1
|
Nahorniak M, Oleksa V, Vasylyshyn T, Pop-Georgievski O, Rydvalová E, Filipová M, Horák D. Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091535. [PMID: 37177080 PMCID: PMC10180129 DOI: 10.3390/nano13091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Eliška Rydvalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
2
|
Rivas MV, Arenas Muñetón MJ, Bordoni AV, Lombardo MV, Spagnuolo CC, Wolosiuk A. Revisiting carboxylic group functionalization of silica sol-gel materials. J Mater Chem B 2023; 11:1628-1653. [PMID: 36752739 DOI: 10.1039/d2tb02279f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The carboxylic chemical group is a ubiquitous moiety present in amino acids, a ligand for transition metals, a colloidal stabilizer, and a weak acidic ion-exchanger in polymeric resins and given this property, it is attractive for responsive materials or nanopore-based gating applications. As the number of uses increases, subtle requirements are imposed on this molecular group when anchored to various platforms for the functioning of an integrated chemical system. In this context, silica stands as an inert and multipurpose platform that enables the anchoring of multiple chemical entities combined through several orthogonal synthesis methods on the interface. Surface chemical modification relies on the use of organoalkoxysilanes that must meet the demand of tuned chemical properties; this, in turn, urges for innovative approaches for having an improved, but simple, organic toolbox. Starting from commonly available molecular precursors, several approaches have emerged: hydrosilylation, click thiol-ene additions, the use of carbodiimides or the reaction between cyclic anhydrides and anchored amines. In this review, we analyze the importance of the COOH groups in the area of materials science and the commercial availability of COOH-based silanes and present new approaches for obtaining COOH-based organoalkoxide precursors. Undoubtedly, this will attract widespread interest for the ultimate design of highly integrated chemical platforms.
Collapse
Affiliation(s)
- M Verónica Rivas
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina. .,Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María J Arenas Muñetón
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - M Verónica Lombardo
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kembuan C, Oliveira H, Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:35-48. [PMID: 33489665 PMCID: PMC7801781 DOI: 10.3762/bjnano.12.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 05/07/2023]
Abstract
Upconversion nanoparticles (UCNPs), consisting of NaYF4 doped with 18% Yb and 2% Er, were coated with microporous silica shells with thickness values of 7 ± 2 and 21 ± 3 nm. Subsequently, the negatively charged particles were functionalized with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane (AHAPS), which provide a positive charge to the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that, over the course of 24h, particles with thicker shells release fewer lanthanide ions than particles with thinner shells. However, even a 21 ± 3 nm thick silica layer does not entirely block the disintegration process of the UCNPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and cell cytometry measurements performed on macrophages (RAW 264.7 cells) indicate that cells treated with amino-functionalized particles with a thicker silica shell have a higher viability than those incubated with UCNPs with a thinner silica shell, even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. Cell cycle analyses with amino-functionalized particles also confirm that thicker silica shells reduce cytotoxicity. Thus, growing silica shells to a sufficient thickness is a simple approach to minimize the cytotoxicity of UCNPs.
