1
|
Trueman RP, Finn PG, Westwood MM, Dey A, Palgrave R, Tabor A, Phillips JB, Schroeder BC. Improving the biological interfacing capability of diketopyrrolopyrrole polymers via p-type doping. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:6943-6950. [PMID: 37274026 PMCID: PMC10233798 DOI: 10.1039/d3tc01148h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Polydiketopyrrolopyrrole terthiophene (DPP3T) is an organic semiconducting polymer that has been widely investigated as the active layer within organic electronic devices, such as photovoltaics and bioelectronic sensors. To facilitate interfacing between biological systems and organic semiconductors it is crucial to tune the material properties to support not only cell adhesion, but also proliferation and growth. Herein, we highlight the potential of molecular doping to judiciously modulate the surface properties of DPP3T and investigate the effects on Schwann cell behaviour on the surface. By using p-type dopants FeCl3 and Magic Blue, we successfully alter the topography of DPP3T thin films, which in turn alters cell behaviour of a Schwann cell line on the surfaces of the films over the course of 48 hours. Cell numbers are significantly increased within both DPP3T doped films, as well as cells possessing larger, more spread out morphology indicated by cell size and shape analysis. Furthermore, the viability of the Schwann cells seeded on the surfaces of the films was not significantly lowered. The use of dopants for influencing cell behaviour on semiconducting polymers holds great promise for improving the cell-device interface, potentially allowing better integration of cells and devices at the initial time of introduction to a biological environment.
Collapse
Affiliation(s)
- Ryan P Trueman
- Center for Nerve Engineering, UCL London UK
- Department of Pharmacology, UCL School of Pharmacy, University College London London UK
- Department of Chemistry, University College London London UK
| | | | | | - Avishek Dey
- Department of Chemistry, University College London London UK
| | - Robert Palgrave
- Department of Chemistry, University College London London UK
| | - Alethea Tabor
- Department of Chemistry, University College London London UK
| | - James B Phillips
- Center for Nerve Engineering, UCL London UK
- Department of Pharmacology, UCL School of Pharmacy, University College London London UK
| | - Bob C Schroeder
- Department of Chemistry, University College London London UK
| |
Collapse
|
2
|
Wei X, Liu C, Li Z, Sun Q, Zhang X, Li Y, Zhang W, Shi J, Zhai X, Zhang D, Zou X. Fabrication of a label-free electrochemical cell-based biosensor for toxicity assessment of thiram. CHEMOSPHERE 2022; 307:135960. [PMID: 35961445 DOI: 10.1016/j.chemosphere.2022.135960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Thiram has been widely used in agriculture and may invades the food chain, posing a threat to human health. In this research, a label-free electrochemical cell-based biosensor was presented for in vitro toxicity assessment of thiram. HepG2 cells were cultured on poly-l-lysine@gold nano-flowers functionalized indium tin oxide coated glass electrode (PLL@AuNFs/ITO) to serve as biorecognition elements. AuNFs were electrodeposited on ITO to provide an enlarged specific surface area and benefited the output signal amplification. PLL was selected as an effective biocompatible coating material to facilitate cell adhesion and proliferation, thereby realizing one-step recording of electrochemical signals from thiram-treated cells. With the aid of the differential pulse voltammetry method, the fabricated biosensor was applied to assess the cytotoxicity of thiram. Results showed that the cytotoxicity measured by the fabricated biosensor exhibited a linear relationship related to thiram concentration ranging from 5 to 50 μM with a detection limit of 2.23 μM. The IC50 of thiram obtained by the biosensor was 29.5 μM, which was close to that of conventional MTT assay (30.8 μM). The effects of thiram on HepG2 cells were also investigated via SEM and flow cytometry. Meanwhile, the proposed biosensor was used to evaluate the toxicity of thiram in fruit samples. Results indicated that the toxicity of thiram cannot be ignored even at a low residual concentration in food (≤5 mg/kg). In conclusion, the developed sensor showed excellent sensitivity, stability, and reliability, which provided a great capacity for the convenient toxicity evaluation of thiram residue in food.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Chao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Yanxiao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
3
|
