1
|
Wang X, Hu Q, Wang X, Zhang X, Si T, Gao X, Peng L, Chen K, Zhang H. A holocellulose air filter with highly efficient formaldehyde adsorption prepared via low temperature pulping and partial dissolving from corn stalks. Int J Biol Macromol 2024; 282:137164. [PMID: 39500422 DOI: 10.1016/j.ijbiomac.2024.137164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/13/2024]
Abstract
Emissions of particulate matter (PM) originating from industrial and agricultural incineration had emerged as a significant public health concern. Furthermore, the considerable annual production of straw remains underutilized, particularly in China. In this study, we proposed a novel approach for holocellulose air filter production from corn stalks via low-temperature anthraquinone pulping, partial dissolving, and high-speed shear-induced regeneration. About 61.40-78.23 % of hemicellulose in corn stalks was retained in holocellulose, furthermore, the delignification rate was up to 81.63-92.51 % after low temperature (<100 °C) alkaline exactment. Subsequently, holocellulose air filters (RHF) were prepared through regeneration with high-speed shear induced (25,000 rpm) and freeze-drying. The final air filters contained approximately 8.56-12.4 % hemicellulose, exhibiting a substantial adsorption capacity for low molecules such as formaldehyde. The results revealed remarkably low PM2.5 penetration ratio (0.12 %) and pressure drop (14.3 Pa) of the air filter, while exhibiting a remarkable formaldehyde adsorption capacity of 54.5 mg/g. Moreover, the characters of high crystallinity index and robust micro/nano-structure of regenerated cellulose were obtained. This study introduced an innovative and facile strategy for gaseous formaldehyde adsorption and introduced novel solutions for agricultural waste utilization.
Collapse
Affiliation(s)
- Xingyu Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qiuyue Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xueping Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoran Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Si
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, Zhejiang, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Luo Y, Mei Y, Xu Y, Huang K. Hyper-Crosslinked Porous Organic Nanomaterials: Structure-Oriented Design and Catalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2514. [PMID: 37764543 PMCID: PMC10537049 DOI: 10.3390/nano13182514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Hyper-crosslinked porous organic nanomaterials, especially the hyper-crosslinked polymers (HCPs), are a unique class of materials that combine the benefits of high surface area, porous structure, and good chemical and thermal stability all rolled into one. A wide range of synthetic methods offer an enormous variety of HCPs with different pore structures and morphologies, which has allowed HCPs to be developed for gas adsorption and separations, chemical adsorption and encapsulation, and heterogeneous catalysis. Here, we present a systematic review of recent approaches to pore size modulation and morphological tailoring of HCPs and their applications to catalysis. We mainly compare the effects of pore size modulation and morphological tailoring on catalytic applications, aiming to pave the way for researchers to develop HCPs with an optimal performance for modern applications.
Collapse
Affiliation(s)
- Yiqian Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
| | - Yixuan Mei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Yang Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Kun Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
3
|
Mousa AO, Chuang CH, Kuo SW, Mohamed MG. Strategic Design and Synthesis of Ferrocene Linked Porous Organic Frameworks toward Tunable CO 2 Capture and Energy Storage. Int J Mol Sci 2023; 24:12371. [PMID: 37569744 PMCID: PMC10419241 DOI: 10.3390/ijms241512371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
4
|
Wang W, Zhao X, Ye L. Self-Assembled Construction of Robust and Super Elastic Graphene Aerogel for High-Efficient Formaldehyde Removal and Multifunctional Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300234. [PMID: 36919815 DOI: 10.1002/smll.202300234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Indexed: 06/15/2023]
Abstract
Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT-PEI@reduced GA (rGA) is fabricated via hydrothermal self-assembly, pre-frozen, and hydrazine reduction process. Introducing CNT-PEI contributes to well-interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross-linking, while entangled CNT-PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT-PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g-1 , ≈3.28 times of rGA, derivable from synergistic chemical-physical adsorption effect. Furthermore, CNT-PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT-PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT-PEI@rGA presents outstanding piezoresistive-sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long-term durability.
