1
|
Le X, Chan J, McMahon J, Wisniewski JA, Coldham A, Alan T, Kwan P. A Finger-Actuated Sample-Dosing Capillary-Driven Microfluidic Device for Loop-Mediated Isothermal Amplification. BIOSENSORS 2024; 14:410. [PMID: 39329785 PMCID: PMC11430145 DOI: 10.3390/bios14090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) has attracted significant attention for rapid and accurate point-of-care diagnostics. However, integrating sample introduction, lysis, amplification, and detection steps into an easy-to-use, disposable system has so far been challenging. This has limited the uptake of the technique in practical applications. In this study, we developed a colourimetric one-step LAMP assay that combines thermolysis and LAMP reaction, to detect the SARS-CoV-2 virus in nasopharyngeal swab samples from COVID-19-infected individuals. The limit of detection was 500 copies per reaction at 65 °C for 25 min in reaction tubes. Additionally, we developed a finger-operated capillary-driven microfluidic device with selective PVA coating. This finger-actuated microfluidic device could self-dose the required sample amount for the LAMP reaction and inhibit sample evaporation. Finally, we integrated the LAMP assay into the microfluidic device by short-term pre-storage of the LAMP master mix. Using this device, nasopharyngeal swab samples from COVID-19-infected individuals showed positive results at a reaction time of 35 min at 65 °C. This integrated device may be adapted to detect other RNA viruses of interest rapidly.
Collapse
Affiliation(s)
- Xuan Le
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; (X.L.); (J.C.)
- Dynamic Micro Devices Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jianxiong Chan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; (X.L.); (J.C.)
| | - James McMahon
- Department of Infectious Disease, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Disease, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Anna Coldham
- Department of Infectious Disease, Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tuncay Alan
- Dynamic Micro Devices Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; (X.L.); (J.C.)
| |
Collapse
|
2
|
Khoo H, Allen WS, Arroyo-Currás N, Hur SC. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing. Sci Rep 2024; 14:17646. [PMID: 39085631 PMCID: PMC11291766 DOI: 10.1038/s41598-024-68761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Microfluidic devices have immense potential for widespread community use, but a current bottleneck is the transition from research prototyping into mass production because the gold standard prototyping strategy is too costly and labor intensive when scaling up fabrication throughput. For increased throughput, it is common to mold devices out of thermoplastics due to low per-unit costs at high volumes. However, conventional fabrication methods have high upfront development expenses with slow mold fabrication methods that limit the speed of design evolution for expedited marketability. To overcome this limitation, we propose a rapid prototyping protocol to fabricate thermoplastic devices from a stereolithography (SLA) 3D printed template through intermediate steps akin to those employed in soft lithography. We apply this process towards the design of self-operating capillaric circuits, well suited for deployment as low-cost decentralized assays. Rapid development of these geometry- and material-dependent devices benefits from prototyping with thermoplastics. We validated the constructed capillaric circuits by performing an autonomous, pre-programmed, bead-based immunofluorescent assay for protein quantification. Overall, this prototyping method provides a valuable means for quickly iterating and refining microfluidic devices, paving the way for future scaling of production.
Collapse
Affiliation(s)
- Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles ST., Latrobe 105, Baltimore, MD, 21218, USA
| | | | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles ST., Latrobe 105, Baltimore, MD, 21218, USA.