Yang Y, Dong H, Yin H, Zhang Y, Zhou Y, Xu M, Wang X. Fabrication of nonenzymatic electrochemical interface for ratiometric and simultaneous detection of hydrogen peroxide, dopamine, and ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Wang CC, Wei SC, Luo SC. Recent Advances and Biomedical Applications of Peptide-Integrated Conducting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:1916-1933. [PMID: 35119258 DOI: 10.1021/acsabm.1c01194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conducting polymers (CPs) are of great interests to researchers around the world in biomedical applications owing to their unique electrical and mechanical properties. Besides, they are easy to fabricate and have long-term stability. These features make CPs a powerful building block of modern biomaterials. Peptide functionalization has been a versatile tool for the development of CP-based biomaterials. With the aid of peptide modifications, the biocompatibility, target selectivity, and cellular interactions of CPs can be greatly improved. Reflecting these aspects, an increasing number of studies on peptide-integrated conducting polymers have been reported recently. In this review, various kinds of peptide immobilization strategies on CPs are introduced. Moreover, the aims of peptide modification are discussed in three aspects: enhancing the specific selectivity, avoiding nonspecific adhesion, and mimicking the environment of extracellular matrix. We highlighted recent studies in the applications of peptide-integrated CPs in electrochemical sensors, antifouling surfaces, and conductive biointerfaces. These studies have shown great potentials from the integration of peptide and CPs as a versatile platform for advanced biological and clinical applications in the near future.
Collapse
Affiliation(s)
- Chi-Cha Wang
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No.1 Jen Ai Road, Section 1, Taipei 10051, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
5
|
Liu Y, Feig VR, Bao Z. Conjugated Polymer for Implantable Electronics toward Clinical Application. Adv Healthc Mater 2021; 10:e2001916. [PMID: 33899347 DOI: 10.1002/adhm.202001916] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Indexed: 12/21/2022]
Abstract
Owing to their excellent mechanical flexibility, mixed-conducting electrical property, and extraordinary chemical turnability, conjugated polymers have been demonstrated to be an ideal bioelectronic interface to deliver therapeutic effect in many different chronic diseases. This review article summarizes the latest advances in implantable electronics using conjugated polymers as electroactive materials and identifies remaining challenges and opportunities for developing electronic medicine. Examples of conjugated polymer-based bioelectronic devices are selectively reviewed in human clinical studies or animal studies with the potential for clinical adoption. The unique properties of conjugated polymers are highlighted and exemplified as potential solutions to address the specific challenges in electronic medicine.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Materials Research and Engineering Agency for Science, Technology and Research Singapore 138634 Singapore
| | - Vivian Rachel Feig
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhenan Bao
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
| |
Collapse
|
6
|
Uzuncar S, Ozdogan N, Ak M. Enzyme-free detection of hydrogen peroxide with a hybrid transducing system based on sodium carboxymethyl cellulose, poly(3,4-ethylenedioxythiophene) and prussian blue nanoparticles. Anal Chim Acta 2021; 1172:338664. [PMID: 34119021 DOI: 10.1016/j.aca.2021.338664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Herein, we report a two-layered hybrid catalytic interface composed of carboxymethyl cellulose (CMC), poly (3,4-ethylene dioxythiophene) (PEDOT), Prussian blue (PB) nanoparticles and Nickel-Hexacyanoferrate (Ni-HCF) layer for the enzyme-free detection of hydrogen peroxide (H2O2). Whereas the first layer, CMC:PEDOT:PB, is responsible for generating amperometric signals toward H2O2, Ni-HCF on CMC:PEDOT:PB layer is playing an active role as an operational stability-enhancer. In the study, where the systematic optimization of the sensor electrode is presented using cyclic voltammetry (CV), amperometry and electrochemical impedance spectroscopy (EIS) technique, the physical and chemical properties of the hybrid composite systems constructed is also supported by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) techniques. The amperometric signal generation of the H2O2 sensor was linear between 1 and 100 μM (R2 = 0.999) with a sensitivity of 416.11 μA mM-1cm-2, providing a limit of detection (LOD) of 0.33 μM. The sensing system, which was not affected by the various interfering molecules, creates a successful sensor platform for H2O2 measurements in tap water with a high recovery value between 94.0% and 110.5% and relatively small RSD in the range of 0.4-5.2%.