Collapse
Affiliation(s)
- Wuyou Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Wang R, Luan X, Yaseen M, Bao J, Li J, Zhao Z, Zhao Z. Swellable Array Strategy Based on Designed Flexible Double Hypercross-linked Polymers for Synergistic Adsorption of Toluene and Formaldehyde. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6682-6694. [PMID: 37053562 DOI: 10.1021/acs.est.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-capacity adsorption and removal of complex volatile organic compounds (VOCs) from real-world environments is a tough challenge for researchers. Herein, a swellable array adsorption strategy was proposed to realize the synergistic adsorption of toluene and formaldehyde on the flexible double hypercross-linked polymers (FD-HCPs). FD-HCPs exhibited multiple adsorption sites awarded by a hydrophobic benzene ring/pyrrole ring and a hydrophilic hydroxyl structural unit. The array benzene ring, hydroxyl, and pyrrole N sites in FD-HCPs effectively captured toluene and formaldehyde molecules through π-π conjugation and electrostatic interaction and weakened their mutual competitive adsorption. Interestingly, the strong binding force of toluene molecules to the skeleton deformed the pore structure of FD-HCPs and generated new adsorption microenvironments for the other adsorbate. This behavior significantly improved the adsorption capacity of FD-HCPs for toluene and formaldehyde by 20% under multiple VOCs. Moreover, the pyrrole group in FD-HCPs greatly hindered H2O molecule diffusion in the pore, thus efficiently weakening the competitive adsorption of H2O toward VOCs. These fascinating properties enabled FD-HCPs to achieve synergistic adsorption for multicomponent VOC vapor under a highly humid environment and overcame single-species VOC adsorption properties on state-of-the-art porous adsorbents. This work provides the practical feasibility of synergistic adsorption to remove complex VOCs in real-world environments.
Collapse
Affiliation(s)
- Ruimeng Wang
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xinqi Luan
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Muhammad Yaseen
- Institute of Chemical Science, University of Peshawar, Peshawar 25120, KP, Pakistan
| | - Jingyu Bao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jing Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Sowmya P, Prakash S, Joseph A. Adsorption of heavy metal ions by thiophene containing mesoporous polymers: An experimental and theoretical study. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Yao J, Zhang X, Lv D, Huang J, Wu X, Wu Y, Wu J, Ye D, Xia Q. Rapid Adsorption of Indoor Low-Concentration Formaldehyde by β-Cyclodextrin-Based Porous Organic Polymers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xinyu Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Daofei Lv
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Jiajin Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xingbei Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ying Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Junliang Wu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Ahmadi Y, Kim KH. Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2082470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Analytical Chemistry, Kabul University, Kabul, Afghanistan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
9
|
Wu K, Chai K, Zhou L, Duan Z, Wu H, Huang Z, Li D, Tan Z, Shen F, Wei Z, Ji H. Cellulose based hyper-crosslinked polymer for efficiently recovering valuable materials from PO/SM wastewater. Int J Biol Macromol 2021; 193:71-80. [PMID: 34637817 DOI: 10.1016/j.ijbiomac.2021.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Herein, a TEMPO-oxidized cellulose-grafted-polystyrene hypercrosslinked polymer (TOC-PS-HCP) was synthesized facilely by TEMPO oxidation, grafting copolymerization and post crosslinking route. Based on the structural characterization, it was confirmed that TOC-PS-HCP mainly consisted of polystyrene chain on cellulose and rigid crosslinked bridge. Additionally, the as-prepared TOC-PS-HCP displayed appropriate hydrophobicity (water contact angle = 102.44°) and high specific surface area (SBET = 601.20 m2·g--1), which could efficiently recover ethylbenzene and styrene from PO/SM wastewater. The adsorption experiment was conducted to study the recovery performance for ethylbenzene and styrene in the aqueous phase. The results showed that TOC-PS-HCP could recover ethylbenzene and styrene quickly by adsorption process, and maintain a stable recovery rate both in different aqueous conditions and recycle experiments. The adsorption experiment in the simulated wastewater solution showed that TOC-PS-HCP exhibited the greater affinity for ethylbenzene and styrene than other substrates. Furthermore, a possible mechanism for the efficient recovery of ethylbenzene and styrene was suggested on the basis of experimental and theoretical results, which may be associated with van der Waals force and π-π stacking.