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
3
|
Newman G, Leclerc A, Arditi W, Calzuola ST, Feaugas T, Roy E, Perrault CM, Porrini C, Bechelany M. Challenge of material haemocompatibility for microfluidic blood-contacting applications. Front Bioeng Biotechnol 2023; 11:1249753. [PMID: 37662438 PMCID: PMC10469978 DOI: 10.3389/fbioe.2023.1249753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Biological applications of microfluidics technology is beginning to expand beyond the original focus of diagnostics, analytics and organ-on-chip devices. There is a growing interest in the development of microfluidic devices for therapeutic treatments, such as extra-corporeal haemodialysis and oxygenation. However, the great potential in this area comes with great challenges. Haemocompatibility of materials has long been a concern for blood-contacting medical devices, and microfluidic devices are no exception. The small channel size, high surface area to volume ratio and dynamic conditions integral to microchannels contribute to the blood-material interactions. This review will begin by describing features of microfluidic technology with a focus on blood-contacting applications. Material haemocompatibility will be discussed in the context of interactions with blood components, from the initial absorption of plasma proteins to the activation of cells and factors, and the contribution of these interactions to the coagulation cascade and thrombogenesis. Reference will be made to the testing requirements for medical devices in contact with blood, set out by International Standards in ISO 10993-4. Finally, we will review the techniques for improving microfluidic channel haemocompatibility through material surface modifications-including bioactive and biopassive coatings-and future directions.
Collapse
Affiliation(s)
- Gwenyth Newman
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | - Audrey Leclerc
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Université de Toulouse, Toulouse, France
| | - William Arditi
- Eden Tech, Paris, France
- Centrale Supélec, Gif-sur-Yvette, France
| | - Silvia Tea Calzuola
- Eden Tech, Paris, France
- UMR7648—LadHyx, Ecole Polytechnique, Palaiseau, France
| | - Thomas Feaugas
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | | | | | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
4
|
Lopresti F, Patella B, Divita V, Zanca C, Botta L, Radacsi N, O’Riordan A, Aiello G, Kersaudy-Kerhoas M, Inguanta R, La Carrubba V. Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat. SENSORS (BASEL, SWITZERLAND) 2022; 22:8223. [PMID: 36365929 PMCID: PMC9654961 DOI: 10.3390/s22218223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of cold plasma treatment on the transparency and bonding strength of PLA sheets was investigated. The PLA membrane, to act as a sweat absorption pad, was directly deposited onto the membrane holder layer by means of an electrolyte-assisted electrospinning technique. The membrane adhesion capacity was investigated by indentation tests in both dry and wet modes. The integrated device made of PLA and silver-based electrodes was used to quantify chloride ions. The calibration tests revealed that the proposed sensor platform could quantify chloride ions in a sensitive and reproducible way. The chloride ions were also quantified in a real sweat sample collected from a healthy volunteer. Therefore, we demonstrated the feasibility of a green and integrated sweat sensor that can be applied directly on human skin to quantify chloride ions.
Collapse
Affiliation(s)
- Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Bernardo Patella
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vito Divita
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Alan O’Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, T12R5CP Cork, Ireland
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maïwenn Kersaudy-Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
5
|
Giri K, Tsao CW. Recent Advances in Thermoplastic Microfluidic Bonding. MICROMACHINES 2022; 13:486. [PMID: 35334777 PMCID: PMC8949906 DOI: 10.3390/mi13030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Microfluidics is a multidisciplinary technology with applications in various fields, such as biomedical, energy, chemicals and environment. Thermoplastic is one of the most prominent materials for polymer microfluidics. Properties such as good mechanical rigidity, organic solvent resistivity, acid/base resistivity, and low water absorbance make thermoplastics suitable for various microfluidic applications. However, bonding of thermoplastics has always been challenging because of a wide range of bonding methods and requirements. This review paper summarizes the current bonding processes being practiced for the fabrication of thermoplastic microfluidic devices, and provides a comparison between the different bonding strategies to assist researchers in finding appropriate bonding methods for microfluidic device assembly.
Collapse
Affiliation(s)
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 320, Taiwan;
| |
Collapse
|
6
|
Othayoth AK, Paul S, Muralidharan K. Polyvinyl alcohol-phytic acid polymer films as promising gas/vapor sorption materials. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02603-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Heterogeneous Bonding of PMMA and Double-Sided Polished Silicon Wafers through H2O Plasma Treatment for Microfluidic Devices. COATINGS 2021. [DOI: 10.3390/coatings11050580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.
