1
|
He S, Zhang Q, Jia J, Xia W, Chen S, Min F, Song Y, Yu Y, Li J, Li Z, Luo G. Stiffness and surface topology of silicone implants competitively mediate inflammatory responses of macrophages and foreign body response. Mater Today Bio 2024; 29:101304. [PMID: 39498150 PMCID: PMC11532915 DOI: 10.1016/j.mtbio.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Adverse inflammatory responses, dominated by macrophages, that are induced by physical cues of silicone implants can heavily damage the life quality of patients via causing fibrosis and device failure. As stiffness and surface topology affect macrophages at the same time, the competition or partnership among physical cues against the regulation of macrophages is still ambiguous. Herein, a series of PDMS implants with different stiffness at ∼ MPa and surface topology at tens of micrometers were fabricated to investigate the relationship, the regulation rule, and the underlying mechanism of the two physical cues against the inflammatory responses of M1 macrophages. There is a competitive rule: surface topology could suppress the inflammatory responses of M1 macrophages in the soft group but did not have the same effect in the stiff group. Without surface topology, lower stiffness unexpectedly evoked stronger inflammatory responses of M1 macrophages. Implanting experiments also proved that the competitive state against mediating in vivo immune responses and the unexpected inflammatory responses. The reason is that stiffness could strongly up-regulate focal adhesion and activate the MAPK/NF-κB signaling axis to evoke inflammatory responses, which could shield the effect of surface topology. Therefore, for patient healthcare, it is crucial to prioritize stiffness while not surface topology at MPa levels to minimize adverse reactions.
Collapse
Affiliation(s)
- Sicen He
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wei Xia
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Shengnan Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanyi Min
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, PR China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zheng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
2
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
3
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
4
|
Kim AR, Mitra S, Shyam S, Zhao B, Mitra SK. Flexible hydrogels connecting adhesion and wetting. SOFT MATTER 2024; 20:5516-5526. [PMID: 38651874 DOI: 10.1039/d4sm00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Raindrops falling on window-panes spread upon contact, whereas hail can cause dents or scratches on the same glass window upon contact. While the former phenomenon resembles classical wetting, the latter is dictated by contact and adhesion theories. The classical Young-Dupre law applies to the wetting of pure liquids on rigid solids, whereas conventional contact mechanics theories account for rigid-on-soft or soft-on-rigid contacts with small deformations in the elastic limit. However, the crossover between adhesion and wetting is yet to be fully resolved. The key lies in the study of soft-on-soft interactions with material properties intermediate between liquids and solids. In this work, we translate adhesion to wetting by experimentally probing the static signature of hydrogels in contact with soft PDMS of varying elasticity of both the components. Consequently, we probe this transition across six orders of magnitude in terms of the characteristic elasto-adhesive parameter of the system. In doing so, we reveal previously unknown phenomenology and a theoretical model which smoothly bridges adhesion of glass spheres with total wetting of pure liquids on any given substrate.
Collapse
Affiliation(s)
- A-Reum Kim
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Surjyasish Mitra
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sudip Shyam
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sushanta K Mitra
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Lipkowitz G, Saccone MA, Panzer MA, Coates IA, Hsiao K, Ilyn D, Kronenfeld JM, Tumbleston JR, Shaqfeh ESG, DeSimone JM. Growing three-dimensional objects with light. Proc Natl Acad Sci U S A 2024; 121:e2303648121. [PMID: 38950359 PMCID: PMC11252790 DOI: 10.1073/pnas.2303648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/07/2024] [Indexed: 07/03/2024] Open
Abstract
Vat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry. Today, VP materials are used in a variety of practical applications and are produced at industrial scale. In this perspective, we trace the developments that enabled this printing revolution by focusing on the enabling themes of light, interfaces, and materials. We focus on these fundamentals as they relate to continuous liquid interface production (CLIP), but provide context for the broader VP field. We identify the fundamental physics of the printing process and the key breakthroughs that have enabled faster and higher-resolution printing, as well as production of better materials. We show examples of how in situ print process monitoring methods such as optical coherence tomography can drastically improve our understanding of the print process. Finally, we highlight areas of recent development such as multimaterial printing and inorganic material printing that represent the next frontiers in VP methods.
