coating (DS). In this study, C + CONE could enhance astaxanthin content and reduce lipid oxidation in dried shrimp. During 6 weeks of storage, C + CONE was found to be an effective antimicrobial coating that significantly inhibited growth of bacteria, delayed lipid oxidation and retarded the production of volatile amines in dried shrimp. DS + C + CONE had lower malonaldehyde equivalents (0.52 mg/kg oil), trimethylamine (11.74 mg/100 g), total volatile base nitrogen (84.33 mg/100 g) and total viable count (4.80 Log CFU/g), but had higher astaxanthin content (12.53 ± 0.12 μg/g) than DS and DS + C. The results suggested that the developed C + CONE coating has potential to be used as active coating for preserving food quality.
Collapse
Affiliation(s)
- Supisara Jitpasutham
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharin Sinsomsak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Ryu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Ardika KAR, Marzaman ANF, Kaharuddin KM, Parenden MDK, Karimah A, Musfirah CA, Pakki E, Permana AD. Development of chitosan-hyaluronic acid based hydrogel for local delivery of doxycycline hyclate in an ex vivo skin infection model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2274-2290. [PMID: 37410591 DOI: 10.1080/09205063.2023.2234181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Doxycycline hyclate (DOXY) is a tetracycline derivative known as the broad-spectrum bacteriostatic drug. DOXY has been suggested as the first-line antibiotic for diabetic foot ulcers (DFU). Unfortunately, the long-term availability of DOXY in both oral and conventional topical dosage forms reduces its therapeutic effectiveness, which is closely linked to gastrointestinal side effects and acute pain during therapy, as well as uncontrolled DOXY release at the wound site. To address these shortcomings, we present for the first time a DOXY hydrogel system (DHs) built on crosslinks between carboxymethyl chitosan (CMC) and aldehyde hyaluronic acid (AHA). Three formulations of DHs were developed with different ratios of CMC and AHA, consisting of F1 (3:7, w/w), F2 (5:5, w/w), and F3 (7:3, w/w). Viscosity, rheology, gel strength, pH, swelling, gel fraction, wettability, stability, in vitro drug release, ex vivo antibacterial, and dermatokinetic studies were used to evaluate the DHs. According to the in vitro release study, up to 85% of DOXY was released from DHs via the Fickian diffusion mechanism in the Korsmeyer-Peppas model (n < 0.45), which provides controlled drug delivery. Because of its excellent physicochemical characteristics, F2 was chosen as the best DHs formulation in this study. Essentially, the optimum DHs formulation could greatly improve DOXY's ex vivo dermatokinetic profile while also providing excellent antibacterial activity. As a consequence, this study had promising outcome as a proof of concept for increasing the efficacy of DOXY in clinical therapy. Further extensive in vivo studies are required to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Aulia Karimah
- Faculty of Mathemathics and Natural Science, Hasanuddin University, Makassar, Indonesia
| | | | - Ermina Pakki
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
7
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
8
|
Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv Healthc Mater 2023; 12:e2300105. [PMID: 37052256 PMCID: PMC11468892 DOI: 10.1002/adhm.202300105] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) can leverage therapeutically beneficial outcomes in cancer therapy. In this domain, polyethylene glycol (PEG) has become increasingly popular as a biomedical polymer and has found clinical use. Owing to their excellent biocompatibility, facile modifiability, and high drug encapsulation rate, PEG hydrogels have shown great promise as drug delivery platforms. Here, the progress in emerging novel designs of PEG-hydrogels as DDSs for anti-cancer therapy is reviewed and discussed, focusing on underpinning multiscale release mechanisms categorized under stimuli-responsive and non-responsive drug release. The responsive drug delivery approaches are discussed, and the underpinning release mechanisms are elucidated, covering the systems functioning based on either exogenous stimuli-response, such as photo- and magnetic-sensitive PEG hydrogels, or endogenous stimuli-response, such as enzyme-, pH-, reduction-, and temperature-sensitive PEG hydrogels. Special attention is paid to the commercial potential of PEG-based hydrogels in cancer therapy, highlighting the limitations that need to be addressed in future research for their clinical translation.