Collapse
Affiliation(s)
- Kongyou Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Liqin Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhiliang Duan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Haibo Wu
- Research Institute of Sun Yat-sen University in Huizhou, Huizhou 516081, PR China.
| | - Zhenghui Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Dongli Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhongwei Tan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; Research Institute of Sun Yat-sen University in Huizhou, Huizhou 516081, PR China; Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
10
|
Krusenbaum A, Geisler J, Kraus FJL, Grätz S, Höfler MV, Gutmann T, Borchardt L. The mechanochemical Friedel‐Crafts polymerization as a solvent‐free cross‐linking approach toward microporous polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Annika Krusenbaum
- Inorganic Chemistry I, Ruhr‐Universität Bochum Universitätsstraße 150 Bochum 44801 Germany
| | - Jonathan Geisler
- Inorganic Chemistry I, Ruhr‐Universität Bochum Universitätsstraße 150 Bochum 44801 Germany
| | - Fabien Joel Leon Kraus
- Inorganic Chemistry I, Ruhr‐Universität Bochum Universitätsstraße 150 Bochum 44801 Germany
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr‐Universität Bochum Universitätsstraße 150 Bochum 44801 Germany
| | - Mark Valentin Höfler
- Technical University Darmstadt, Institute for Inorganic and Physical Chemistry Alarich‐Weiss‐Str. 8 Darmstadt 64287 Germany
| | - Torsten Gutmann
- Technical University Darmstadt, Institute for Inorganic and Physical Chemistry Alarich‐Weiss‐Str. 8 Darmstadt 64287 Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr‐Universität Bochum Universitätsstraße 150 Bochum 44801 Germany
| |
Collapse
|
11
|
Ramirez-Vidal P, Suárez-García F, Canevesi RLS, Castro-Muñiz A, Gadonneix P, Paredes JI, Celzard A, Fierro V. Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption. J Colloid Interface Sci 2021; 605:513-527. [PMID: 34340036 DOI: 10.1016/j.jcis.2021.07.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Hyper-crosslinked polymers (HCPs) have been produced by the Friedel-Crafts reaction using anthracene, benzene, carbazole or dibenzothiophene as precursors and dimethoxymethane as crosslinker, and the effect of graphene oxide (GO) addition has been studied. The resulting HCPs were highly microporous with BET areas (ABET) between 590 and 1120 m2g-1. The benzene-derived HCP (B1FeM2) and the corresponding composite with GO (B1FM2-GO) exhibited the highest ABET and were selected to study their hydrogen adsorption capacities in the pressure range of 0.1 - 14 MPa at 77 K. The maximum H2 excess uptake was 2.1 and 2.0 wt% for B1FeM2 and B1FeM2-GO, respectively, at 4 MPa and 77 K. The addition of GO reduced the specific surface area but increased the density of the resultant HCP-GO composites, which is beneficial for practical applications and proves that materials giving higher gravimetric storage capacities are not necessarily those that offer higher volumetric capacities. H2 adsorption-desorption cycles up to 14 MPa showed irreversible deformation of both HCP and HCP-GO materials, which calls into question their application for hydrogen adsorption at pressures above 4 MPa.
Collapse
Affiliation(s)
- Pamela Ramirez-Vidal
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-88000 Epinal, France
| | - Fabián Suárez-García
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| | - Rafael L S Canevesi
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-88000 Epinal, France
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - Philippe Gadonneix
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-88000 Epinal, France
| | - Juan Ignacio Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, c/Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - Alain Celzard
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-88000 Epinal, France
| | - Vanessa Fierro
- Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-88000 Epinal, France.
| |
Collapse
|
12
|
Lu S, Liu Q, Han R, Guo M, Shi J, Song C, Ji N, Lu X, Ma D. Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. J Environ Sci (China) 2021; 105:184-203. [PMID: 34130835 DOI: 10.1016/j.jes.2021.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.
Collapse
Affiliation(s)
- Shuangchun Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Miao Guo
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Jiaqi Shi
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Waheed A, Baig N, Ullah N, Falath W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112360. [PMID: 33752053 DOI: 10.1016/j.jenvman.2021.112360] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Water quality plays a central role in the well-being of all the living organisms on planet Earth. The ever-increasing human population and consequently increasing industrialization, urbanization, and chemically boosted cultivation are rapidly contaminating already stressed water resources. The availability of clean drinking water has become scarce for masses across the globe, and this situation is becoming alarming in developing countries. Therefore, the immediate need for cost-effective, easily accessible, eco-friendly, portable, thermally efficient, and chemically stable technologies and materials is desperately felt to meet the high global demand for clean water. To search for effective materials for wastewater treatment, the hyper-cross-linked porous polymers (HCPs) have emerged as an excellent class of porous materials for wastewater treatment due to their unique features of high surface area, tunability, biodegradability, and chemical versatility. This review describes the advances in fabrication strategies and the efficient utilization of hyper-cross-linked porous polymers for wastewater treatment. Moreover, this review specifically discusses the hyper-cross-linked porous polymers effectiveness for the separation of the dyes, nutrients, inorganic ions, organic contaminants, and toxic metals ions. Finally, the review provides insight into the challenges and prospects in the area of hyper-cross-linked porous polymers. Overall, the hyper-cross-linked porous polymers with empowering proper functionalization can provide an opportunity for the wastewater treatment not only to remove toxic contaminants but also to make contaminated water useful for various applications.