Collapse
Affiliation(s)
- Cynthia Kembuan
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christina Graf
- Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany
| |
Collapse
|
4
|
Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110951. [PMID: 32678752 DOI: 10.1016/j.ecoenv.2020.110951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The growing use of rare-earth doped upconversion nanoparticles (UCNPs) has caused increasing concern about their biosafety. Here, to understand the toxicity of UCNPs and their mechanism in HepG2 cells, we systematically study the cytotoxicity, uptake and elimination behaviors of three types of UCNPs combined multiple cytotoxicity evaluation means with inductively coupled plasma mass spectrometry (ICP-MS) detection. Sodium yttrium fluoride, doped with 18% (molar ratio) ytterbium and 2% erbium (NaYF4: Yb3+, Er3+) was selected as the model UCNPs with two sizes (35 and 55 nm), and the poly(acrylic acid) and polyethylenimine were selected as the representatives of negative and positive surface coating of UCNPs, respectively. UCNPs were found to induce cytotoxicity in time- and dose-dependent manners, which might be mediated by reactive oxygen species generation and oxidative stress. Apoptosis, inflammation, and metabolic process were enhanced after cells exposed to 200 mg/L UCNPs for 48 h. Increase in the protein levels of cleaved caspased-9, cleaved caspase-3 and Bax and decrease in the anti-apoptotic protein, Bcl-2 suggested that the mitochondria mediated pathway was involved in UCNP-induced apoptosis. With the aid of ICP-MS, it demonstrated that the cytotoxicity was associated with internalized amount of UCNPs, which largely relied on their surface properties rather than size in the tested range. By comparing UCNPs with Y3+ ions, it demonstrated that NPs properties played a nonnegligible role in the cytotoxicity of UCNPs. These findings provide new insights for fundamental understanding of cytotoxicity of UCNPs and may contribute to more rational use of these materials in the future.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Bloise N, Massironi A, Della Pina C, Alongi J, Siciliani S, Manfredi A, Biggiogera M, Rossi M, Ferruti P, Ranucci E, Visai L. Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Front Bioeng Biotechnol 2020; 8:132. [PMID: 32195232 PMCID: PMC7065572 DOI: 10.3389/fbioe.2020.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| | - Alessio Massironi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Pisa, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Rossi
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | - Livia Visai
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| |
Collapse
|
6
|
Chen Y, D'Amario C, Gee A, Duong HTT, Shimoni O, Valenzuela SM. Dispersion stability and biocompatibility of four ligand-exchanged NaYF 4: Yb, Er upconversion nanoparticles. Acta Biomater 2020; 102:384-393. [PMID: 31794872 DOI: 10.1016/j.actbio.2019.11.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Surface modification to obtain high dispersion stability and biocompatibility is a key factor for bio-application of upconversion nanoparticles (UCNPs). A systematic study of UCNPs modified with four hydrophilic molecules separately, comparing their dispersion stability in biological buffers and cellular biocompatibility is reported here. The results show that carboxyl-functionalized UCNPs (modified by 3,4-dihydrocinnamic acid (DHCA) or poly(monoacryloxyethyl phosphate (MAEP)) with negative surface charge have superior even-distribution in biological buffers compared to amino-functionalized UCNPs (modified by (aminomethyl)phosphonic (AMPA) or (3-Aminopropyl)triethoxysilane (APTES)) with positive surface charge. Subsequent investigation of cellular interactions revealed high levels of non-targeted cellular uptake of the particles modified with either of the three small molecules (AMPA, APTES, DHCA) and high levels of cytotoxicity when used at high concentrations. The particles were seen to be trapped as particle-aggregates within the cellular cytoplasm, leading to reduced cell viability and cell proliferation, along with dysregulation of the cell cycle as assessed by DNA content measurements. The dramatically reduced proportion of cells in G1 phase and the slightly increased proportion in G2 phase indicates inhibition of M phase, and the appearance of sub-G1 phase reflects cell necrosis. In contrast, MAEP-modified UCNPs are bio-friendly with increased dispersion stability in biological buffers, are non-cytotoxic, with negligible levels of non-specific cellular uptake and no effect on the cell cycle at both low and high concentrations. MAEP-modified UCNPs were further functionalized with streptavidin for intracellular microtubule imaging, and showed clear cytoskeletal structures via their upconversion luminescence. STATEMENT OF SIGNIFICANCE: Upconversion nanoparticles (UCNP) are an exciting potential nanomaterial for bio-applications. Their anti-Stokes luminescence makes them especially attractive to be used as imaging probes and thermal therapeutic reagents. Surface modification is the key to achieving stable and compatible hydrophilic-UCNPs. However, the lack of criteria to assess molecular ligands used for ligand exchange of nanoparticles has hampered the development of surface modification, and further limits UCNP's bio-application. Herein, we report a systematic comparative study of modified-UCNPs with four distinct hydrophilic molecules, assessing each particles' colloidal stability in biological buffers and their cellular biocompatibility. The protocol established here can serve as a potential guide for the surface modification of UCNPs in bio-applications.