Collapse
Affiliation(s)
- Sinan Uzuncar
- Environmental Engineering Department, Engineering Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Nizamettin Ozdogan
- Environmental Engineering Department, Engineering Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
| | - Metin Ak
- Chemistry Department, Faculty of Art and Science, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
7
|
Susilawati S, Prayogi S, Arif MF, Ismail NM, Bilad MR, Asy’ari M. Optical Properties and Conductivity of PVA-H 3PO 4 (Polyvinyl Alcohol-Phosphoric Acid) Film Blend Irradiated by γ-Rays. Polymers (Basel) 2021; 13:polym13071065. [PMID: 33800592 PMCID: PMC8036257 DOI: 10.3390/polym13071065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
This study assesses the optical properties and conductivity of PVA–H3PO4 (polyvinyl alcohol–phosphoric acid) polymer film blend irradiated by gamma (γ) rays. The PVA–H3PO4 polymer film blend was prepared by the solvent-casting method at H3PO4 concentrations of 75 v% and 85 v%, and then irradiated up to 25 kGy using γ-rays from the Cobalt-60 isotope source. The optical absorption spectrum was measured using an ultraviolet–visible spectrophotometer over a wavelength range of 200 to 700 nm. It was found that the absorption peaks are in three regions, namely two peaks in the ultraviolet region (310 and 350 nm) and one peak in the visible region (550 nm). The presence of an absorption peak after being exposed to hυ energy indicates a transition of electrons from HOMO to LUMO within the polymer chain. The study of optical absorption shows that the energy band gap (energy gap) depends on the radiation dose and the concentration of H3PO4 in the polymer film blend. The optical absorption, absorption edge, and energy gap decrease with increasing H3PO4 concentration and radiation dose. The interaction between PVA and H3PO4 blend led to an increase in the conductivity of the resulting polymer blend film.
Collapse
Affiliation(s)
- Susilawati Susilawati
- Master of Science Education Program, University of Mataram, Jl. Majapahit No. 62, Mataram 83125, Indonesia
- Physics Education, FKIP, University of Mataram, Jl. Majapahit No. 62, Mataram 83125, Indonesia
- Correspondence: (S.S.); (N.M.I.)
| | - Saiful Prayogi
- Faculty of Applied Science and Enginering, Universitas Pendidikan Mandalika UNDIKMA, Jl. Pemuda No. 59A, Mataram 83126, Indonesia; (S.P.); (M.R.B.); (M.A.)
| | - Muhamad F. Arif
- Department of Materials Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia;
| | - Noor Maizura Ismail
- Faculty of Engineering, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: (S.S.); (N.M.I.)
| | - Muhammad Roil Bilad
- Faculty of Applied Science and Enginering, Universitas Pendidikan Mandalika UNDIKMA, Jl. Pemuda No. 59A, Mataram 83126, Indonesia; (S.P.); (M.R.B.); (M.A.)
| | - Muhammad Asy’ari
- Faculty of Applied Science and Enginering, Universitas Pendidikan Mandalika UNDIKMA, Jl. Pemuda No. 59A, Mataram 83126, Indonesia; (S.P.); (M.R.B.); (M.A.)
