1
|
Yang Z, Acker SM, Brady AR, Rodríguez AA, Paredes LM, Ticona J, Mariscal GR, Vanzin GF, Ranville JF, Sharp JO. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162478. [PMID: 36871713 DOI: 10.1016/j.scitotenv.2023.162478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.
Collapse
Affiliation(s)
- Zhaoxun Yang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - Sarah M Acker
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Armando Arenazas Rodríguez
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Lino Morales Paredes
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Juana Ticona
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Giuliana Romero Mariscal
- Center for Mining Sustainability, United States of America; Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - James F Ranville
- Center for Mining Sustainability, United States of America; Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America; Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
2
|
Golubeva A, Roychoudhury P, Dąbek P, Pałczyńska J, Pryshchepa O, Piszczek P, Pomastowski P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Kurzydłowski KJ, Buszewski B, Witkowski A. A novel effective bio-originated methylene blue adsorbent: the porous biosilica from three marine diatom strains of Nanofrustulum spp. (Bacillariophyta). Sci Rep 2023; 13:9168. [PMID: 37280270 PMCID: PMC10244400 DOI: 10.1038/s41598-023-36408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland.
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875, Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Krzysztof J Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45 c, 15-351, Bialystok, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research and Development Centre, Krasińskiego 4, 87-100, Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| |
Collapse
|
3
|
Golubeva A, Roychoudhury P, Dąbek P, Pryshchepa O, Pomastowski P, Pałczyńska J, Piszczek P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Buszewski B, Witkowski A. Removal of the Basic and Diazo Dyes from Aqueous Solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta). Mar Drugs 2023; 21:md21050312. [PMID: 37233506 DOI: 10.3390/md21050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
4
|
Singh K, Krishna Paidi M, Kulshrestha A, Bharmoria P, Kumar Mandal S, Kumar A. Deep eutectic solvents based biorefining of Value-added chemicals from the diatom Thalassiosira andamanica at room temperature. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production.
Collapse
|
6
|
Gholami P, Khataee A, Bhatnagar A. Environmentally superior cleaning of diatom frustules using sono-Fenton process: Facile fabrication of nanoporous silica with homogeneous morphology and controlled size. ULTRASONICS SONOCHEMISTRY 2020; 64:105044. [PMID: 32146334 DOI: 10.1016/j.ultsonch.2020.105044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Existing techniques for the preparation of silica structures from diatom cells include cleaning of frustules through baking at high temperature and oxidant cleaning using concentrated sulfuric acid, hydrogen peroxide, nitric acid, or sodium dodecyl sulfate (SDS)/ethylenediaminetetraacetic acid (EDTA). In this study, sono-Fenton (SF) process was examined to prepare nanoporous silica through cleaning diatom frustules, while preserving their structural features. Single colonies of Cyclotella sp. were cultivated in batch mode f/2-enriched seawater. Combination of Fenton process with ultrasonication was found to be more efficient than the sum of individual processes in the removal of organic compounds from Cyclotella sp. structure. The optimized amounts of operational parameters were determined as suspension pH of 3, diatom cell density of 4.8 × 105 cell mL-1, H2O2 concentration of 60 mM, Fe2+ concentration of 15 mM, ultrasound irradiation power of 400 W and the temperature of 45 °C. The results of energy-dispersive X-ray spectroscopy (EDX) and thermal gravimetry (TG) analyses proved that organic materials covering the cell wall were significantly removed from the frustules through SF process. Scanning electron microscopy (SEM) images showed that after SF treatment, silica nanostructures were produced having uniform pores less than 15 nm in diameter. N2 adsorption-desorption isotherms demonstrated that almost non-porous structure of diatom frustules became mesoporous during removing the organic matrix. Lipids, amino acids, carbohydrates and organic acids or their oxidized products were identified using GC-MS analysis as the main organic compounds released from diatom cells to the solution after SF treatment. Treated frustules exhibited adsorption capability of 91.2 mg/g for Methylene Blue, which was almost 2.5 times higher than that of untreated frustules (34.8 mg/g).
Collapse
Affiliation(s)
- Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
7
|
Kraai JA, Rorrer GL, Wang AX. Highly-porous diatom biosilica stationary phase for thin-layer chromatography. J Chromatogr A 2019; 1591:162-170. [DOI: 10.1016/j.chroma.2019.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/16/2022]
|
8
|
Begum G, Oschatz C, Oschatz M, Kaskel S, Brunner E, Kröger N. Influence of silica architecture on the catalytic activity of immobilized glucose oxidase. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gousia Begum
- B Cube Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Council of Scientific and Industrial Research–Indian Institute of Chemical Technology, Hyderabad, India
| | - Cathleen Oschatz
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Martin Oschatz
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany; Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Kaskel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Nils Kröger
- B Cube Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Pytlik N, Butscher D, Machill S, Brunner E. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites? Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biosynthesis by diatoms provides a green approach for nanoparticle (NP) production. However, reproducible and homogeneous shapes are essential for their application. To improve these characteristics during biosynthesis, the underlying synthesis mechanisms as well as involved substances need to be understood. The first essential step for suitable analyses is the purification of Au-silica-nanocomposites from organic biomass. Succesfully cleaned nanocomposites could, for example, be useful as catalysts. In combination with the biosynthesized NPs, this material presents a “green” catalyst and could contribute to the currently thriving green nanochemistry. In this work, we compare different purification agents with respect to their ability to purify cells of the diatom Stephanopyxis turris without separating the biosynthesized Au-silica-nanocomposites from the diatom cell walls. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are used to localize and identify Au-silica-nanocomposites around the cells. The amount of remaining organic compounds on the purified cell is detected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, inductively coupled plasma optical emission spectrometry (ICP-OES) is used to track the “gold path” during cell growth and the different purifications steps.
Collapse
Affiliation(s)
- Nathalie Pytlik
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Daniel Butscher
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Susanne Machill
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
10
|
Zhen L, Ford N, Gale DK, Roesijadi G, Rorrer GL. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Biosens Bioelectron 2016; 79:742-8. [DOI: 10.1016/j.bios.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/20/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
|
11
|
Verbruggen SW. TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|