Collapse
Affiliation(s)
- Yinghui Chen
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Claudia D'Amario
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Alex Gee
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Hien T T Duong
- The School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
7
|
Luminescence Studies and Judd-Ofelt Analysis on SiO 2@LaPO 4:Eu@SiO 2 Submicro-spheres with Different Size of Intermediate Shells. Sci Rep 2019; 9:13065. [PMID: 31506509 PMCID: PMC6737155 DOI: 10.1038/s41598-019-49323-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 11/08/2022] Open
Abstract
The novel submicro-spheres SiO2@LaPO4:Eu@SiO2 with core-shell-shell structures were prepared by connecting the SiO2 submicro-spheres and the rare earth ions through an organosilane HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3 (MABA-Si). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). It is found that the intermediate shell of the submicro-spheres was composed by LaPO4:Eu nanoparticles with the size of about 4, 5-7, or 15-34 nm. A possible formation mechanism for the SiO2@LaPO4:Eu@SiO2 submicro-spheres has been proposed. The dependence of the photoluminescence intensity on the size of the LaPO4:Eu nanoparticles has been investigated. The intensity ratios of electrical dipole transition 5D0 → 7F2 to magnetic dipole transition 5D0 → 7F1 of Eu3+ ions were increased with decreasing the size of LaPO4:Eu nanoparticles. According to the Judd-Ofelt (J-O) theory, when the size of LaPO4:Eu nanoparticles was about 4, 5-7 and 15-34 nm, the calculated J-O parameter Ω2 (optical transition intensity parameter) was 2.30 × 10-20, 1.80 × 10-20 and 1.20 × 10-20, respectively. The increase of Ω2 indicates that the symmetry of Eu3+ in the LaPO4 lattice was gradually reduced. The photoluminescence intensity of the SiO2@LaPO4:Eu@SiO2 submicro-spheres was unquenched in aqueous solution even after 15 days.
Collapse
|
8
|
Feng L, Li W, Bao J, Zheng Y, Li Y, Ma Y, Yang K, Qiao Y, Wu A. Synthesis and photoluminescence properties of silica-modified SiO 2@ANA-Si-Tb@SiO 2, SiO 2@ANA-Si-Tb-L@SiO 2 core-shell-shell nanostructured composites. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190182. [PMID: 31598231 PMCID: PMC6731695 DOI: 10.1098/rsos.190182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 05/24/2023]
Abstract
Three novel core-shell nanostructured composites SiO2@ANA-Si-Tb, SiO2@ANA-Si-Tb-L (L = second ligand) with SiO2 as the core and terbium organic complex as the shell were successfully synthesized. The core and shell were connected together by covalent bonds. The terbium ion was coordinated with organic ligand-forming terbium organic complex in the shell layer. The organosilane (HOOCC5H4NN(CONH(CH2)3Si(OCH2CH3)3)2 (abbreviated as ANA-Si) was used as the first ligand and 1,10-phenanthroline (phen) or 2-thenoyltrifluoroacetone (TTA) was used as the second ligand. Furthermore, silica-modified SiO2@ANA-Si-Tb@SiO2, SiO2@ANA-Si-Tb-L@SiO2 core-shell-shell nanostructured composites were also synthesized by sol-gel chemical route, which involved the hydrolysis and polycondensation processes of tetraethoxysilane (TEOS) using cetyltrimethyl ammonium bromide (CTAB) as a surface-active agent. An amorphous silica shell was coated around the SiO2@ANA-Si-Tb, SiO2@ANA-Si-Tb-L core-shell nanostructured composites. The core-shell and core-shell-shell nanostructured composites exhibited excellent luminescence in the solid state. Meanwhile, an improved luminescent stability property of the core-shell-shell nanostructured composites was observed for the aqueous solution. This type of core-shell-shell nanostructured composites exhibited bright luminescence, high stability and good solubility, which may present potential applications in the fields of optoelectronic devices, bio-imaging, medical diagnosis and study on the structure of function composite materials.