Collapse
Affiliation(s)
- Zihan Wang
- College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinzhou Ye
- Sichuan Agricultural UniversitySichuan611130P. R. China
| | - Sheng Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal UniversityNanchong637000P. R. China
| | - Behnam Akhavan
- School of EngineeringUniversity of NewcastleCallaghanNSW2308Australia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNSW2305Australia
- School of PhysicsThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNSW2006Australia
- Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
9
|
Sarmah D, Rather MA, Sarkar A, Mandal M, Sankaranarayanan K, Karak N. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug. Int J Biol Macromol 2023; 237:124206. [PMID: 36990413 DOI: 10.1016/j.ijbiomac.2023.124206] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A facile one-pot approach was adopted to prepare a polysaccharide-based hydrogel of oxidized starch (OS)-chitosan. The synthetic monomer-free, eco-friendly hydrogel was prepared in an aqueous solution and employed for controlled drug release application. The starch was first oxidized under mild conditions to prepare its bialdehydic derivative. Subsequently, the amino group-containing a modified polysaccharide, "chitosan" was introduced on the backbone of OS via a dynamic Schiff-base reaction. The bio-based hydrogel was obtained via a one-pot in-situ reaction, where functionalized starch acts as a macro-cross-linker that contributes structural stability and integrity to the hydrogel. The introduction of chitosan contributes stimuli-responsive properties and thus pH-sensitive swelling behavior was obtained. The hydrogel showed its potential as a pH-dependent controlled drug release system and a maximum of 29 h sustained release period was observed for ampicillin sodium salt drug. In vitro studies confirmed that the prepared drug-loaded hydrogels showed excellent antibacterial ability. Most importantly, the hydrogel could find potential use in the biomedical field due to its facile reaction conditions, biocompatibility along with the controlled releasing ability of the encapsulated drug.
Collapse
Affiliation(s)
- Dimpee Sarmah
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kamatchi Sankaranarayanan
- Biophysics-Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Niranjan Karak
- Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
10
|
Design of Injectable Bioartificial Hydrogels by Green Chemistry for Mini-Invasive Applications in the Biomedical or Aesthetic Medicine Fields. Gels 2023; 9:gels9010059. [PMID: 36661825 PMCID: PMC9858130 DOI: 10.3390/gels9010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bioartificial hydrogels are hydrophilic systems extensively studied for regenerative medicine due to the synergic combination of features of synthetic and natural polymers. Injectability is another crucial property for hydrogel mini-invasive administration. This work aimed at engineering injectable bioartificial in situ cross-linkable hydrogels by implementing green and eco-friendly approaches. Specifically, the versatile poly(ether urethane) (PEU) chemistry was exploited for the development of an amphiphilic PEU, while hyaluronic acid was selected as natural component. Both polymers were functionalized to expose thiol and catechol groups through green water-based carbodiimide-mediated grafting reactions. Functionalization was optimized to maximize grafting yield while preserving group functionality. Then, polymer miscibility was studied at the macro-, micro-, and nano-scale, suggesting the formation of hydrogen bonds among polymeric chains. All hydrogels could be injected through G21 and G18 needles in a wide temperature range (4-25 °C) and underwent sol-to-gel transition at 37 °C. The addition of an oxidizing agent to polymer solutions did not improve the gelation kinetics, while it negatively affected hydrogel stability in an aqueous environment, suggesting the occurrence of oxidation-triggered polymer degradation. In the future, the bioartificial hydrogels developed herein could find application in the biomedical and aesthetic medicine fields as injectable formulations for therapeutic agent delivery.
Collapse
|
11
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
12
|
Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydr Polym 2022; 291:119585. [DOI: 10.1016/j.carbpol.2022.119585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 01/29/2023]
|
13
|
Xu K, Shan W, Hu N, Wang J, Zhou W, Müller-Buschbaum P, Zhong Q. High efficiency of in-situ cross-linking and acid triggered drug delivery by introducing tobramycin into injectable and biodegradable hydrogels. Colloids Surf B Biointerfaces 2022; 218:112756. [PMID: 35988312 DOI: 10.1016/j.colsurfb.2022.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/18/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
High efficiency of in-situ cross-linking and acid triggered drug delivery is realized by introducing tobramycin into the hydrogels. Injectable and biodegradable hydrogels are prepared through two steps: First generation of reactive aldehyde groups in the sodium alginate (A-Alg) and then introduction of antibiotic tobramycin as cross-linker. Due to the formation of dynamic Schiff base bonds between the amino groups in tobramycin and aldehyde groups in A-Alg, the gelation of hydrogels can be realized immediately. Thus, tobramycin acts well as the first role cross-linker and the hydrogels containing tobramycin can be injected into the wound during the treatment. In addition, the acid from the decomposition of organic compounds by the bacteria can break the cross-linking points previously formed by tobramycin in the hydrogels. Therefore, tobramycin can be released and act as the second role model drug to kill the bacteria. Because the hydrogels network is broken, the release of tobramycin is more efficient than the traditional drug delivery from hydrogels by diffusion. Based on these unique properties, the present hydrogels containing tobramycin exhibit a good injectable and biodegradable capability. In addition, due to the existence of the reversible acid-labile linkages in the hydrogels, the hydrogels containing tobramycin are also self-healing, which additionally is favorable for the application of wound dressing. More importantly, the antibacterial hydrogels also demonstrate good biocompatibility in vitro and significantly therapeutic effects on an infected mice model in vivo. Based on the above special properties, the hydrogels cross-linked by tobramycin indicate a new approach to prepare hydrogel dressings with low-cost, non-toxicity and good anti-bacterial performance in the treatment of infectious wounds.