Collapse
Affiliation(s)
- Abdul Waheed
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nadeem Baig
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
14
|
One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118352] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO 2 Capture and Supercapacitor. Molecules 2021; 26:molecules26030738. [PMID: 33572605 PMCID: PMC7866987 DOI: 10.3390/molecules26030738] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.
Collapse
|
16
|
Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO 2 Uptake and Iodine Adsorption. Polymers (Basel) 2021; 13:polym13020221. [PMID: 33435232 PMCID: PMC7826546 DOI: 10.3390/polym13020221] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
In this study, two different types of hybrid porous organic polymers (POPs), polyhedral oligomeric silsesquioxane tetraphenylpyrazine (POSS-TPP) and tetraphenylethene (POSS-TPE), were successfully synthesized through the Friedel-Crafts polymerization of tetraphenylpyrazine (TPP) and tetraphenylethene (TPE), respectively, with octavinylsilsesquioxane (OVS) as node building blocks, in the presence of anhydrous FeCl3 as a catalyst and 1,2-dichloroethane at 60 °C. Based on N2 adsorption and thermogravimetric analyses, the resulting hybrid porous materials displayed high surface areas (270 m2/g for POSS-TPP and 741 m2/g for POSS-TPE) and outstanding thermal stabilities. Furthermore, as-prepared POSS-TPP exhibited a high carbon dioxide capacity (1.63 mmol/g at 298 K and 2.88 mmol/g at 273 K) with an excellent high adsorption capacity for iodine, reaching up to 363 mg/g, compared with the POSS-TPE (309 mg/g).
Collapse
|
17
|
Khakbaz M, Ghaemi A, Mir Mohamad Sadeghi G. Synthesis methods of microporous organic polymeric adsorbents: a review. Polym Chem 2021. [DOI: 10.1039/d1py01145f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MOPs can be synthesized in a large variety of ways, which affect their pores and surface area. Variation in synthesis and porosity has a significant effect on their adsorption properties.
Collapse
Affiliation(s)
- Mobina Khakbaz
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Gity Mir Mohamad Sadeghi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Zhang Z, Shen X, Li Z, Ma S, Xia H, Liu X. Multifunctional chiral cationic porous organic polymers: gas uptake and heterogeneous asymmetric organocatalysis. Polym Chem 2021. [DOI: 10.1039/d1py00242b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral porous organic polymers are characterized by robust, non-toxic and recyclable properties. Therefore, compared with small molecular catalysts, they have attracted much attention in the field of heterogeneous asymmetric organic catalysis.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Xiaochen Shen
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Ziping Li
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Si Ma
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Technology
- Jilin University
- Changchun 130012
- P.R. China
| | - Xiaoming Liu
- College of Chemistry
- Jilin University
- Changchun
- P.R. China
| |
Collapse
|
19
|
Multifunctional Hypercrosslinked Porous Organic Polymers Based on Tetraphenylethene and Triphenylamine Derivatives for High-Performance Dye Adsorption and Supercapacitor. Polymers (Basel) 2020; 12:polym12102426. [PMID: 33096648 PMCID: PMC7589367 DOI: 10.3390/polym12102426] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
We successfully prepared two different classes of hypercrosslinked porous organic polymers (HPPs)-the tetraphenylethene (TPE) and (4-(5,6-Diphenyl-1H-Benzimidazol-2-yl)-triphenylamine (DPT) HPPs-through the Friedel-Crafts polymerization of tetraphenylethene and 4-(5,6-diphenyl-1H-benzimidazol-2-yl)-triphenylamine, respectively, with 1,4-bis(chloromethyl)benzene (Ph-2Cl) in the presence of anhydrous FeCl3 as a catalyst. Our porous materials exhibited high BET surface areas (up to 1000 m2 g-1) and good thermal stabilities. According to electrochemical and dyes adsorption applications, the as-prepared DPT-HPP exhibited a high specific capacitance of 110 F g-1 at a current density of 0.5 A g-1, with an excellent cycling stability of over 2000 times at 10 A g-1. In addition, DPT-HPP showed a high adsorption capacity up to 256.40 mg g-1 for the removal of RhB dye from water.