Collapse
Affiliation(s)
- Lina Feng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Wenxian Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinrong Bao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yushan Zheng
- Inner Mongolia Autonomous Region Food Inspection Test Center, Hohhot 010010, People's Republic of China
| | - Yilian Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yangyang Ma
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Kuisuo Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yan Qiao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Anping Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
9
|
Synthesis and Luminescence Properties of Core-Shell-Shell Composites: SiO₂@PMDA-Si-Tb@SiO₂ and SiO₂@PMDA-Si-Tb-phen@SiO₂. NANOMATERIALS 2019; 9:nano9020189. [PMID: 30717359 PMCID: PMC6410162 DOI: 10.3390/nano9020189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Two novel core-shell composites SiO₂@PMDA-Si-Tb, SiO₂@PMDA-Si-Tb-phen with SiO₂ as the core and terbium organic complex as the shell, were successfully synthesized. The terbium ion was coordinated with organic ligand forming terbium organic complex in the shell layer. The bi-functional organosilane ((HOOC)₂C₆H₂(CONH(CH₂)₃Si(OCH₂CH₃)₃)₂ (abbreviated as PMDA-Si) was used as the first ligand and phen as the second ligand. Furthermore, the silica-modified SiO₂@PMDA-Si-Tb@SiO₂ and SiO₂@PMDA-Si-Tb-phen@SiO₂ core-shell-shell composites were also synthesized by sol-gel chemical route. An amorphous silica shell was coated around the SiO₂@PMDA-Si-Tb and SiO₂@PMDA-Si-Tb-phen core-shell composites. The core-shell and core-shell-shell composites both exhibited excellent luminescence in solid state. The luminescence of core-shell-shell composites was stronger than that of core-shell composites. Meanwhile, an improved luminescence stability property for the core-shell-shell composites was found in the aqueous solution. The core-shell-shell composites exhibited bright luminescence, high stability, long lifetime, and good solubility, which may present potential applications in the bio-medical field.
Collapse
|
10
|
Surface Functionalisation of Upconversion Nanoparticles with Different Moieties for Biomedical Applications. SURFACES 2018. [DOI: 10.3390/surfaces1010009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lanthanide ion-doped upconversion nanoparticles (UCNPs) that can convert low-energy infrared photons into high-energy visible and ultraviolet photons, are becoming highly sought-after for advanced biomedical and biophotonics applications. Their unique luminescent properties enable UCNPs to be applied for diagnosis, including biolabeling, biosensing, bioimaging, and multiple imaging modality, as well as therapeutic treatments including photothermal and photodynamic therapy, bio-reductive chemotherapy and drug delivery. For the employment of the inorganic nanomaterials into biological environments, it is critical to bridge the gap in between nanoparticles and biomolecules via surface modifications and subsequent functionalisation. This work reviews the various ways to surface modify and functionalise UCNPs so as to impart different functional molecular groups to the UCNPs surfaces for a broad range of applications in biomedical areas. We discussed commonly used base functionalities, including carboxyl, amino and thiol moieties that are typically imparted to UCNP surfaces so as to provide further functional capacity.
Collapse
|
11
|
Zhang W, Jia H, Ye H, Dai T, Yin X, He J, Chen R, Wang Y, Pang X. Facile Fabrication of Transparent and Upconversion Photoluminescent Nanofiber Mats with Tunable Optical Properties. ACS OMEGA 2018; 3:8220-8225. [PMID: 31458959 PMCID: PMC6644511 DOI: 10.1021/acsomega.8b00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/12/2018] [Indexed: 06/10/2023]
Abstract
A facile fabrication strategy of transparent and upconversion photoluminescent nylon 6 (PA6) nanofiber mats was developed based on PA6 nanofiber mats, carboxylic acid-functionalized upconversion nanoparticles (UCNP-COOH), and poly(methyl methacrylate) (PMMA) solution. UCNP-COOH were prepared by a solvothermal method, followed by the ligand exchange process. The electrospinning method and the spin-coating process were employed to combine PA6 nanofiber mats with UCNP-COOH and PMMA to introduce upconversion photoluminescent properties and transparency into the nanocomposite mats, respectively. The prepared UCNP-COOH/PA6/PMMA nanofiber mats are transparent and exhibit green emission, which are similar to UCNP-COOH when they were excited under 980 nm laser. The upconversion luminescent intensity of the functional nanofiber mats can be tailored by adjusting the weight fraction of UCNP-COOH as fillers. This facile strategy can be readily used to other types of intriguing nanocomposites for diverse applications.