Collapse
|
8
|
|
9
|
Trinh KT, Thai DA, Chae WR, Lee NY. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment. ACS OMEGA 2020; 5:17396-17404. [PMID: 32715224 PMCID: PMC7377064 DOI: 10.1021/acsomega.0c01770] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 05/17/2023]
Abstract
In the present study, we introduce a new approach for rapid bonding of poly(methyl methacrylate) (PMMA)-based microdevices using an acetic acid solvent with the assistance of UV irradiation. For the anticipated mechanism, acetic acid and UV irradiation induced free radicals on the PMMA surfaces, and acrylate monomers subsequently formed cross-links to create a permanent bonding between the PMMA substrates. PMMA devices effectively bonded within 30 s at a low pressure using clamps, and a clogging-free microchannel was achieved with the optimized 50% acetic acid. For surface characterizations, contact angle measurements and bonding performance analyses were conducted using predetermined acetic acid concentrations to optimize bonding conditions. In addition, the highest bond strength of bonded PMMA was approximately 11.75 MPa, which has not been reported before in the bonding of PMMA. A leak test was performed over 180 h to assess the robustness of the proposed method. Moreover, to promote the applicability of this bonding method, we tested two kinds of microfluidic device applications, including a cell culture-based device and a metal microelectrode-integrated device. The results showed that the cell culture-based application was highly biocompatible with the PMMA microdevices fabricated using an acetic acid solvent. Moreover, the low pressure required during the bonding process supported the integration of metal microelectrodes with the PMMA microdevice without any damage to the metal films. This novel bonding method holds great potential in the ecofriendly and rapid fabrication of microfluidic devices using PMMA.
Collapse
Affiliation(s)
- Kieu The
Loan Trinh
- Department
of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Duc Anh Thai
- Department
of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Woo Ri Chae
- BioNano
Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department
of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|
10
|
Nawar S, Stolaroff JK, Ye C, Wu H, Nguyen DT, Xin F, Weitz DA. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. LAB ON A CHIP 2020; 20:147-154. [PMID: 31782446 DOI: 10.1039/c9lc00966c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic devices enable the production of uniform double emulsions with control over droplet size and shell thickness. However, the limited production rate of microfluidic devices precludes the use of monodisperse double emulsions for industrial-scale applications, which require large quantities of droplets. To increase throughput, devices can be parallelized to contain many dropmakers operating simultaneously in one chip, but this is challenging to do for double emulsion dropmakers. Production of double emulsions requires dropmakers to have both hydrophobic and hydrophilic channels, requiring spatially precise patterning of channel surface wettability. Precise wettability patterning is difficult for devices containing multiple dropmakers, posing a significant challenge for parallelization. In this paper, we present a multilayer dropmaker geometry that greatly simplifies the process of producing microfluidic devices with excellent spatial control over channel wettability. Wettability patterning is achieved through the independent functionalization of channels in each layer prior to device assembly, rendering the dropmaker with a precise step between hydrophobic and hydrophilic channels. This device geometry enables uniform wettability patterning of parallelized dropmakers, providing a scalable approach for the production of double emulsions.
Collapse
Affiliation(s)
- Saraf Nawar
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01238, USA.