Collapse
|
20
|
Hydroxyl-functionalized microporous polymer for enhanced CO2 uptake and efficient super-capacitor energy storage. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122857] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Krusenbaum A, Grätz S, Bimmermann S, Hutsch S, Borchardt L. The mechanochemical Scholl reaction as a versatile synthesis tool for the solvent-free generation of microporous polymers. RSC Adv 2020; 10:25509-25516. [PMID: 35518582 PMCID: PMC9055252 DOI: 10.1039/d0ra05279e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Herein we report the mechanochemical Scholl polymerization of 1,3,5-triphenylbenzene in a high speed ball mill. The reaction is conducted solvent-free, solely using solid FeCl3. The resulting porous polymer was obtained in >99% yield after very short reaction times of only 5 minutes and exhibits a high specific surface area of 658 m2 g-1, which could be further enhanced up to 990 m2 g-1 by liquid assisted grinding. Within this study we illuminate the origin of porosity by investigating the impact of various milling parameters and milling materials, temperature and pressure, and different liquids for LAG as well as post polymer milling. Finally we expand the procedure to different monomers and mills, to present the mechanochemical Scholl reaction as a versatile synthesis tool for porous polymers.
Collapse
Affiliation(s)
- Annika Krusenbaum
- Anorganische Chemie I, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sven Grätz
- Anorganische Chemie I, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sarah Bimmermann
- Anorganische Chemie I, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Stefanie Hutsch
- Anorganische Chemie I, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lars Borchardt
- Anorganische Chemie I, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
23
|
Sang Y, Shao L, Huang J. Carbonyl functionalized hyper-cross-linked polymers for CO2 capture. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Yuan R, Yan Z, Shaga A, He H. Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Koyuncu S, Hu P, Li Z, Liu R, Bilgili H, Yagci Y. Fluorene–Carbazole-Based Porous Polymers by Photoinduced Electron Transfer Reactions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Peng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhiquan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Hakan Bilgili
- Central Research Laboratories, Izmir Katip Celebi University, 35620 İzmir, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey
- King Abdulaziz University, Faculty of Science, Chemistry Department, 21589 Jeddah, SaudiArabia
| |
Collapse
|
26
|
Ganesan V, Yoon S. Direct Heterogenization of Salphen Coordination Complexes to Porous Organic Polymers: Catalysts for Ring-Expansion Carbonylation of Epoxides. Inorg Chem 2020; 59:2881-2889. [PMID: 32048846 DOI: 10.1021/acs.inorgchem.9b03247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salen and salphens are important ligands in coordination chemistry due to their ability to form various metal complexes that can be used for a variety of organic transformations. However, salen/salphen complexes are difficult to separate from the reaction mixture, thereby limiting their application to homogeneous systems. Accordingly, considerable effort has been spent to heterogenize the metallosalen/salphen complexes; however, this has resulted in compromised activities and selectivities. Direct heterogenization of metallosalens to form porous organic polymers (POPs) shows promise for heterogeneous catalysis, because it would allow easy separation while retaining catalytic function. Thus, a facile synthetic strategy for preparing metallosalen/salphen-based porous organic polymers through direct molecular knitting using a Friedel-Crafts reaction is presented herein for the first time. As representative candidates, salphenM(III)Cl (M = Al3+ and Cr3+) complexes are knitted by covalent cross-linking using this facile, scalable, one-pot method to synthesize highly POPs in high yields. When incorporated with [Co(CO)4]- anions, the resulting heterogeneous Lewis acidic metal (Al3+ and Cr3+) POPs exhibit propylene oxide ring-expansion carbonylation activity on par with those of their homogeneous counterparts.