Collapse
Affiliation(s)
- Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Max A. Saccone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | | | - Ian A. Coates
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Kaiwen Hsiao
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | - Daniel Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | | | | | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Joseph M. DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| |
Collapse
|
6
|
Dufour A, Essayan L, Thomann C, Petiot E, Gay I, Barbaroux M, Marquette C. Confined bioprinting and culture in inflatable bioreactor for the sterile bioproduction of tissues and organs. Sci Rep 2024; 14:11003. [PMID: 38744985 PMCID: PMC11093974 DOI: 10.1038/s41598-024-60382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The future of organ and tissue biofabrication strongly relies on 3D bioprinting technologies. However, maintaining sterility remains a critical issue regardless of the technology used. This challenge becomes even more pronounced when the volume of bioprinted objects approaches organ dimensions. Here, we introduce a novel device called the Flexible Unique Generator Unit (FUGU), which is a unique combination of flexible silicone membranes and solid components made of stainless steel. Alternatively, the solid components can also be made of 3D printed medical-grade polycarbonate. The FUGU is designed to support micro-extrusion needle insertion and removal, internal volume adjustment, and fluid management. The FUGU was assessed in various environments, ranging from custom-built basic cartesian to sophisticated 6-axis robotic arm bioprinters, demonstrating its compatibility, flexibility, and universality across different bioprinting platforms. Sterility assays conducted under various infection scenarios highlight the FUGU's ability to physically protect the internal volume against contaminations, thereby ensuring the integrity of the bioprinted constructs. The FUGU also enabled bioprinting and cultivation of a 14.5 cm3 human colorectal cancer tissue model within a completely confined and sterile environment, while allowing for the exchange of gases with the external environment. This FUGU system represents a significant advancement in 3D bioprinting and biofabrication, paving the path toward the sterile production of implantable tissues and organs.
Collapse
Affiliation(s)
- Alexandre Dufour
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Lucie Essayan
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Céline Thomann
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | - Christophe Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Universite Claude Bernard Lyon 1, Villeurbanne, France.
| |
Collapse
|
7
|
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. MEMBRANES 2024; 14:109. [PMID: 38786943 PMCID: PMC11123063 DOI: 10.3390/membranes14050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Zhian Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
8
|
Zhang Z, Chaudhuri K, Kaefer F, Malanoski AP, Page KA, Smieska LM, Pham JT, Ober CK. Controlling Anti-Penetration Performance by Post-Grafting of Fluorinated Alkyl Chains onto Polystyrene- block-poly(vinyl methyl siloxane). ACS APPLIED MATERIALS & INTERFACES 2024; 16:19594-19604. [PMID: 38588386 DOI: 10.1021/acsami.4c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene-block-poly(vinyl methyl siloxane) (PS-b-PVMS) using thiol-ene click reactions. This article reports the chemical characterization of these model fluorosilicone block copolymers and uses fluorescence measurements to investigate the dye penetration characteristics of polymer thin films. The introduction of longer fluorinated alkyl chains can gradually increase the anti-penetration properties as the time to reach the maximum fluorescence intensity (tpeak) gradually increases from 11 s of PS-b-PVMS to more than 1000 s of PS-b-P(n-C6F13-VMS). The improvement of anti-penetration properties is attributed to stronger inter-/intrachain interactions, phase segregation of ordered fluorinated side chains, and enhanced hydrophobicity caused by the grafting of fluorinated alkyl chains.