| |
Collapse
|
8
|
Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:229-251. [PMID: 34250454 PMCID: PMC8267604 DOI: 10.1021/acsabm.0c01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymeric biomaterials have been used in a variety of applications, like cargo delivery and tissue scaffolding, because they are easily synthesized and can be adapted to many systems. However, there is still a need to further enhance and improve their functions to progress their use in the biomedical field. A promising solution is to modify the polymer surfaces with peptides that can increase biocompatibility, cellular interactions, and receptor targeting. In recent years, peptide modifications have been used to overcome many challenges to polymer biomaterial development. This review discusses recent progress in developing peptide-modified polymers for therapeutic applications including cell-specific targeting and tissue engineering. Furthermore, we will explore some of the most frequently studied base components of these biomaterials.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - José Manuel Condor Capcha
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute and Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
9
|
Gelen SS, Munkhbat T, Rexhepi Z, Kirbay FO, Azak H, Demirkol DO. Catalase-conjugated surfaces: H2O2 detection based on quenching of tryptophan fluorescence on conducting polymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Ayranci R. The Rapid and Practical Route to Cu@PCR Sensor: Modification of Copper Nanoparticles Upon Conducting Polymer for a Sensitive Non‐Enzymatic Glucose Sensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rukiye Ayranci
- Department of Labarotory Technology University of Dumlupinar Simav 43500 Kutahya Turkey
| |
Collapse
|
11
|
Coban F, Ayranci R, Ak M. Synthesis and electropolymerization of a multifunctional naphthalimide clicked carbazole derivative. POLYM INT 2019. [DOI: 10.1002/pi.5942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fatma Coban
- Chemistry Department, Faculty of Art and ScienceBurdur Mehmet Akif Ersoy University Burdur Turkey
| | - Rukiye Ayranci
- Simav Vocational High School, Laboratory Technology Program, Kutahya Dumlupinar University Kutahya Turkey
| | - Metin Ak
- Chemistry Department, Faculty of Art and SciencePamukkale University Denizli Turkey
| |
Collapse
|
12
|
Altun A, Apetrei RM, Camurlu P. The effect of copolymerization and carbon nanoelements on the performance of poly(2,5-di(thienyl)pyrrole) biosensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110069. [PMID: 31546439 DOI: 10.1016/j.msec.2019.110069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
The development of biosensing interfaces based on copolymerization of benzenamine-2,5-di(thienyl)pyrrole (SNS-An) with 3,4-ethylenedioxythiophene (EDOT) is reported. Both homopolymer P(SNS-An) and copolymer P(SNS-An-co-EDOT) films were prepared and evaluated, in terms of biosensing efficiency, upon incorporation of carbon nanoelements (carbon nanotubes and fullerene) and cross-linking of glucose oxidase. The copolymer revealed superior performance as a biosensing interface as compared to the homopolymer structure or previously reported P(SNS) biosensors. The analytical characteristics and stability studies were performed both at cathodic potential, monitoring O2 consumption, as a result of catalytic reaction of glucose oxidase towards glucose and at anodic potential, following the oxidation of the H2O2 produced during the catalytic reaction. Whilst the measurements on the positive side offered an extended linear range (0.01-5.0 mM), the negative side provided sensitivity up to 104.96 μA/mMcm-1 within a shorter range. Detection limits were as low as 1.9 μM with Km value of 0.49 mM. Lastly, the most performant biosensing platforms, including copolymeric structure and CNTs were employed for analysis in real samples.
Collapse
Affiliation(s)
- Ayhan Altun
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; Muş Alparslan University, Department of Chemistry, 49100 Muş, Turkey
| | - Roxana-Mihaela Apetrei
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; 'Dunarea de Jos' University of Galati, Domneasca Street, 47, Galati RO-800008, Romania
| | - Pinar Camurlu
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey.
| |
Collapse
|
13
|
Fidanovski K, Mawad D. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge. Adv Healthc Mater 2019; 8:e1900053. [PMID: 30941922 DOI: 10.1002/adhm.201900053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Conjugated polymers are the material of choice for organic bioelectronic interfaces as they combine mechanical flexibility with electric and ionic conductivity. Their attractive properties are largely demonstrated in vitro, while the in vivo applications are limited to the coating of inorganic electrodes, where they are used to improve the intimate electronic contact between the device and the tissue. However, there has not been a commensurate rise in the in vivo applications of entirely organic implantable electronic devices based on conjugated polymers. To date, there is no comprehensive understanding of how these devices will interface with real biological systems. With the push toward increasingly thinner and more flexible next generation medical implants, this limitation remains a major detractor in the translation of conjugated polymers toward biological applications. This research news article examines the few reported in vivo studies and attempts to establish why there is such a dearth in the literature.