Collapse
Affiliation(s)
- Ke Xu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China; College of Life Science and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Wangjie Shan
- College of Life Science and Medicine, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Jiping Wang
- Shanghai University of Engineering Science, 333 Long Teng Road, 201620 Shanghai, China
| | - Wenlong Zhou
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany; Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China; Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
14
|
Zhao B, Zhang Y, Li D, Mo X, Pan J. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing. Acta Biomater 2022; 151:235-253. [PMID: 35961521 DOI: 10.1016/j.actbio.2022.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/01/2022]
Abstract
Compared with other types of hydrogels, natural derived hydrogels possess intrinsic advantages of degradability and biocompatibility. However, due to the low mechanical strength, their potential applications in biomedical areas are limited. In this study, Hofmeister effect-enhanced gelatin/oxidized dextran (Gel/O-Dex) hydrogels were designed with improved mechanical properties and biocompatibility to accelerate wound healing. Gel and O-Dex were chemically crosslinked through Schiff base reaction of aldehyde and amino groups. After soaking in kosmotrope solutions physical crosslinking domains were induced by Hofmeister effect including α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. The type of anions played different influence on the properties of hydrogels, which was consistent with the order of Hofmeister series. Particularly, H2PO4- treated hydrogels showed enhanced mechanical strength and fatigue resistance superior to that of Gel/O-Dex hydrogels. The underlying mechanism was that the physical crosslinking domains sustained additional mechanical stress and dissipated energy through cyclic association and dissociation process. Furthermore, Hofmeister effect only induced polymer chain entanglements without triggering any chemical reaction. Due to Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. In the full-thickness skin defects of SD rats, Hofmeister effect-enhanced Gel/O-Dex hydrogels by H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method of improving mechanical properties and biocompatibility of natural hydrogels to promote medical translation in the field of wound healing from bench to clinic. STATEMENT OF SIGNIFICANCE: Hofmeister effect enhanced hydrogel mechanical properties in accordance with the order of Hofmeister series through physical crosslinking that induced α-helix structures, hydrophobic interaction regions and helical junction zones among Gel molecular chains. Due to the Hofmeister effect of H2PO4- ions, aldehyde groups were embedded in the center of entangled polymer chains that resulted in better biocompatibility. Hofmeister effect-enhanced Gel/O-Dex hydrogels through H2PO4- ions accelerated wound healing and exhibited better histological morphology than ordinary hydrogels. Therefore, Hofmeister effect by essential inorganic anions is a promising method to improve mechanical properties and biocompatibility of natural hydrogels for their medical applications..
Collapse
Affiliation(s)
- Binan Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Yuanzhen Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Dandan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
15
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
16
|
Mo C, Luo R, Chen Y. Advances in the stimuli-responsive injectable hydrogel for controlled release of drugs. Macromol Rapid Commun 2022; 43:e2200007. [PMID: 35344233 DOI: 10.1002/marc.202200007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
The stimuli-responsiveness of injectable hydrogel has been drastically developed for the controlled release of drugs and achieved encouraging curative effects in a variety of diseases including wounds, cardiovascular diseases and tumors. The gelation, swelling and degradation of such hydrogels respond to endogenous biochemical factors (such as pH, reactive oxygen species, glutathione, enzymes, glucose) and/or to exogenous physical stimulations (like light, magnetism, electricity and ultrasound), thereby accurately releasing loaded drugs in response to specifically pathological status and as desired for treatment plan and thus improving therapeutic efficacy effectively. In this paper, we give a detailed introduction of recent progresses in responsive injectable hydrogels and focus on the design strategy of various stimuli-sensitivities and their resultant alteration of gel dissociation and drug liberation behaviour. Their application in disease treatment is also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunxiang Mo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| |
Collapse
|
17
|