Collapse
Affiliation(s)
- Zhenglin Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Krishnaroop Chaudhuri
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Florian Kaefer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, District of Columbia 20375, United States
| | - Kirt A Page
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Louisa M Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Yang Y, He T, Ravindran P, Wen F, Krishnamurthy P, Wang L, Zhang Z, Kumar PP, Chae E, Lee C. All-organic transparent plant e-skin for noninvasive phenotyping. SCIENCE ADVANCES 2024; 10:eadk7488. [PMID: 38363835 PMCID: PMC10871535 DOI: 10.1126/sciadv.adk7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Real-time in situ monitoring of plant physiology is essential for establishing a phenotyping platform for precision agriculture. A key enabler for this monitoring is a device that can be noninvasively attached to plants and transduce their physiological status into digital data. Here, we report an all-organic transparent plant e-skin by micropatterning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on polydimethylsiloxane (PDMS) substrate. This plant e-skin is optically and mechanically invisible to plants with no observable adverse effects to plant health. We demonstrate the capabilities of our plant e-skins as strain and temperature sensors, with the application to Brassica rapa leaves for collecting corresponding parameters under normal and abiotic stress conditions. Strains imposed on the leaf surface during growth as well as diurnal fluctuation of surface temperature were captured. We further present a digital-twin interface to visualize real-time plant surface environment, providing an intuitive and vivid platform for plant phenotyping.
Collapse
Affiliation(s)
- Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
10
|
Paul AA, Aladese AD, Marks RS. Additive Manufacturing Applications in Biosensors Technologies. BIOSENSORS 2024; 14:60. [PMID: 38391979 PMCID: PMC10887193 DOI: 10.3390/bios14020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Three-dimensional (3D) printing technology, also known as additive manufacturing (AM), has emerged as an attractive state-of-the-art tool for precisely fabricating functional materials with complex geometries, championing several advancements in tissue engineering, regenerative medicine, and therapeutics. However, this technology has an untapped potential for biotechnological applications, such as sensor and biosensor development. By exploring these avenues, the scope of 3D printing technology can be expanded and pave the way for groundbreaking innovations in the biotechnology field. Indeed, new printing materials and printers would offer new possibilities for seamlessly incorporating biological functionalities within the growing 3D scaffolds. Herein, we review the additive manufacturing applications in biosensor technologies with a particular emphasis on extrusion-based 3D printing modalities. We highlight the application of natural, synthetic, and composite biomaterials as 3D-printed soft hydrogels. Emphasis is placed on the approach by which the sensing molecules are introduced during the fabrication process. Finally, future perspectives are provided.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
| | - Adedamola D. Aladese
- Department of Physics and Material Science, University of Memphis, Memphis, TN 38152, USA;
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel;
- Ilse Katz Centre for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
11
|
Lachance GP, Gauvreau D, Boisselier É, Boukadoum M, Miled A. Breaking Barriers: Exploring Neurotransmitters through In Vivo vs. In Vitro Rivalry. SENSORS (BASEL, SWITZERLAND) 2024; 24:647. [PMID: 38276338 PMCID: PMC11154401 DOI: 10.3390/s24020647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Neurotransmitter analysis plays a pivotal role in diagnosing and managing neurodegenerative diseases, often characterized by disturbances in neurotransmitter systems. However, prevailing methods for quantifying neurotransmitters involve invasive procedures or require bulky imaging equipment, therefore restricting accessibility and posing potential risks to patients. The innovation of compact, in vivo instruments for neurotransmission analysis holds the potential to reshape disease management. This innovation can facilitate non-invasive and uninterrupted monitoring of neurotransmitter levels and their activity. Recent strides in microfabrication have led to the emergence of diminutive instruments that also find applicability in in vitro investigations. By harnessing the synergistic potential of microfluidics, micro-optics, and microelectronics, this nascent realm of research holds substantial promise. This review offers an overarching view of the current neurotransmitter sensing techniques, the advances towards in vitro microsensors tailored for monitoring neurotransmission, and the state-of-the-art fabrication techniques that can be used to fabricate those microsensors.