Collapse
Affiliation(s)
- Kristina Fidanovski
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales 2052 Australia
| | - Damia Mawad
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
14
|
Ozkan BC, Soganci T, Turhan H, Ak M. Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Vallejo-Giraldo C, Krukiewicz K, Calaresu I, Zhu J, Palma M, Fernandez-Yague M, McDowell B, Peixoto N, Farid N, O'Connor G, Ballerini L, Pandit A, Biggs MJP. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800863. [PMID: 29862640 DOI: 10.1002/smll.201800863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Katarzyna Krukiewicz
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Ivo Calaresu
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Jingyuan Zhu
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Matteo Palma
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Marc Fernandez-Yague
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - BenjaminW McDowell
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nathalia Peixoto
- Department of Electrical and Computer Engineering, George Mason University, 4400 University Drive, MS-1G5 Fairfax, VA, 22030, USA
| | - Nazar Farid
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Gerard O'Connor
- School of Physics, National University of Ireland, Galway, University Road, Galway, H91 CF50, Ireland
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea, 265, 34136, Trieste, Italy
| | - Abhay Pandit
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| | - Manus Jonathan Paul Biggs
- CÚRAM-Centre for Research in Medical Devices-Galway, Biosciences Research Building, 118 Corrib Village, Newcastle, Galway, H91 D577, Ireland
| |
Collapse
|
16
|
Kirbay FO, Yalcinkaya EE, Atik G, Evren G, Unal B, Demirkol DO, Timur S. Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing. Biosens Bioelectron 2018; 109:286-294. [DOI: 10.1016/j.bios.2018.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 02/08/2023]
|
17
|
Balta S, Aydogan C, Demir B, Geyik C, Ciftci M, Guler E, Odaci Demirkol D, Timur S, Yagci Y. Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sebila Balta
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Cansu Aydogan
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Caner Geyik
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
| | - Mustafa Ciftci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Emine Guler
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
- Ege Life Sciences (EGE-LS); Cigli 35620 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; Bornova 35100 Izmir Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Faculty of Science; Chemistry Department; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
18
|
Soganci T, Soyleyici S, Soyleyici HC, Ak M. Optoelectrochromic characterization and smart windows application of bi-functional amid substituted thienyl pyrrole derivative. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ayranci R, Başkaya G, Güzel M, Bozkurt S, Şen F, Ak M. Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect 2017. [DOI: 10.1002/slct.201601632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rukiye Ayranci
- Pamukkale University; Faculty of Art and Science, Chemistry Department; Denizli Turkey
| | - Gaye Başkaya
- Sen Research Group; Dumlupinar University; Faculty of Art and Science, Chemistry Department; Kütahya Turkey
| | - Merve Güzel
- Pamukkale University; Faculty of Art and Science, Chemistry Department; Denizli Turkey
| | - Sait Bozkurt
- Sen Research Group; Dumlupinar University; Faculty of Art and Science, Chemistry Department; Kütahya Turkey
| | - Fatih Şen
- Sen Research Group; Dumlupinar University; Faculty of Art and Science, Chemistry Department; Kütahya Turkey
| | - Metin Ak
- Pamukkale University; Faculty of Art and Science, Chemistry Department; Denizli Turkey
| |
Collapse
|
20
|
Ayranci R, Demirkol DO, Timur S, Ak M. Rhodamine-based conjugated polymers: potentiometric, colorimetric and voltammetric sensing of mercury ions in aqueous medium. Analyst 2017; 142:3407-3415. [DOI: 10.1039/c7an00606c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis and characterization of a conducting polymer film used as a simple and novel multi-signal sensor platform which demonstrates ion selective potentiometric, colorimetric and voltammetric responses in aqueous media.