D'Angelo NA, Noronha MA, Câmara MCC, Kurnik IS, Feng C, Araujo VHS, Santos JHPM, Feitosa V, Molino JVD, Rangel-Yagui CO, Chorilli M, Ho EA, Lopes AM. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. BIOMATERIALS ADVANCES 2022; 133:112623. [PMID: 35525766 DOI: 10.1016/j.msec.2021.112623] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Doxorubicin (DOX) is a natural antibiotic with antineoplastic activity. It has been used for over 40 years and remains one of the most used drugs in chemotherapy for a variety of cancers. However, cardiotoxicity limits its use for long periods. To overcome this limitation, encapsulation in smart drug delivery systems (DDS) brings advantages in comparison with free drug administration (i.e., conventional anticancer drug therapy). In this review, we present the most relevant nanostructures used for DOX encapsulation over the last 10 years, such as liposomes, micelles and polymeric vesicles (i.e., polymersomes), micro/nanoemulsions, different types of polymeric nanoparticles and hydrogel nanoparticles, as well as novel approaches for DOX encapsulation. The studies highlighted here show these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged DOX release, as well as reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Chuying Feng
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil; Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Valker Feitosa
- Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | | | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
18
|
Pandit AH, Nisar S, Imtiyaz K, Nadeem M, Mazumdar N, Rizvi MMA, Ahmad S. Injectable, Self-Healing, and Biocompatible N, O-Carboxymethyl Chitosan/Multialdehyde Guar Gum Hydrogels for Sustained Anticancer Drug Delivery. Biomacromolecules 2021; 22:3731-3745. [PMID: 34436877 DOI: 10.1021/acs.biomac.1c00537] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Local delivery of anticancer agents via injectable hydrogels could be a promising method for achieving spatiotemporal control on drug release as well as minimizing the disadvantages related to the systemic mode of drug delivery. Keeping this in mind, we report the development of N,O-carboxymethyl chitosan (N,O-CMCS)-guar gum-based injectable hydrogels for the sustained delivery of anticancer drugs. The hydrogels were synthesized by chemical crosslinking of multialdehyde guar gum (MAGG) and N,O-CMCS through dynamic Schiff base linkages, without requiring any external crosslinker. Fabrication of injectable hydrogels, involving N,O-CMCS and MAGG via Schiff base crosslinking, is being reported for the first time. The hydrogels exhibited pH-responsive swelling behavior and good mechanical properties with a storage modulus of about 1625 Pa. Due to the reversible nature of Schiff base linkages, hydrogels displayed excellent self-healing and thixotropic properties. Doxorubicin (Dox), an anticancer agent, was loaded onto these hydrogels and its release studies were conducted at pH 7.4 (physiological) and pH 5.5 (tumoral). A sustained release of about 67.06% Dox was observed from the hydrogel after 5 days at pH 5.5 and about 32.13% at pH 7.4. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay on the human embryonic kidney cell line (HEK-293) and the hemolytic assay demonstrated the biocompatible nature of the hydrogels. The Dox-loaded hydrogel exhibited a significant killing effect against breast cancer cells (MCF-7) with a cytotoxicity of about 72.13%. All the data presented support the efficiency of the synthesized N,O-CMCS/MAGG hydrogel as a biomaterial that may find promising applications in anticancer drug delivery.
Collapse
Affiliation(s)
- Ashiq Hussain Pandit
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Safiya Nisar
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201303, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasreen Mazumdar
- Material (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India
| |
Collapse
|
19
|
Lu CH, Yu CH, Yeh YC. Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater 2021; 130:66-79. [PMID: 34098090 DOI: 10.1016/j.actbio.2021.05.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanocomposite (NC) hydrogels are promising biomaterials that possess versatile properties and functions for biomedical applications such as drug delivery, biosensor development, imaging and tissue engineering. Different strategies and chemistries have been utilized to define the structure and properties of NC hydrogels. In this review, we discuss NC hydrogels synthesized using dynamic bonds, including dynamic covalent bonds (e.g., Schiff base and boronate ester bond) and non-covalent bonds (e.g., hydrogen bonds and metal-ligand coordination). Dynamic bonds can reversibly break and reform to provide self-healing properties to NC hydrogels as well as be influenced by external factors to allow NC hydrogels with stimulus-responsiveness. The presence of dynamic bonds in NC hydrogels can occur at the polymer-polymer or polymer-particle interfaces, which also determines whether the particles act as fillers or crosslinkers in hydrogels. Several representative examples of NC hydrogels fabricated using dynamic bonds are discussed here, focusing on their design, preparation, properties, applications and future prospects. STATEMENT OF SIGNIFICANCE: This review provides an overview of the current progress in NC hydrogel development using dynamic bonds, summarizing the material design, fabrication approaches, unique performance and promising biomedical applications. The presence of both nanoparticles and dynamic bonds in hydrogels shows a combined or synergistic effect to provide hydrogels with dynamic features, definable properties, multi-functionality and stimulus-responsiveness for advanced applications. We believe that this review will be of interest to the hydrogel community and inspire researchers to develop next-generation hydrogels.