Collapse
Affiliation(s)
- Vinothkumar Ganesan
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea 06974
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea 06974
| |
Collapse
|
27
|
Sang Y, Chen G, Huang J. Oxygen-rich porous carbons from carbonyl modified hyper-cross-linked polymers for efficient CO2 capture. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Li W, Jiang C, Liu H, Yan Y, Liu H. Octa[4‐(9‐carbazolyl)phenyl]silsesquioxane‐Based Porous Material for Dyes Adsorption and Sensing of Nitroaromatic Compounds. Chem Asian J 2019; 14:3363-3369. [DOI: 10.1002/asia.201900951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/18/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Wanli Li
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Chundong Jiang
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Huanhuan Liu
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Yehao Yan
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan 250100 P. R. China
| |
Collapse
|
29
|
Cheng G, Wang S, He J, Wang N, Tan B, Jin S. Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromol Rapid Commun 2019; 40:e1900168. [PMID: 31206971 DOI: 10.1002/marc.201900168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Indexed: 11/11/2022]
Abstract
Porous organic polymers (POPs) have enormous applications in various fields and thus have received a lot of research attention in recent decades. Numerous synthetic methods have been developed, but mild synthesis conditions and fast polymerization rate are highly desired. Herein, high porous POPs with high surface areas from aromatic vinyl monomers by using acid catalysis method is reported. The polymerization is ultrafast and could be accomplished even in 5 min at room temperature. Furthermore, the surface area can be tuned by using various acid catalysts and controlling the reaction time. Due to the high surface area, these POPs show promising adsorption of carbon dioxide and hydrogen, respectively. Furthermore, the large π-system of the building block and high surface area of the POPs also make them show potential applications in photocatalytic hydrogen evolution as well as promising catalyst support for metal nanoparticles.
Collapse
Affiliation(s)
- Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shaolei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Jiang He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education-School of Chemistry and Chemial Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
30
|
Liu Y, Jia X, Liu J, Fan X, Zhang B, Zhang A, Zhang Q. Synthesis and evaluation of N, O‐doped hypercrosslinked polymers and their performance in CO
2
capture. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Xiangkun Jia
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Jin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Xinlong Fan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Baoliang Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Aibo Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Qiuyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
31
|
Cousins K, Zhang R. Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers (Basel) 2019; 11:E690. [PMID: 30995735 PMCID: PMC6523522 DOI: 10.3390/polym11040690] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen (H2) is one of the best candidates to replace current petroleum energy resources due to its rich abundance and clean combustion. However, the storage of H2 presents a major challenge. There are two methods for storing H2 fuel, chemical and physical, both of which have some advantages and disadvantages. In physical storage, highly porous organic polymers are of particular interest, since they are low cost, easy to scale up, metal-free, and environmentally friendly. In this review, highly porous polymers for H2 fuel storage are examined from five perspectives: (a) brief comparison of H2 storage in highly porous polymers and other storage media; (b) theoretical considerations of the physical storage of H2 molecules in porous polymers; (c) H2 storage in different classes of highly porous organic polymers; (d) characterization of microporosity in these polymers; and (e) future developments for highly porous organic polymers for H2 fuel storage. These topics will provide an introductory overview of highly porous organic polymers in H2 fuel storage.
Collapse
Affiliation(s)
- Kimberley Cousins
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 5500, USA.
| | - Renwu Zhang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 5500, USA.
| |
Collapse
|
32
|
Na CJ, Yoo MJ, Tsang DCW, Kim HW, Kim KH. High-performance materials for effective sorptive removal of formaldehyde in air. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:452-465. [PMID: 30562657 DOI: 10.1016/j.jhazmat.2018.12.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
As formaldehyde (FA) is well-known for its carcinogenic potential, various techniques for its removal have been developed based on recovery (e.g., adsorption/absorption and condensation) or destructive treatment (e.g., incineration and thermal/ catalytic oxidation). Among them, adsorption has been one of the most preferable options due to its low price and simplicity. In this review, we summarize state-of-the-art knowledge about adsorption mechanisms with respect to its key controlling variables (e.g., surface chemical properties of adsorbent, temperature, and relative humidity) and adsorption performance of materials with particular emphasis on advanced materials (e.g., carbon nanotubes, metal-organic frameworks, graphene oxides, and porous organic polymers) and their modified forms in comparison with conventional sorbents (e.g., AC and zeolite). However, it is yet difficult to assess the adsorption capacity of each material on a parallel basis because adsorption experiments of each material were conducted under different conditions (e.g., large differences in the initial loading concentrations). The partition coefficient (PC) was employed for evaluating adsorption performance between different materials at an equivalent level to overcome the limitation based on adsorption capacity concept. For instance, among the list of the surveyed materials, the highest PC was recorded by γ-CD-MOF-K (31.2 mol kg-1 Pa-1). This study should offer valuable insights into the selection and development of outstanding materials for the sorptive removal of FA.