Collapse
Affiliation(s)
- Rukiye Ayranci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | | | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| |
Collapse
|
21
|
Ozturk Kirbay F, Ayranci R, Ak M, Odaci Demirkol D, Timur S. Rhodamine functionalized conducting polymers for dual intention: electrochemical sensing and fluorescence imaging of cells. J Mater Chem B 2017; 5:7118-7125. [DOI: 10.1039/c7tb01716b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the electrochemical co-polymerization of two functional monomers; one containing fluorescent rhodamine dye (RF) and the other monomer having amine groups (RD), onto electroactive Indium Tin Oxide (ITO) glass.
Collapse
Affiliation(s)
| | - Rukiye Ayranci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- 20017 Denizli
- Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- 20017 Denizli
- Turkey
| | | | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- Izmir
- Turkey
| |
Collapse
|
22
|
Triguero J, Zanuy D, Alemán C. Conformational analysis of a modified RGD adhesive sequence. J Pept Sci 2016; 23:172-181. [DOI: 10.1002/psc.2937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jordi Triguero
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
| | - David Zanuy
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
| | - Carlos Alemán
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Av. Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona 08028 Spain
| |
Collapse
|
23
|
Petrizza L, Genovese D, Valenti G, Iurlo M, Fiorani A, Paolucci F, Rapino S, Marcaccio M. Electrochemical and Surface Characterization of Dense Monolayers Grafted on ITO and Si/SiO2
Surfaces via Tetra(tert
-Butoxy)Tin Linker. ELECTROANAL 2016. [DOI: 10.1002/elan.201600262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luca Petrizza
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Damiano Genovese
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Giovanni Valenti
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Matteo Iurlo
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Andrea Fiorani
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Francesco Paolucci
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Stefania Rapino
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| | - Massimo Marcaccio
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; via Selmi 2 40126 Bologna Italy
| |
Collapse
|
24
|
Ayranci R, Ak M, Karakus M, Cetisli H. The effect of the monomer feed ratio and applied potential on copolymerization: investigation of the copolymer formation of ferrocene-functionalized metallopolymer and EDOT. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2016.1187438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rukiye Ayranci
- Department of Chemistry, Pamukkale University, Denizli, Turkey
| | - Metin Ak
- Department of Chemistry, Pamukkale University, Denizli, Turkey
| | - Mehmet Karakus
- Department of Chemistry, Pamukkale University, Denizli, Turkey
| | - Halil Cetisli
- Department of Chemistry, Pamukkale University, Denizli, Turkey
| |
Collapse
|
25
|
Ayranci R, Ak M, Ocal S, Karakus M. Synthesis of new ferrocenyldithiophosphonate derivatives: electrochemical, electrochromic, and optical properties. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2016.1169377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Yilmaz T, Guler E, Gumus ZP, Akbulut H, Aldemir E, Coskunol H, Goen Colak D, Cianga I, Yamada S, Timur S, Endo T, Yagci Y. Synthesis and application of a novel poly-l-phenylalanine electroactive macromonomer as matrix for the biosensing of ‘Abused Drug’ model. Polym Chem 2016. [DOI: 10.1039/c6py01764a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis and biosensing application of a novel poly-l-phenylalanine-bearing electroactive macromonomer has been carried out.
Collapse
|
27
|
Ayranci R, Ak M. Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate. NEW J CHEM 2016. [DOI: 10.1039/c6nj02006b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new novel, pyrene modified, thiophene–pyrrole based monomer was synthesized via a Schiff base reaction. It showed sensitive fluorescence changes when interacting with metal ions. Moreover, the electrochemical properties of its polymer were investigated.
Collapse
Affiliation(s)
- Rukiye Ayranci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| |
Collapse
|
28
|
Soganci T, Ak M, Giziroglu E, Söyleyici HC. Smart window application of a new hydrazide type SNS derivative. RSC Adv 2016. [DOI: 10.1039/c5ra24759d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this article the smart window application of a new type of thienylpyrrole derivative is presented.