Collapse
|
20
|
Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021; 42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Injectable hydrogel possesses great application potential in disease treatment and tissue engineering, but damage to gel often occurs due to the squeezing pressure from injection devices and the mechanical forces from limb movement, and leads to the rapid degradation of gel matrix and the leakage of the load material. The self-healing injectable hydrogels can overcome these drawbacks via automatically repairing gel structural defects and restoring gel function. The polysaccharide hydrogels constructed through the Schiff base reaction own advantages including simple fabrication, injectability, and self-healing under physiological conditions, and therefore have drawn extensive attention and investigation recently. In this short review, the preparation and self-healing properties of the polysaccharide hydrogels that is established on the Schiff base reaction are focused on and their biological applications in drug delivery and cell therapy are discussed.
Collapse
Affiliation(s)
- Chunxiang Mo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xiang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
21
|
Wang C, Wu L, Li W, Fei J, Xu J, Chen S, Yan S, Wang X. An injectable double-crosslinking iodinated composite hydrogel as a potential radioprotective spacer with durable imaging function. J Mater Chem B 2021; 9:3346-3356. [PMID: 33881426 DOI: 10.1039/d0tb02953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the leading causes of cancer incidence among males worldwide. Radiotherapy can achieve similar oncological outcomes to those of radical prostatectomy. One concern is, however, radiation damage to the rectum because of the extreme proximity between the two organs. Inserting a biomaterial to separate the prostate and rectum is a promising strategy, and an injectable hydrogel is regarded to be the preferred spacer after screening of various materials. Nevertheless, there exist shortcomings for the currently available injectable hydrogel that cannot fully meet the unique requirements in clinical practice. In this work, a novel injectable hydrogel spacer based on carboxymethyl chitosan (CMC), aldehyde guar gum (AG), and aldehyde iohexol (DHQ) with an imaging function is fabricated. Contrast agent DHQ is chemically attached to CMC-AG network to form a double-crosslinking network to obtain a controlled degradation rate and high strength as well as durable CT imaging function. The hydrogel is injected subcutaneously into rats, where rapid gelation occurs and it serves as a hydrogel spacer. During the month-long in vivo studies, the spacer exhibits remarkable radiation dose attenuation and sustainable imaging function, as well as excellent toxicity profiles. This novel hydrogel shows excellent potential in the protection of critical organs during prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lakkakula JR, Gujarathi P, Pansare P, Tripathi S. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydr Polym 2021; 259:117696. [PMID: 33673985 DOI: 10.1016/j.carbpol.2021.117696] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), an anthracycline drug, is widely used for the treatment of several cancers like osteosarcoma, cervical carcinoma, breast cancer, etc. DOX lacks target specificity; thereby it also affects normal cells thus resulting in several side-effects. A drug delivery system (DDS) can be used to deliver the drug in a controlled and sustained manner at a targeted site within the body. Various DDS like nanoemulsions, polymeric nanoparticles, and liposomes are used for loading DOX. Alginate, a polysaccharide is widely used for fabricating DDS due to its biodegradable and bio-compatible properties. Alginates, in combination with other biomaterials, have been extensively used as a novel drug delivery carrier for DOX. Alginate provides a platform for drug delivery in different forms like hydrogels, nanogels, nanoparticles, microparticles, graphene oxide systems, magnetic systems, etc. Herein, we briefly describe alginate in combination with other materials as a nanocarrier for targeted delivery of DOX for anti-cancer treatment.
Collapse
Affiliation(s)
- Jaya R Lakkakula
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India.
| | - Pratik Gujarathi
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| | - Prachi Pansare
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| | - Swastika Tripathi
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| |
Collapse
|
23
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
24
|
Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf B Biointerfaces 2020; 196:111316. [DOI: 10.1016/j.colsurfb.2020.111316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
|
25
|
He H, Xie C, Lu X. Injectable hydrogels for anti‐tumour treatment: a review. BIOSURFACE AND BIOTRIBOLOGY 2020. [DOI: 10.1049/bsbt.2020.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Huan He
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University610031ChengduSichuanPeople's Republic of China
| |
Collapse
|
26
|
Li H, Cheng F, Wei X, Yi X, Tang S, Wang Z, Zhang YS, He J, Huang Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111324. [PMID: 33254961 DOI: 10.1016/j.msec.2020.111324] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Biodegradable and injectable hydrogels derived from natural polysaccharides have attracted extensive attention in biomedical applications due to their minimal invasiveness and ability to accommodate the irregular wound surfaces. In this work, we report the development of an in-situ-injectable, self-healing, antibacterial, hemostatic, and biocompatible hydrogel derived from the hybrid of N,O-carboxymethyl chitosan (N,O-CMC) and oxidized chondroitin sulfate (OCS), which did not require any chemical crosslinking. The N,O-CMC/OCS hydrogel could be readily produced under physiological conditions by varying the N,O-CMC-to-OCS ratio, relying on the Schiff base reaction between the -NH- functional groups of N,O-CMC and the -CHO functional groups of OCS. The results showed that the N,O-CMC2/OCS1 hydrogel had relatively long gelation time (133 s) and stable performances. The viability of NIH/3T3 cells and endothelial cells cultured with the N,O-CMC2/OCS1 hydrogel extract was roughly 85%, which demonstrated its low cell toxicity. Besides, the N,O-CMC2/OCS1 hydrogel revealed excellent antibacterial properties due to the inherent antibacterial ability of N,O-CMC. Importantly, the hydrogel tightly adhered to the biological tissue and demonstrated excellent in vivo hemostatic performance. Our work describing an injectable, self-healing, antibacterial, and hemostatic hydrogel derived from polysaccharides will likely hold good potential in serving as an enabling wound dressing material.