Collapse
Affiliation(s)
| | - Dominic Gauvreau
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| | - Élodie Boisselier
- Department Ophthalmology and Otolaryngology—Head and Neck Surgery, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Mounir Boukadoum
- Department Computer Science, Université du Québec à Montréal, Montréal, QC H2L 2C4, Canada;
| | - Amine Miled
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| |
Collapse
|
12
|
Seo S, Kim T. Gas transport mechanisms through gas-permeable membranes in microfluidics: A perspective. BIOMICROFLUIDICS 2023; 17:061301. [PMID: 38025658 PMCID: PMC10656118 DOI: 10.1063/5.0169555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Gas-permeable membranes (GPMs) and membrane-like micro-/nanostructures offer precise control over the transport of liquids, gases, and small molecules on microchips, which has led to the possibility of diverse applications, such as gas sensors, solution concentrators, and mixture separators. With the escalating demand for GPMs in microfluidics, this Perspective article aims to comprehensively categorize the transport mechanisms of gases through GPMs based on the penetrant type and the transport direction. We also provide a comprehensive review of recent advancements in GPM-integrated microfluidic devices, provide an overview of the fundamental mechanisms underlying gas transport through GPMs, and present future perspectives on the integration of GPMs in microfluidics. Furthermore, we address the current challenges associated with GPMs and GPM-integrated microfluidic devices, taking into consideration the intrinsic material properties and capabilities of GPMs. By tackling these challenges head-on, we believe that our perspectives can catalyze innovative advancements and help meet the evolving demands of microfluidic applications.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Author to whom correspondence should be addressed:. Tel.: +82-52-217-2313. Fax: +82-52-217-2409
| |
Collapse
|
13
|
Baban NS, Saha S, Jancheska S, Singh I, Khapli S, Khobdabayev M, Kim J, Bhattacharjee S, Song YA, Chakrabarty K, Karri R. Material-level countermeasures for securing microfluidic biochips. LAB ON A CHIP 2023; 23:4213-4231. [PMID: 37605818 DOI: 10.1039/d3lc00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by either doping with reactive solvents or altering the PDMS curing ratio during fabrication. Such attacks are stealthy enough to evade detection and deteriorate the FMB's function. Furthermore, material-level attacks can become prevalent in attacks based on intellectual property (IP) theft, such as counterfeiting, overbuilding, etc., which involve unscrupulous third-party manufacturers. To address this problem, we present a dynamic material-level watermarking scheme for PDMS-based FMBs with microvalves using a perylene-labeled fluorescent dye. The dyed microvalves show a unique excimer intensity peak under 405 nm laser excitation. Moreover, when pneumatically actuated, the peak shows a predetermined downward shift in intensity as a function of mechanical strain. We validated this protection scheme experimentally using fluorescence microscopy, which showed a high correlation (R2 = 0.971) between the normalized excimer intensity change and the maximum principal strain of the actuated microvalves. To detect curing ratio-based attacks, we adapted machine learning (ML) models, which were trained on the force-displacement data obtained from a mechanical punch test method. Our ML models achieved more than 99% accuracy in detecting curing ratio anomalies. These countermeasures can be used to proactively safeguard FMBs against material-level attacks in the era of global pandemics and diagnostics based on POCTs.
Collapse
Affiliation(s)
- Navajit Singh Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sohini Saha
- Department of Electrical and Computer Engineering, Duke University, Durham, USA
| | - Sofija Jancheska
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Inderjeet Singh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sachin Khapli
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Maksat Khobdabayev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jongmin Kim
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sukanta Bhattacharjee
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Krishnendu Chakrabarty
- School of Electrical, Computer and Energy Engineering, Arizona State University, Phoenix, Arizona, USA
| | - Ramesh Karri
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
14
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
15
|
Cho IH, Ji MG, Kim J. Pursuit of hidden rules behind the irregularity of nano capillary lithography by hybrid intelligence. Sci Rep 2023; 13:13649. [PMID: 37608050 PMCID: PMC10444899 DOI: 10.1038/s41598-023-41022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Nature finds a way to leverage nanotextures to achieve desired functions. Recent advances in nanotechnologies endow fascinating multi-functionalities to nanotextures by modulating the nanopixel's height. But nanoscale height control is a daunting task involving chemical and/or physical processes. As a facile, cost-effective, and potentially scalable remedy, the nanoscale capillary force lithography (CFL) receives notable attention. The key enabler is optical pre-modification of photopolymer's characteristics via ultraviolet (UV) exposure. Still, the underlying physics of the nanoscale CFL is not well understood, and unexplained phenomena such as the "forbidden gap" in the nano capillary rise (unreachable height) abound. Due to the lack of large data, small length scales, and the absence of first principles, direct adoptions of machine learning or analytical approaches have been difficult. This paper proposes a hybrid intelligence approach in which both artificial and human intelligence coherently work together to unravel the hidden rules with small data. Our results show promising performance in identifying transparent, physics-retained rules of air diffusivity, dynamic viscosity, and surface tension, which collectively appear to explain the forbidden gap in the nanoscale CFL. This paper promotes synergistic collaborations of humans and AI for advancing nanotechnology and beyond.