Collapse
Affiliation(s)
- Tugba Soganci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Emrah Giziroglu
- Adnan Menderes University
- Faculty of Art and Science
- Chemistry Department
- Aydın
- Turkey
| | - Hakan Can Söyleyici
- Adnan Menderes University
- Faculty of Art and Science
- Chemistry Department
- Aydın
- Turkey
| |
Collapse
|
29
|
Azak H, Barlas FB, Yildiz HB, Gulec K, Demir B, Demirkol DO, Timur S. Folic-Acid-Modified Conducting Polymer: Electrochemical Detection of the Cell Attachment. Macromol Biosci 2015; 16:545-52. [DOI: 10.1002/mabi.201500274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/26/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Hacer Azak
- Kamil Ozdag Science Faculty; Chemistry Department; Karamanoglu Mehmetbey University; 70100 Karaman Turkey
| | - Firat Baris Barlas
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nano Technology Engineering; KTO Karatay University; 42020 Konya Turkey
| | - Kadri Gulec
- Graduate School of Natural and Applied Sciences; Biotechnology Department; Ege University; 35100 Izmir Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| |
Collapse
|
30
|
Guler E, Akbulut H, Bozokalfa G, Demir B, Eyrilmez GO, Yavuz M, Demirkol DO, Coskunol H, Endo T, Yamada S, Timur S, Yagci Y. Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emine Guler
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Huseyin Akbulut
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Guliz Bozokalfa
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Bilal Demir
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Gizem Oyman Eyrilmez
- Department of Biotechnology; Graduate School of Natural and Applied Sciences; Ege University; 35100 Izmir Turkey
| | - Murat Yavuz
- Department of Chemistry; Faculty of Science; Dicle University; 21280 Diyarbakir Turkey
| | - Dilek Odaci Demirkol
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Hakan Coskunol
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
- Psychiatry Department; Faculty of Medicine; Ege University; 35100 Izmir Turkey
| | - Takeshi Endo
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Shuhei Yamada
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Suna Timur
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Yusuf Yagci
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department; Faculty of Science; King Abdulaziz University; PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
31
|
Oyman Eyrilmez G, Doran S, Murtezi E, Demir B, Odaci Demirkol D, Coskunol H, Timur S, Yagci Y. Selective Cell Adhesion and Biosensing Applications of Bio-Active Block Copolymers Prepared by CuAAC/Thiol-ene Double Click Reactions. Macromol Biosci 2015; 15:1233-41. [DOI: 10.1002/mabi.201500099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/21/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Gizem Oyman Eyrilmez
- Department of Biotechnology; Graduate School of Natural and Applied Sciences; Ege University; 35100 Izmir Turkey
| | - Sean Doran
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Eljesa Murtezi
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse; Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Hakan Coskunol
- Faculty of Medicine, Psychiatry Department; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse; Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Faculty of Science; Chemistry Department; Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
32
|
Ayranci R, Demirkol DO, Ak M, Timur S. Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors. SENSORS 2015; 15:1389-403. [PMID: 25591169 PMCID: PMC4327083 DOI: 10.3390/s150101389] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022]
Abstract
Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method.
Collapse
Affiliation(s)
- Rukiye Ayranci
- Chemistry Department, Faculty of Art and Science, Pamukkale University, 20070 Denizli, Turkey.
| | - Dilek Odaci Demirkol
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.
| | - Metin Ak
- Chemistry Department, Faculty of Art and Science, Pamukkale University, 20070 Denizli, Turkey.
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
33
|
Maione S, Gil AM, Fabregat G, del Valle LJ, Triguero J, Laurent A, Jacquemin D, Estrany F, Jiménez AI, Zanuy D, Cativiela C, Alemán C. Electroactive polymer–peptide conjugates for adhesive biointerfaces. Biomater Sci 2015; 3:1395-405. [DOI: 10.1039/c5bm00160a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conducting-polymer–peptide conjugates with controlled properties have been used as soft bioelectroactive supports for cell attachment.
Collapse
|
34
|
Ayranci R, Soganci T, Guzel M, Demirkol DO, Ak M, Timur S. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra07247f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present work, we performed a comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives.
Collapse
Affiliation(s)
- Rukiye Ayranci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Tugba Soganci
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Merve Guzel
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | | | - Metin Ak
- Pamukkale University
- Faculty of Art and Science
- Chemistry Department
- Denizli
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- 35100 Bornova
- Turkey
| |
Collapse
|