Collapse
Affiliation(s)
- Hongbin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xinjing Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaotong Yi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shize Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongyan Wang
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
27
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
28
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
29
|
Wu M, Chen J, Huang W, Yan B, Peng Q, Liu J, Chen L, Zeng H. Injectable and Self-Healing Nanocomposite Hydrogels with Ultrasensitive pH-Responsiveness and Tunable Mechanical Properties: Implications for Controlled Drug Delivery. Biomacromolecules 2020; 21:2409-2420. [DOI: 10.1021/acs.biomac.0c00347] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Weijuan Huang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
30
|
Fan Z, Cheng P, Yin G, Wang Z, Han J. In situ forming oxidized salecan/gelatin injectable hydrogels for vancomycin delivery and 3D cell culture. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:762-780. [PMID: 31944896 DOI: 10.1080/09205063.2020.1717739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotics are widely used in clinical medicine. As an important member, vancomycin often plays an irreplaceable role in some serious infections, but its use still lacks suitable carriers and effective formulations. In order to find a vancomycin carrier with potential for clinical application, a new class of oxidized salecan/gelatin based injectable hydrogels are constructed through dynamic covalent Schiff base reaction. The sodium periodate oxidized salecan (OS) precursor was synthesized, and then the gelatin/oxidized salecan (GS) hydrogels are formed by blending gelatin and OS buffer solutions without any additives under physiological condition. The chemical structure, as well as internal morphologies, mechanical properties, In vitro enzymatic degradation profile of hydrogels are investigated with proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), compression test and rheological experiments. The resulted hydrogels exhibit excellent antibacterial ability and variable characteristics. Moreover, the hydrogels display ideal drug release kinetics and mechanisms, and are applied successfully to the controlled release of vancomycin. Importantly, benefitting from the excellent biocompatibility and the reversibly crosslinked networks, GS hydrogels can function as suitable three dimensional (3D) extracellular matrix for HeLa cells, leading to the encapsulated cells maintaining a high viability and proliferative capacity. Therefore, the injectable GS hydrogels demonstrated attractive properties for future application in pharmaceutics and tissue engineering.
Collapse
Affiliation(s)
- Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng, China
| | - Gaowei Yin
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
31
|
Deng Z, Wang H, Ma PX, Guo B. Self-healing conductive hydrogels: preparation, properties and applications. NANOSCALE 2020; 12:1224-1246. [PMID: 31859313 DOI: 10.1039/c9nr09283h] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conductive hydrogels have generated great interest in biomedical and electrical fields. However, conventional conductive hydrogels usually lack self-healing properties, which might be unfavorable for their application. Conductive self-healing hydrogels with excellent performance for applications in the biomedical and electrical fields are growing in number. In this review paper, the progress related to conductive self-healing hydrogels is summarized. The self-healing mechanism is classified to demonstrate the design and synthesis of conductive self-healing hydrogels and their applications in tissue engineering, wound healing, electronic skin, sensors and self-repaired circuits are presented and discussed. The future development of conductive self-healing hydrogels and problems that need to be solved are also described.