| | | | - Congwang Ye
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01238, USA. and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Du Thai Nguyen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Feng Xin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01238, USA. and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01238, USA. and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Sun P, Besser RS. Evaluation of Polymethylmethacrylate Cohesion Behavior with a Gas‐Assisted Thermal Bonding Method. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pei‐Kang Sun
- Department of Chemical Engineering and Materials ScienceStevens Institute of Technology Hoboken New Jersey 07030
| | - Ronald S. Besser
- Department of Chemical Engineering and Materials ScienceStevens Institute of Technology Hoboken New Jersey 07030
| |
Collapse
|
12
|
Sivakumar R, Lee NY. Microfluidic device fabrication mediated by surface chemical bonding. Analyst 2020; 145:4096-4110. [DOI: 10.1039/d0an00614a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review discusses on various bonding techniques for fabricating microdevices with a special emphasis on the modification of surface assisted by the use of chemicals to assemble microfluidic devices at room temperature under atmospheric pressure.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial and Environmental Engineering
- College of Industrial Environmental Engineering
- Gachon University
- Seongnam-si
- Korea
| | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Korea
| |
Collapse
|
13
|
CO 2 Laser Fabrication of PMMA Microfluidic Double T-Junction Device with Modified Inlet-Angle for Cost-Effective PCR Application. MICROMACHINES 2019; 10:mi10100678. [PMID: 31600884 PMCID: PMC6843704 DOI: 10.3390/mi10100678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
The formation of uniform droplets and the control of their size, shape and monodispersity are of utmost importance in droplet-based microfluidic systems. The size of the droplets is precisely tuned by the channel geometry, the surface interfacial tension, the shear force and fluid velocity. In addition, the fabrication technique and selection of materials are essential to reduce the fabrication cost and time. In this paper, for reducing the fabrication cost Polymethyl methacrylate (PMMA) sheet is used with direct write laser technique by VERSA CO2 laser VLS3.5. This laser writing technique gives minimum channel width of about 160 μm, which limit miniaturizing the droplet. To overcome this, modification on double T-junction (DTJ) channel geometry has been done by modifying the channel inlets angles. First, a two-dimensional (2D) simulation has been done to study the effect of the new channel geometry modification on droplet size, droplets distribution inside the channel, and its throughput. The fabricated modified DTJ gives the minimum droplet diameter of 39±2 μm, while DTJ channel produced droplet diameter of 48±4 μm at the same conditions. Moreover, the modified double T-junction (MDTJ) decreases the variation in droplets diameter at the same flow rates by 4.5–13% than DTJ. This low variation in the droplet diameter is suitable for repeatability of the DNA detection results. The MDTJ also enhanced the droplet generation frequency by 8–25% more than the DTJ channel. The uniformity of droplet distribution inside the channel was enhanced by 3–20% compared to the DTJ channel geometry. This fabrication technique eliminates the need for a photomask and cleanroom environment in addition shortening the cost and time. It takes only 20 min for fabrication. The minimum generated droplet diameter is within 40 μm with more than 1000 droplets per second (at 10 mL/h. oil flow rate). The device is a high-throughput and low-cost micro-droplet formation aimed to be as a front-end to a dynamic droplet digital PCR (ddPCR) platform for use in resource-limited environment.
Collapse
|
14
|
Klunder KJ, Clark KM, McCord C, Berg KE, Minteer SD, Henry CS. Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. LAB ON A CHIP 2019; 19:2589-2597. [PMID: 31250868 PMCID: PMC6801002 DOI: 10.1039/c9lc00417c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Combining electrochemistry with microfluidics is attractive for a wide array of applications including multiplexing, automation, and high-throughput screening. Electrochemical instrumentation also has the advantage of being low-cost and can enable high analyte sensitivity. For many electrochemical microfluidic applications, carbon electrodes are more desirable than noble metals because they are resistant to fouling, have high activity, and large electrochemical solvent windows. At present, fabrication of electrochemical microfluidic devices bearing integrated carbon electrodes remains a challenge. Here, a new system for integrating polycaprolactone (PCL) and carbon composite electrodes into microfluidics is presented. The PCL : carbon composites have excellent electrochemical activity towards a wide range of analytes as well as high electrical conductivity (∼1000 S m-1). The new system utilizes a laser cutter for fast, simple fabrication of microfluidics using PCL as a bonding layer. As a proof-of-concept application, oil-in-water and water-in-oil droplets are electrochemically analysed. Small-scale electrochemical organic synthesis for TEMPO mediated alcohol oxidation is also demonstrated.