Collapse
Affiliation(s)
- Chae-Jin Na
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea
| | - Mi-Ji Yoo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
33
|
Advances in Nanostructured Metal-Encapsulated Porous Organic-Polymer Composites for Catalyzed Organic Chemical Synthesis. Catalysts 2018. [DOI: 10.3390/catal8110492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porous organic polymers (POPs) are of growing research interest owing to their high surface areas, stabilities, controllable chemical configurations, and tunable pore volumes. The molecular nanoarchitecture of POP provides metal or metal oxide binding sites, which is promising for the development of advanced heterogeneous catalysts. This article highlights the development of numerous kinds of POPs and key achievements to date, including their functionalization and incorporation of nanoparticles into their framework structures, characterization methods that are predominantly in use for POP-based materials, and their applications as catalysts in several reactions. Scientists today are capable of preparing POP-based materials that show good selectivity, activity, durability, and recoverability, which can help overcome many of the current environmental and industrial problems. These POP-based materials exhibit enhanced catalytic activities for diverse reactions, including coupling, hydrogenation, and acid catalysis.
Collapse
|
34
|
Yang X, Liu H. Ferrocene-Functionalized Silsesquioxane-Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions. Chemistry 2018; 24:13504-13511. [DOI: 10.1002/chem.201801765] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoru Yang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P.R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P.R. China
| |
Collapse
|
35
|
Construction of triphenylamine functional phthalazinone-based covalent triazine frameworks for effective CO2 capture. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zou X, Wei Z, Du J, Wang X, Zhang G. Preparation and Properties of Magnetic-fluorescent Microporous Polymer Microspheres. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7413-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Zhang RR, Yin Q, Liang HP, Chen Q, Luo WH, Han BH. Hypercrosslinked porous polycarbazoles from carbazolyl-bearing aldehydes or ketones. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Liang HP, Chen Q, Han BH. Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04494] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hai-Peng Liang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Qi Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People’s Republic of China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
39
|
Duan C, Du Z, Zou W, Li H, Zhang C. Construction of Nitrogen-Containing Hierarchical Porous Polymers and Its Application on Carbon Dioxide Capturing. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheng Duan
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhongjie Du
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hangquan Li
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
40
|
Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Chen Q, Han BH. Microporous Polycarbazole Materials: From Preparation and Properties to Applications. Macromol Rapid Commun 2018; 39:e1800040. [DOI: 10.1002/marc.201800040] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/10/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Qi Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan University; Haikou 570228 China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
42
|
Tan L, Tan B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 2018; 46:3322-3356. [PMID: 28224148 DOI: 10.1039/c6cs00851h] [Citation(s) in RCA: 579] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypercrosslinked polymers (HCPs) are a series of permanent microporous polymer materials initially reported by Davankov, and have received an increasing level of research interest. In recent years, HCPs have experienced rapid growth due to their remarkable advantages such as diverse synthetic methods, easy functionalization, high surface area, low cost reagents and mild operating conditions. Judicious selection of monomers, appropriate length crosslinkers and optimized reaction conditions yielded a well-developed polymer framework with an adjusted porous topology. Post fabrication of the as developed network facilitates the incorporation of various chemical functionalities that may lead to interesting properties and enhance the selection toward a specific application. To date, numerous HCPs have been prepared by post-crosslinking polystyrene-based precursors, one-step self-polycondensation or external crosslinking strategies. The advent of these methodologies has prompted researchers to construct well-defined porous polymer networks with customized micromorphology and functionalities. In this review, we describe not only the basic synthetic principles and strategies of HCPs, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc.
Collapse
Affiliation(s)
- Liangxiao Tan
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
43
|
Shao L, Liu M, Huang J, Liu YN. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interface Sci 2018; 513:304-313. [DOI: 10.1016/j.jcis.2017.11.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
44
|
Affiliation(s)
- Jing Huang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - S. Richard Turner
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
45
|
Yin Q, Chen Q, Lu LC, Han BH. Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction. Beilstein J Org Chem 2017; 13:1212-1221. [PMID: 28694867 PMCID: PMC5496582 DOI: 10.3762/bjoc.13.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/23/2017] [Indexed: 12/03/2022] Open
Abstract
Porous hypercross-linked polymers based on perbenzylated monosugars (SugPOP-1–3) have been synthesized by Friedel–Crafts reaction using formaldehyde dimethyl acetal as an external cross-linker. Three perbenzylated monosugars with similar chemical structure were used as monomers in order to tune the porosity. These obtained polymers exhibit microporous and mesoporous features. The highest Brunauer–Emmett–Teller specific surface area for the resulting polymers was found to be 1220 m2 g−1, and the related carbon dioxide storage capacity was found to be 14.4 wt % at 1.0 bar and 273 K. As the prepared porous polymer SugPOP-1 is based on hemiacetal glucose, Ag nanoparticles (AgNPs) can be successfully incorporated into the polymer by an in situ chemical reduction of freshly prepared Tollens’ reagent. The obtained AgNPs/SugPOP-1 composite demonstrates good catalytic activity in the reduction of 4-nitrophenol (4-NP) with an activity factor ka = 51.4 s−1 g−1, which is higher than some reported AgNP-containing composite materials.