Collapse
Affiliation(s)
- Zexing Deng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | | | | | | |
Collapse
|
32
|
Chen N, Wang H, Ling C, Vermerris W, Wang B, Tong Z. Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydr Polym 2019; 225:115207. [DOI: 10.1016/j.carbpol.2019.115207] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
|
33
|
|
34
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
35
|
Singh A, Thakur S, Sharma T, Kaur M, Sahajpal NS, Aurora R, Jain SK. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Curr Med Chem 2019; 27:3463-3498. [PMID: 31223077 DOI: 10.2174/1573406415666190621095726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
36
|
Yang C, Gao L, Liu X, Yang T, Yin G, Chen J, Guo H, Yu B, Cong H. Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release. J Biomed Mater Res A 2019; 107:1909-1916. [DOI: 10.1002/jbm.a.36677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Chao Yang
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
- Institute of Complexity Science, Automation CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Lilong Gao
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Xiyan Liu
- Marine Chemical Research Institute Qingdao Shandong, 266071 People's Republic of China
| | - Ting Yang
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Guangming Yin
- Material Science and Engineering CollegeBeijing University of Chemical Technology Beijing, 100029 People's Republic of China
| | - Jianyu Chen
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Haiyong Guo
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Bing Yu
- Chemistry and Chemical Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| | - Hailin Cong
- Material Science and Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
- Chemistry and Chemical Engineering CollegeQingdao University Qingdao Shandong, 266071 People's Republic of China
| |
Collapse
|
37
|
Nguyen DT, Kim BS, Lee DS, Thambi T, Huynh DP. Amino acid functionalized pH- and temperature-sensitive biodegradable injectable hydrogels: synthesis, physicochemical characterization and in vivo degradation kinetics. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1522503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dang Tri Nguyen
- National Key Laboratory of Polymer and Composites Materials, Ho Chi Minh University of Technology, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bong Sup Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dai Phu Huynh
- National Key Laboratory of Polymer and Composites Materials, Ho Chi Minh University of Technology, Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Material Technology, Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
38
|
Wang K, Zhang Y, Jiang S, Wu D, Dai Y, Zhang X, Xia F. Surface Charge Reversible Polymeric Micelle-Laden Hydrogels for Drug Delivery and 3D Cell Culture. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kang Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Yuchen Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Sirui Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Dengjin Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| |
Collapse
|
39
|
Fleming JM, Yeyeodu ST, McLaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018; 13:2825-2840. [PMID: 30183254 DOI: 10.1021/acschembio.8b00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.
Collapse
Affiliation(s)
- Jodie M. Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Susan T. Yeyeodu
- Charles River Discovery Services, Morrisville, North Carolina, United States
| | - Ashley McLaughlin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Darren Schuman
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| | - Darlene K. Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| |
Collapse
|
40
|
Vy VU, Van NTT, Linh NTT, Phan PTKP, Nha TTT, Lem PHA, Khoa NA, Hai ND, Khoa NC. The effective pH-responsive 3-aminopropyltriethoxysilane linked with porous nanosilica for doxorubicine delivery. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vo Uyen Vy
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
- Industry University of Ho Chi Minh City; Viet Nam
| | | | | | | | | | | | - Nguyen Anh Khoa
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
| | - Nguyen Dai Hai
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
| | - Nguyen Cuu Khoa
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology; Viet Nam
| |
Collapse
|
41
|
Karimi AR, Rostaminejad B, Rahimi L, Khodadadi A, Khanmohammadi H, Shahriari A. Chitosan hydrogels cross-linked with tris(2-(2-formylphenoxy)ethyl)amine: Swelling and drug delivery. Int J Biol Macromol 2018; 118:1863-1870. [DOI: 10.1016/j.ijbiomac.2018.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
|
42
|
Sharma PK, Taneja S, Singh Y. Hydrazone-Linkage-Based Self-Healing and Injectable Xanthan-Poly(ethylene glycol) Hydrogels for Controlled Drug Release and 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30936-30945. [PMID: 30148349 DOI: 10.1021/acsami.8b07310] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polymeric hydrogels have been extensively explored for controlled drug-delivery applications, but there is an increasing demand for smart drug delivery combined with tunable physicochemical attributes and tissue engineering potential. In this work, novel xanthan-poly(ethylene glycol) (PEG) hydrogels were developed by cross-linking polysaccharide, oxidized xanthan, and 8-arm PEG hydrazine through dynamic, pH-responsive, and biodegradable hydrazone linkages. Aqueous solutions (pH 6.5) of oxidized xanthan and PEG hydrazine were mixed together at 37 °C to obtain hydrogels within minutes, and the formation of hydrazone linkages was ascertained using Fourier transform infrared spectroscopy. Fabrication of xanthan-PEG hydrogels using hydrazone linkages has not been reported previously. The 3% hydrogels exhibited the storage modulus of 194 Pa, which increased to 770 Pa for 5% hydrogels. When subjected to alternating cycles of varying strains of 1 and 800% (5 cycles), hydrogels demonstrated instant recovery each time the extreme strain was relieved, thus suggesting excellent self-healing capabilities. Doxorubicin (DOX), chemotherapeutic agent, was loaded onto hydrogels, and release studies were carried out at pH 5.5 (tumoral) and 7.4 (physiological). The cumulative release from 3, 4, and 5% hydrogels at pH 5.5 was 81.06, 61.98, and 41.67%, whereas the release at pH 7.4 was 47.43, 37.01, and 35.34% at 30 days. MTT assay showed that oxidized xanthan and PEG hydrazine are not toxic to mammalian cells (NIH-3T3), as the cell viabilities were found to be 84.66 and 102% for concentrations up to 1 mg/mL. The live/dead assay with encapsulated NIH-3T3 cells showed no significant dead cell population, suggesting excellent compatibility of hydrogels in 2D and 3D culture. DOX-loaded hydrogels exhibited cytotoxicity against A549 cells when exposed to media released from hydrogels. Overall, hydrogels developed in this work may have potential applications in drug delivery and 3D cell culture for cell delivery.