Collapse
Affiliation(s)
- Kevin J Klunder
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA. and Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaylee M Clark
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Cynthia McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kathleen E Berg
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Tian R, Li K, Shi W, Ding C, Lu C. In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. LAB ON A CHIP 2019; 19:934-940. [PMID: 30810141 DOI: 10.1039/c8lc01336e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence visualization for hydrophilic spatial heterogeneity inside microfluidic chips is a long-standing challenge owing to the lack of fluorescent dyes with high contrast between the target and the background noise. Herein, we used boronic acid in aggregation-induced emission (AIE) molecules as an anchor group towards modified hydroxyl groups, and an in situ visualization approach for hydrophilic spatial heterogeneity inside microfluidic chips was demonstrated. This success is based on the high-contrast of fluorescent behaviors for AIE molecules in aqueous solution and their immobilization by hydroxyl groups inside the microfluidic channels. In comparison to conventional laboratory-based ex situ techniques, the proposed strategy provides a direct representation for hydrophilic spatial heterogeneity, including the quantity and distribution of hydroxyl groups. This discovery not only identifies a previously unknown variability in hydrophilic spatial heterogeneity inside microfluidic channels, but also guides an optimal hydrophilic modification method in the channels.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
16
|
Miryahyaei S, Olinga K, Abdul Muthalib FA, Das T, Ab Aziz MS, Othman M, Baudez JC, Batstone D, Eshtiaghi N. Impact of rheological properties of substrate on anaerobic digestion and digestate dewaterability: New insights through rheological and physico-chemical interaction. WATER RESEARCH 2019; 150:56-67. [PMID: 30508714 DOI: 10.1016/j.watres.2018.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Mesophilic batch anaerobic digesters fed by different substrates were set up to identify the role of substrate rheology in anaerobic digestion performance while operating below the toxic level. Five substrates of different rheological behaviour but at the same amount of organic matters were prepared by addition of different amount of an inert material (0, 0.03, 0.07, 0.11, and 0.20 g) per g of waste activated sludge (WAS). To gain a comprehensive insight, the interactive relationship between substrate rheology, physico-chemical properties and biogas production as well as digestate dewaterability was investigated. The results proved that better access of microorganisms to organic matters improved the digester performance and led to 19.29% and 12.5% increase in biogas yield and VS removal efficiency, respectively. Moreover, the statistical analysis showed that consistency index and loss modulus of sludge could be employed as promising indications for biogas yield while yield stress could predict dewaterability of digestate as far as the other physico-chemical properties remained unchanged. During digestion measurement of consistency index and loss modulus of digestate could be performed as a reliable tool to monitor biogas production.
Collapse
Affiliation(s)
- S Miryahyaei
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - K Olinga
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - F A Abdul Muthalib
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - T Das
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - M S Ab Aziz
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - M Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - J C Baudez
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux, Luxembourg
| | - D Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Australia
| | - N Eshtiaghi
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Australia.
| |
Collapse
|
17
|
Streck S, Hong L, Boyd BJ, McDowell A. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems. Pharm Nanotechnol 2019; 7:423-443. [PMID: 31629401 DOI: 10.2174/2211738507666191019154815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microfluidics is becoming increasingly of interest as a superior technique for the synthesis of nanoparticles, particularly for their use in nanomedicine. In microfluidics, small volumes of liquid reagents are rapidly mixed in a microchannel in a highly controlled manner to form nanoparticles with tunable and reproducible structure that can be tailored for drug delivery. Both polymer and lipid-based nanoparticles are utilized in nanomedicine and both are amenable to preparation by microfluidic approaches. AIM Therefore, the purpose of this review is to collect the current state of knowledge on the microfluidic preparation of polymeric and lipid nanoparticles for pharmaceutical applications, including descriptions of the main synthesis modalities. Of special interest are the mechanisms involved in nanoparticle formation and the options for surface functionalisation to enhance cellular interactions. CONCLUSION The review will conclude with the identification of key considerations for the production of polymeric and lipid nanoparticles using microfluidic approaches.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| | - Linda Hong
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Arlene McDowell
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
YANG M, HUANG Z, CHANG J, YOU H. A Novel Solution-auto-introduction Electrophoresis Microchip Based on Capillary Force. ANAL SCI 2018; 34:1285-1290. [DOI: 10.2116/analsci.18p199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mingpeng YANG
- Institute of Intelligent Machines, Chinese Academy of Sciences
- University of Science and Technology of China
| | - Zhe HUANG
- Institute of Intelligent Machines, Chinese Academy of Sciences
- University of Science and Technology of China
| | - Jianguo CHANG
- Institute of Intelligent Machines, Chinese Academy of Sciences
- University of Science and Technology of China
| | - Hui YOU
- Institute of Intelligent Machines, Chinese Academy of Sciences
- University of Science and Technology of China
| |
Collapse
|
19
|
Islam MM, Loewen A, Allen PB. Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles. Sci Rep 2018; 8:8763. [PMID: 29884895 PMCID: PMC5993776 DOI: 10.1038/s41598-018-27037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 11/23/2022] Open
Abstract
Hydrogel microparticles were copolymerized with surface-immobilized DNA. Particles derived from a microfluidic device and particles derived from mechanical homogenization were compared. The hypothesis was tested that a controlled droplet generation mechanism would produce more homogeneous particles. Surprisingly, the DNA content of both particle types was similarly inhomogeneous. To make this test possible, a simple, low cost, and rapid method was developed to fabricate a microfluidic chip for droplet generation and in-line polymerization. This method used a low-cost laser cutter ($400) and direct heat bonding (no adhesives or intermediate layers). The flow focusing droplet generator produced droplets and hydrogel particles 10-200 μm in diameter.