Collapse
Affiliation(s)
- Qing Yin
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Li-Can Lu
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
46
|
Dang QQ, Wan HJ, Zhang XM. Carbazolic Porous Framework with Tetrahedral Core for Gas Uptake and Tandem Detection of Iodide and Mercury. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21438-21446. [PMID: 28585814 DOI: 10.1021/acsami.7b04201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multifunctional carbazolic porous framework (Cz-TPM), with a tetrahedral core, has been synthesized by FeCl3 oxidative coupling polymerization. The Brunauer-Emmett-Teller surface area of the obtained polymers reaches 713.2 m2 g-1. Gas adsorption isotherms show that Cz-TPM exhibits large carbon dioxide (97.9 mg g-1, 9.8 wt %, 273 K, and 1 bar) and hydrogen uptake capacities (149.3 cm3 g-1, 1.34 wt %, 77 K, and 1 bar). Furthermore, Cz-TPM has been found to display tandem visual detection of iodide and mercury, respectively. The Cz-TPM dispersion turns to yellow in the presence of iodide salts and subsequently changes to nearly colorless on addition of Hg2+ salts that could be easily observed by the naked eye. Cz-TPM can detect I- via "turn off" fluorescence quenching, and then the in situ generated Cz-TPM@I complexes can recognize Hg2+ ions via "turn on" fluorescence recovery. More importantly, Cz-TPM is stable over common solvents and can be easily recovered by excessive water washing and centrifugation for further repeated use. As far as we know, carbazolic porous organic frameworks enabling detection of I- and Hg2+ have not been reported.
Collapse
Affiliation(s)
- Qin-Qin Dang
- School of Chemistry & Material Science, Shanxi Normal University , Linfen, Shanxi 041004, China
| | - Hong-Jing Wan
- School of Chemistry & Material Science, Shanxi Normal University , Linfen, Shanxi 041004, China
| | - Xian-Ming Zhang
- School of Chemistry & Material Science, Shanxi Normal University , Linfen, Shanxi 041004, China
| |
Collapse
|
47
|
Yuan Y, Huang H, Chen L, Chen Y. N,N′-Bicarbazole: A Versatile Building Block toward the Construction of Conjugated Porous Polymers for CO2 Capture and Dyes Adsorption. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00971] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan Yuan
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering, Tianjin, P. R. China
| | - Hongliang Huang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Long Chen
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering, Tianjin, P. R. China
| | - Yulan Chen
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
48
|
Triazine containing N-rich microporous organic polymers for CO 2 capture and unprecedented CO 2 /N 2 selectivity. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Liao Y, Cheng Z, Trunk M, Thomas A. Targeted control over the porosities and functionalities of conjugated microporous polycarbazole networks for CO2-selective capture and H2 storage. Polym Chem 2017. [DOI: 10.1039/c7py01439b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Target controllable conjugated microporous polycarbazole networks with pyridine-, bipyridine-, and cyano-functionalized networks exhibit a large surface area and tunable gas uptake.
Collapse
Affiliation(s)
- Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
- Department of Chemistry
| | - Zhonghua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Matthias Trunk
- Department of Chemistry
- Functional Materials
- Technische Universität Berlin
- Berlin 10623
- Germany
| | - Arne Thomas
- Department of Chemistry
- Functional Materials
- Technische Universität Berlin
- Berlin 10623
- Germany
| |
Collapse
|
50
|
Chen D, Gu S, Fu Y, Fu X, Zhang Y, Yu G, Pan C. Hyper-crosslinked aromatic polymers with improved microporosity for enhanced CO2/N2 and CO2/CH4 selectivity. NEW J CHEM 2017. [DOI: 10.1039/c7nj00919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two knitting polymers derived from highly rigid contorted monomers achieve improved microporosity for CO2 storage and separation applications.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Shuai Gu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Yu Fu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Xianbiao Fu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Yindong Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- China
| |
Collapse
|