Collapse
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| | - Sagarika Taneja
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| | - Yashveer Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| |
Collapse
|
43
|
Wang G, Cao X, Dong H, Zeng L, Yu C, Chen X. A Hyaluronic Acid Based Injectable Hydrogel Formed via Photo-Crosslinking Reaction and Thermal-Induced Diels-Alder Reaction for Cartilage Tissue Engineering. Polymers (Basel) 2018; 10:E949. [PMID: 30960874 PMCID: PMC6403731 DOI: 10.3390/polym10090949] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
A hyaluronic acid (HA) based injectable hydrogel with gradually increasing mechanical properties was synthesized via photo-crosslinking reaction and thermal-induced Diels-Alder (DA) reaction. The injectable hydrogel can quickly gelate within 30 s by photo-crosslinking of HA-furan under the catalysis of lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). This injectable property is beneficial to keep the encapsulated cell activity and convenient for clinical operation. And the mechanical properties can be control from 4.86 to 10.66 kPa by exposure time. Then, the thermal-induced DA click chemistry further occurs between furan groups and maleimide groups which gradually promoted the crosslinking density of the injectable hydrogel. The mechanical properties of the injectable hydrogel can be promoted to 21 kPa. ATDC-5 cells were successfully encapsulated in the injectable hydrogel and showed good activity. All the results suggested that the injectable hydrogel with gradually increasing mechanical properties formed by photo-crosslinking reaction and thermal-induced DA reaction has a good prospect of application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Lei Zeng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Chenxi Yu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
44
|
pH and reduction dual-stimuli-responsive PEGDA/PAMAM injectable network hydrogels via
aza-michael addition for anticancer drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Samantha J Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
46
|
Sarkar DJ, Singh A. pH-triggered Release of Boron and Thiamethoxam from Boric Acid Crosslinked Carboxymethyl Cellulose Hydrogel Based Formulations. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dhruba Jyoti Sarkar
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
47
|
Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. Int J Biol Macromol 2018; 110:437-448. [DOI: 10.1016/j.ijbiomac.2017.12.169] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/06/2017] [Accepted: 12/31/2017] [Indexed: 11/23/2022]
|
48
|
Kim JY, Ryu SB, Park KD. Preparation and characterization of dual-crosslinked gelatin hydrogel via Dopa-Fe3+ complexation and fenton reaction. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Chen H, McClements DJ, Chen E, Liu S, Li B, Li Y. In Situ Interfacial Conjugation of Chitosan with Cinnamaldehyde during Homogenization Improves the Formation and Stability of Chitosan-Stabilized Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14608-14617. [PMID: 29198120 DOI: 10.1021/acs.langmuir.7b03852] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The emulsifying properties of a natural cationic polysaccharide (chitosan) were improved by in situ conjugation with a natural essential oil (cinnamaldehyde, CA) during homogenization. In the absence of CA, chitosan-coated medium-chain triglyceride droplets were highly susceptible to creaming and coalescence at pH values ranging from 1 to 6.5. However, incorporation of relatively low levels of CA in the oil phase greatly improved the formation and stability of oil-in-water emulsions. These effects were attributed to two main factors: (i) covalent binding of lipophilic CA moieties to hydrophilic chitosan chains leading to conjugates with a good surface activity and (ii) interfacial cross-linking of adsorbed chitosan layers by CA leading to the formation of a rigid polymeric coating around the lipid droplets, which improved their stability against coalescence. The encapsulation technique developed in this study may be useful for applications in a range of commercial products; regulatory and flavor issues associated with chitosan and CA would have to be addressed.
Collapse
Affiliation(s)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | - Shilin Liu
- Functional Food Engineering &Technology Research Center of Hubei Province , Wuhan 430070, China
| | - Bin Li
- Functional Food Engineering &Technology Research Center of Hubei Province , Wuhan 430070, China
| | - Yan Li
- Functional Food Engineering &Technology Research Center of Hubei Province , Wuhan 430070, China
| |
Collapse
|
50
|
1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior. Int J Biol Macromol 2017; 105:1088-1095. [DOI: 10.1016/j.ijbiomac.2017.07.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 11/22/2022]
|