Collapse
Affiliation(s)
- Md Mamunul Islam
- University of Idaho, Department of Chemistry, 875 Perimeter Dr., Moscow, ID, 83844-2343, USA
| | - Amanda Loewen
- University of Idaho, Department of Chemistry, 875 Perimeter Dr., Moscow, ID, 83844-2343, USA
| | - Peter B Allen
- University of Idaho, Department of Chemistry, 875 Perimeter Dr., Moscow, ID, 83844-2343, USA.
| |
Collapse
|
20
|
Razavi M, Thakor AS. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:54. [PMID: 29725867 PMCID: PMC6190679 DOI: 10.1007/s10856-018-6077-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/21/2018] [Indexed: 05/24/2023]
Abstract
In this study, 3D macroporous bioscaffolds were developed from poly(dimethylsiloxane) (PDMS) which is inert, biocompatible, non-biodegradable, retrievable and easily manufactured at low cost. PDMS bioscaffolds were synthesized using a solvent casting and particulate leaching (SCPL) technique and exhibited a macroporous interconnected architecture with 86 ± 3% porosity and 300 ± 100 µm pore size. As PDMS intrinsically has a hydrophobic surface, mainly due to the existence of methyl groups, its surface was modified by oxygen plasma treatment which, in turn, enabled us to apply a novel polydopamine coating onto the surface of the bioscaffold. The addition of a polydopamine coating to bioscaffolds was confirmed using composition analysis. Characterization of oxygen plasma treated-PDMS bioscaffolds coated with polydopamine (polydopamine coated-PDMS bioscaffolds) showed the presence of hydroxyl and secondary amines on their surface which resulted in a significant decrease in water contact angle when compared to uncoated-PDMS bioscaffolds (35 ± 3%, P < 0.05). Seeding adipose tissue-derived mesenchymal stem cells (AD-MSCs) into polydopamine coated-PDMS bioscaffolds resulted in cells demonstrating a 70 ± 6% increase in viability and 40 ± 5% increase in proliferation when compared to AD-MSCs seeded into uncoated-PDMS bioscaffolds (P < 0.05). In summary, this two-step method of oxygen plasma treatment followed by polydopamine coating improves the biocompatibility of PDMS bioscaffolds and only requires the use of simple reagents and mild reaction conditions. Hence, our novel polydopamine coated-PDMS bioscaffolds can represent an efficient and low-cost bioscaffold platform to support MSC therapies.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
21
|
YANG MP, HUANG Z, XIE Y, YOU H. Development of Microchip Electrophoresis and Its Applications in Ion Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Li Y, Song Y, Li J, Li Y, Li N, Niu S. A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. ULTRASONICS SONOCHEMISTRY 2018; 42:18-25. [PMID: 29429659 DOI: 10.1016/j.ultsonch.2017.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/08/2023]
Abstract
In this article, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) is synthesized from PVA and PA via the esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation, and PVA/PA polymer sponge is prepared via foaming PVA/PA polymer in the presence of n-pentane and ammonium bicarbonate, and the structure of PVA/PA polymer and the structure, morphology and crystallinity of PVA/PA polymer sponge are characterized, and the thermal stability and surface resistivity of PVA/PA polymer sponge are investigated. Based on these, it has been attested that PVA/PA polymer synthesized under the acidity and ultrasound irradiation and PVA/PA polymer sponge are structured by the chain of PVA and the cricoid PA connected in the form of ether bonds and phosphonate bonds, and the thermal stability of PVA/PA polymer sponge attains 416.5 °C, and the surface resistivity of PVA/PA polymer sponge reaches 5.76 × 104 ohms/sq.