Collapse
Affiliation(s)
- In Ho Cho
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Myung Gi Ji
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jaeyoun Kim
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Lee J, Park JI, Lee SH, Jang J, Kang IM, Park J, Zhang X, Kim DK, Bae JH. One-Stop Strategy for Obtaining Controllable Sensitivity and Feasible Self-Patterning in Silver Nanowires/Elastomer Nanocomposite-Based Stretchable Ultrathin Strain Sensors. Biomacromolecules 2023; 24:3775-3785. [PMID: 37405812 DOI: 10.1021/acs.biomac.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In this study, selective photo-oxidation (SPO) is proposed as a simple, fast, and scalable one-stop strategy that enables simultaneous self-patterning and sensitivity adjustment of ultrathin stretchable strain sensors. The SPO of an elastic substrate through irradiation time-controlled ultraviolet treatment in a confined region enables precise tuning of both the surface energy and the elastic modulus. SPO induces the hydrophilization of the substrate, thereby allowing the self-patterning of silver nanowires (AgNWs). In addition, it promotes the formation of nonpermanent microcracks of AgNWs/elastomer nanocomposites under the action of strain by increasing the elastic modulus. This effect improves sensor sensitivity by suppressing the charge transport pathway. Consequently, AgNWs are directly patterned with a width of 100 μm or less on the elastic substrate, and AgNWs/elastomer-based ultrathin and stretchable strain sensors with controlled sensitivity work reliably in various operating frequencies and cyclic stretching. Sensitivity-controlled strain sensors successfully detect both small and large movements of the human hand.
Collapse
Affiliation(s)
- Jinuk Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jun-Ik Park
- Semiconductor Integrated Metrology Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Sin-Hyung Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jaewon Jang
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - In-Man Kang
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jaehoon Park
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Xue Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Do-Kyung Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
18
|
Salehi A, Naserzadeh P, Tarighi P, Afjeh-Dana E, Akhshik M, Jafari A, Mackvandi P, Ashtari B, Mozafari M. Fabrication of a microfluidic device for probiotic drug's dosage screening: Precision Medicine for Breast Cancer Treatment. Transl Oncol 2023; 34:101674. [PMID: 37224765 DOI: 10.1016/j.tranon.2023.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancer is the most common cancer in women; it has been affecting the lives of millions each year globally and microfluidic devices seem to be a promising method for the future advancements in this field. This research uses a dynamic cell culture condition in a microfluidic concentration gradient device, helping us to assess breast anticancer activities of probiotic strains against MCF-7 cells. It has been shown that MCF-7 cells could grow and proliferate for at least 24 h; however, a specific concentration of probiotic supernatant could induce more cell death signaling population after 48 h. One of our key findings was that our evaluated optimum dose (7.8 mg/L) was less than the conventional static cell culture treatment dose (12 mg/L). To determine the most effective dose over time and the percentage of apoptosis versus necrosis, flowcytometric assessment was performed. Exposing the MCF-7 cells to probiotic supernatant after 6, 24 and 48 h, confirmed that the apoptotic and necrotic cell death signaling were concentration and time dependent. We have shown a case that these types of microfluidics platforms performing dynamic cell culture could be beneficial in personalized medicine and cancer therapy.
Collapse
Affiliation(s)
- Ali Salehi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Akhshik
- Centre for Biocomposites and Biomaterials Processing. University of Toronto, Canada; EPICentre, University of Windsor, Canada
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Pooyan Mackvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Mozafari
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Coelho BJ, Neto JP, Sieira B, Moura AT, Fortunato E, Martins R, Baptista PV, Igreja R, Águas H. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization. SENSORS (BASEL, SWITZERLAND) 2023; 23:4927. [PMID: 37430841 DOI: 10.3390/s23104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF-DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF-DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.