Collapse
Affiliation(s)
| | | | - Haoming Ye
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tianzhi Dai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianhao He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ruyi Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yudong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Goh Y, Song YH, Lee G, Bae H, Mahata MK, Lee KT. Cellular uptake efficiency of nanoparticles investigated by three-dimensional imaging. Phys Chem Chem Phys 2018; 20:11359-11368. [PMID: 29644351 DOI: 10.1039/c8cp00493e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the interaction of nanoparticles with living cells on the basis of cellular uptake efficiency is a fundamental requisite in biomedical research. Cellular internalization of nanoparticles takes place by mechanisms like ATP hydrolysis-driven endocytosis that deliver nanoparticles to the cytoplasm, organelles and nuclei. Despite its importance in nanomedicine, this uptake procedure is not understood in-depth because of the complexity of the biochemical mechanisms and the lack of available experimental methods for quantitative analysis. The only breakthrough is likely to be the development of imaging techniques that can visualize, monitor and even count the number of nanoparticles inside the cell. To this end, we report here a new, fast and background-free three-dimensional (3-D) imaging technique with quantitative evaluation of the uptake efficiency for NaYF4:Yb3+,Er3+/NaYF4 core/shell upconversion nanoparticles (UCNPs) functionalized with different chemical and biological groups. Furthermore, the multiple 3-D trajectories of the UCNPs have been analyzed to investigate the cellular dynamics. This study reveals the nuclear uptake of UCNPs to be dependent on the specific chemical groups conjugated to the UCNPs. The developed 3-D imaging technique is of great significance for exploring complex biological systems.
Collapse
Affiliation(s)
- Yeongchang Goh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Ansari AA. Silica-modified luminescent LaPO 4 :Eu@LaPO 4 @SiO 2 core/shell nanorods: Synthesis, structural and luminescent properties. LUMINESCENCE 2017; 33:112-118. [PMID: 28816400 DOI: 10.1002/bio.3379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
Monoclinic-type tetragonal LaPO4 :Eu (core) and LaPO4 :Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Ma Y, Ji Y, You M, Wang S, Dong Y, Jin G, Lin M, Wang Q, Li A, Zhang X, Xu F. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb(3+),Er(3+) upconversion nanoparticles. Acta Biomater 2016; 42:199-208. [PMID: 27435964 DOI: 10.1016/j.actbio.2016.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/25/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) hold great promise as cell therapy candidate in clinics. However, the underlying mechanisms remain elusive due to the lack of effective cell tracking approaches during therapeutic processes. In this study, we successfully synthesized and utilized NaYF4:Yb(3+),Er(3+) upconversion nanoparticles (UCNPs) to label and track rabbit bone marrow mesenchymal stem cells (rBMSCs) during the osteogenic differentiation in vitro. To improve their biocompatibility and cellular uptake, we modified the UCNPs with negatively-charged poly(acrylic acid) and positively-charged poly(allylamine hydrochloride) in turns (i.e., PAH-PAA-UCNPs). The effect of cellular uptake of UCNPs on the osteogenic differentiation of rBMSCs was systematically evaluated, and no significant difference was found between rBMSCs labeled with UCNPs (concentration range of 0-50μg/mL) and UCNPs-free rBMSCs in terms of cell viability, ALP activity, osteogenic protein expressions and production of mineralized nodules. Moreover, the PAH-PAA-UCNPs at a concentration of 50μg/mL exhibited the highest biocompatibility and stability, which could well track rBMSCs during the osteogenesis process. These results would provide a positive reference for the application of these lanthanide-doped UCNPs as fluorescent nanoprobes for stem cell tracking to further understand the mechanism of stem cell fate in tissue engineering and stem cell therapy. STATEMENT OF SIGNIFICANCE Upconversion nanoparticles (UCNPs) have attracted increasing attention as alternative probes for tracking various types of cells including stem cells. The reported fluorapatite-based UCNPs with the needle-like morphology showed a little poor performance on stem cell tracking, which was possibly attributed to the low upconversion efficiency and cell labeling efficiency potentially due to nanomaterial composition, crystal structure and shape. Here, we synthesized the positively-charged NaYF4:Yb(3+),Er(3+) UCNPs with hexagonal phase and sphere-like morphology to enhance their upconversion efficiency, biocompatibility and cellular uptake, leading to a successful tracking of rBMSCs in osteogenesis process without impairing cell viability and differentiation capacity. This study provided a necessary reference for the application of UCNPs in stem cell tracking to better understand the mechanism of stem cell fate in tissue engineering, stem cell therapy, etc.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shurui Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qiong Wang
- Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, PR China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|