Collapse
Affiliation(s)
- Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Yunna Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Yuehai Li
- Department of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Ning Li
- The Real Estate CO., LTD. of CSCEC, Beijing 100070, PR China
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| |
Collapse
|
23
|
Huang Y, Campana O, Wlodkowic D. A Millifluidic System for Analysis of Daphnia magna Locomotory Responses to Water-born Toxicants. Sci Rep 2017; 7:17603. [PMID: 29242636 PMCID: PMC5730546 DOI: 10.1038/s41598-017-17892-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
Aquatic toxicity testing in environmental monitoring and chemical risk assessment is critical to assess water quality for human use as well as predict impact of pollutants on ecosystems. In recent years, studies have increasingly focused on the relevance of sub-lethal effects of environmental contaminants. Sub-lethal toxicity endpoints such as behavioural responses are highly integrative and have distinct benefits for assessing water quality because they occur rapidly and thus can be used to sense the presence of toxicants. Our work describes a Lab-on-a-Chip system for the automated analysis of freshwater cladoceran Daphnia magna locomotory responses to water-born toxicants. The design combines a Lab-on-a-Chip system for Daphnia sp. culture under perfusion with time-resolved videomicroscopy and software tracking locomotory activity of multiple specimens. The application of the system to analyse the swimming behaviour of water fleas exposed to different concentrations of water-born toxicants demonstrated that Lab-on-a-Chip devices can become important research tools for behavioural ecotoxicology and water quality biomonitoring.
Collapse
Affiliation(s)
- Yushi Huang
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Olivia Campana
- Instituto de Ciencias Marinas de Andalucia, CSIC, Cadiz, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University, Melbourne, VIC, Australia. .,Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
24
|
Li J, Li Y, Song Y, Niu S, Li N. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. ULTRASONICS SONOCHEMISTRY 2017; 39:853-862. [PMID: 28733015 DOI: 10.1016/j.ultsonch.2017.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time.
Collapse
Affiliation(s)
- Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Yunna Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Ning Li
- The Real Estate Co., Ltd. of CSCEC Beijing, 100070, PR China
| |
Collapse
|
25
|
Lin TY, Pfeiffer TT, Lillehoj PB. Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices. RSC Adv 2017; 7:37374-37379. [PMID: 29308188 PMCID: PMC5708361 DOI: 10.1039/c7ra07435b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/23/2017] [Indexed: 01/24/2023] Open
Abstract
Thermoplastics are becoming a popular material for fabricating microfluidic devices and there is an increasing need for robust surface modification strategies. UV/ozone (UVO) treatment is a simple and effective method for making plastic surfaces more hydrophilic. Prior reports on the stability of UVO-treated plastics are limited to four weeks, which is not sufficient for applications requiring long-term storage. Here, we present new findings on the long-term stability of UVO-treated plastics for up to 16 weeks and show that the storage condition has a significant impact on the surface stability. Static contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were performed on UVO-treated cyclic olefin copolymer (COC), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) stored in air, dehumidified and vacuum conditions. We found that the hydrophobic recovery of UVO-treated COC and PC can be inhibited by storing them in dehumidified or vacuum conditions, whereas the stability of PMMA is not significantly influenced by the storage condition. Protein adsorption studies were carried out and showed that there is a significant reduction in the amount of protein adsorption on UVO-treated plastics compared with untreated plastics. Lastly, UVO-treated PMMA microchannels were fabricated and used for capillary-driven flow, which revealed that longer treatment durations generate faster flow rates. These collective results offer new insights into the utility of UVO-treated plastics for microfluidic analytical applications.