Collapse
Affiliation(s)
- Beatriz J Coelho
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Joana P Neto
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Bárbara Sieira
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - André T Moura
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, I4HB, Department of Life Sciences, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
20
|
Wang Z, Jiang Z, Lu R, Kou L, Zhao YZ, Yao Q. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm 2023; 187:130-140. [PMID: 37105362 DOI: 10.1016/j.ejpb.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.
Collapse
Affiliation(s)
- Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
21
|
Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions. Polymers (Basel) 2023; 15:1926. [PMID: 37112073 PMCID: PMC10147032 DOI: 10.3390/polym15081926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.
Collapse
Affiliation(s)
- Anthony Tony
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Chun Yang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Yuyi Liu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, Saskatoon, SK S7N 2V3, Canada;
| | - Kemin Wang
- School of Mechatronics and Automation, Shanghai University, Shanghai 200444, China;
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; (A.T.); (C.Y.); (Y.L.)
| |
Collapse
|
22
|
Gundu S, Sahi AK, Kumari P, Vishwakarma NK, Mahto SK. Assessment of various forms of cellulose-based Luffa cylindrica (mat, flakes and powder) reinforced polydimethylsiloxane composites for oil sorption and organic solvents absorption. Int J Biol Macromol 2023; 240:124416. [PMID: 37060975 DOI: 10.1016/j.ijbiomac.2023.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Oil spillage has damaged public health noticeably and contributed to significant environmental deterioration. As a result, a significant amount of effort has been spent on investigating and developing the sorbent materials capable of separating oil from water. Thus, the sorbent materials that could be effective particularly in oil spill disposal and resolve such environmental issue remain to be explored. We have proposed luffa cylindrica (LC)-polydimethylsiloxane (PDMS) composite forms to remove the oil and organic components that might be hazardous to aquatic organisms. The scaffolds were fabricated using hand lay-up method with various forms of luffa cylindrica i.e., LC mat, flakes and powder. Various characterizations such as scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), effective porosity, surface wettability, mechanical stability, cytotoxicity and sorption behavior with respect to oil, phosphate buffer saline (PBS) and few organic solvents were performed. The results showed that the scaffold in combination with P-L flakes was highly effective in eradicating oil spills and removing harmful components of crude oil. Scaffolds composed of P-L mat, P-L flakes, P-L powder, and PDMS (P) exhibited oil absorption efficacy around 16.09 ± 4.62 %, 24.49 ± 3.55 %, 15.52 ± 2.67 % and 5.52 ± 1.44 %, respectively. We anticipate that the proposed scaffolds have the tremendous potential to provide a solution to this significant environmental remediation issue and to serve as a cost-effective method for removing oil spills and hazardous crude oil components.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Niraj K Vishwakarma
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
23
|
Xiang X, Wang X, Shang Y, Ding Y. Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol. Polymers (Basel) 2023; 15:polym15041006. [PMID: 36850290 PMCID: PMC9958961 DOI: 10.3390/polym15041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and microfabrication. PDMS exhibits some promising properties suitable for building microfluidic devices; however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microfluidic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative and open for future research.
Collapse
|
25
|
Zhang R, Deng Z, Chang J, Zhao Z, Wang S, Meng G. Bifunctional role of PDMS membrane in designing humidity-tolerant H 2S chemiresistors with high selectivity. Chem Commun (Camb) 2023; 59:1689-1692. [PMID: 36692125 DOI: 10.1039/d2cc05880d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A thermally evaporated hydrophobic PDMS membrane could significantly mitigate humidity interference/poisoning (without a decline in response at 50% RH for nearly 3 months) and enhance the selectivity of a CuCrO2 chemiresistor toward erosive H2S, offering an avenue for the practical applications of (H2S) chemiresistors in an ambient humid air atmosphere.