Collapse
Affiliation(s)
- Tung-Yi Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Trey T Pfeiffer
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Chen XY, Li TY, Zhang S, Yao Z, Chen XD, Zheng Y, Liu YL. Research on Optimizing Parameters of Thermal Bonding Technique for PMMA Microfluidic Chip. INT POLYM PROC 2017. [DOI: 10.3139/217.3372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The thermal bonding method is an advanced processing technology, which can bond a variety of polymer sheets on request. This work aims to analyze the effect of applied loading, heating temperature and duration on the depth loss of the PMMA microfluidic chip after bonding. Several experiments were designed by us and the results were analyzed by orthogonal experimental method. Finally optimal applied loading, heating temperature and duration were obtained and in the optimal case, the bonded microfluidic chip has small depth loss and enough strength.
Collapse
Affiliation(s)
- X. Y. Chen
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - T. Y. Li
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - S. Zhang
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - Z. Yao
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - X. D. Chen
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - Y. Zheng
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - Y. L. Liu
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| |
Collapse
|
27
|
High stability under extreme condition of the poly(vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Tsao CW. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. MICROMACHINES 2016; 7:mi7120225. [PMID: 30404397 PMCID: PMC6189853 DOI: 10.3390/mi7120225] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
Using polymer materials to fabricate microfluidic devices provides simple, cost effective, and disposal advantages for both lab-on-a-chip (LOC) devices and micro total analysis systems (μTAS). Polydimethylsiloxane (PDMS) elastomer and thermoplastics are the two major polymer materials used in microfluidics. The fabrication of PDMS and thermoplastic microfluidic device can be categorized as front-end polymer microchannel fabrication and post-end microfluidic bonding procedures, respectively. PDMS and thermoplastic materials each have unique advantages and their use is indispensable in polymer microfluidics. Therefore, the proper selection of polymer microfabrication is necessary for the successful application of microfluidics. In this paper, we give a short overview of polymer microfabrication methods for microfluidics and discuss current challenges and future opportunities for research in polymer microfluidics fabrication. We summarize standard approaches, as well as state-of-art polymer microfluidic fabrication methods. Currently, the polymer microfluidic device is at the stage of technology transition from research labs to commercial production. Thus, critical consideration is also required with respect to the commercialization aspects of fabricating polymer microfluidics. This article provides easy-to-understand illustrations and targets to assist the research community in selecting proper polymer microfabrication strategies in microfluidics.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
29
|
Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen NT. Active droplet generation in microfluidics. LAB ON A CHIP 2016; 16:35-58. [PMID: 26555381 DOI: 10.1039/c5lc01012h] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.
Collapse
Affiliation(s)
- Zhuang Zhi Chong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia.
| | - Alfonso M Gañán-Calvo
- Depto. de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain.
| | - Shu Beng Tor
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ngiap Hiang Loh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road QLD 4111, Brisbane, Australia.
| |
Collapse
|
30
|
Shi H, Gan Q, Liu X, Ma Y, Hu J, Yuan Y, Liu C. Poly(glycerol sebacate)-modified polylactic acid scaffolds with improved hydrophilicity, mechanical strength and bioactivity for bone tissue regeneration. RSC Adv 2015. [DOI: 10.1039/c5ra13334c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polylactic acid (PLA) has been extensively researched in biomedical engineering applications due to its superior mechanical strength and biocompatibility in vivo.
Collapse
Affiliation(s)
- Hengsong Shi
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Qi Gan
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- East China University of Science and Technology
- Shanghai
- China
| | - Yifan Ma
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Jun Hu
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- East China University of Science and Technology
- Shanghai
- China
| | - Yuan Yuan
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| |
Collapse
|