Collapse
Affiliation(s)
- Ruofan Zhang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China.,Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China. .,Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China. .,Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China. .,Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zhongyao Zhao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, 230026, China.,Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China. .,Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei, 230031, China. .,Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
26
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
27
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
28
|
Liu D, Tian X, Bai J, Wang Y, Cheng Y, Ning W, Chan PKL, Wu K, Sun J, Zhang S. Intrinsically Stretchable Organic Electrochemical Transistors with Rigid-Device-Benchmarkable Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203418. [PMID: 35904088 PMCID: PMC9561867 DOI: 10.1002/advs.202203418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 05/29/2023]
Abstract
Intrinsically stretchable organic electrochemical transistors (OECTs) are being pursued as the next-generation tissue-like bioelectronic technologies to improve the interfacing with the soft human body. However, the performance of current intrinsically stretchable OECTs is far inferior to their rigid counterparts. In this work, for the first time, the authors report intrinsically stretchable OECTs with overall performance benchmarkable to conventional rigid devices. In particular, oxygen level in the stretchable substrate is revealed to have a significant impact on the on/off ratio. By employing stretchable substrates with low oxygen permeabilities, the on/off ratio is elevated from ≈10 to a record-high value of ≈104 , which is on par with a rigid OECT. The device remained functional after cyclic stretching tests. This work demonstrates that intrinsically stretchable OECTs have the potential to serve as a new building block for emerging soft bioelectronic applications such as electronic skin, soft implantables, and soft neuromorphic computing.
Collapse
Affiliation(s)
- Dingyao Liu
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Xinyu Tian
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Jing Bai
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Yan Wang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Yixun Cheng
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Weijie Ning
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| | - Paddy K. L. Chan
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
| | - Kai Wu
- State Key Laboratory of Polymer Materials EngineeringCollege of Polymer Science and EngineeringSichuan UniversityChengdu610065China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Shiming Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong SARChina
| |
Collapse
|
29
|
Dalsbecker P, Beck Adiels C, Goksör M. Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 2022; 323:G188-G204. [PMID: 35819853 DOI: 10.1152/ajpgi.00346.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiologically relevant and broadly applicable liver cell culture platforms are of great importance in both drug development and disease modeling. Organ-on-a-chip systems offer a promising alternative to conventional, static two-dimensional (2-D) cultures, providing much-needed cues such as perfusion, shear stress, and three-dimensional (3-D) cell-cell communication. However, such devices cover a broad range of complexity both in manufacture and in implementation. In this review, we summarize the key features of the human liver that should be reflected in a physiologically relevant liver-on-a-chip model. We also discuss different material properties of importance in producing liver-on-a-chip devices and summarize recent and current progress in the field, highlighting different types of devices at different levels of complexity.
Collapse
Affiliation(s)
| | | | - Mattias Goksör
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research. BIOSENSORS 2022; 12:bios12070459. [PMID: 35884262 PMCID: PMC9313151 DOI: 10.3390/bios12070459] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022]
Abstract
Taking the life of nearly 10 million people annually, cancer has become one of the major causes of mortality worldwide and a hot topic for researchers to find innovative approaches to demystify the disease and drug development. Having its root lying in microelectronics, microfluidics seems to hold great potential to explore our limited knowledge in the field of oncology. It offers numerous advantages such as a low sample volume, minimal cost, parallelization, and portability and has been advanced in the field of molecular biology and chemical synthesis. The platform has been proved to be valuable in cancer research, especially for diagnostics and prognosis purposes and has been successfully employed in recent years. Organ-on-a-chip, a biomimetic microfluidic platform, simulating the complexity of a human organ, has emerged as a breakthrough in cancer research as it provides a dynamic platform to simulate tumor growth and progression in a chip. This paper aims at giving an overview of microfluidics and organ-on-a-chip technology incorporating their historical development, physics of fluid flow and application in oncology. The current applications of microfluidics and organ-on-a-chip in the field of cancer research have been copiously discussed integrating the major application areas such as the isolation of CTCs, studying the cancer cell phenotype as well as metastasis, replicating TME in organ-on-a-chip and drug development. This technology’s significance and limitations are also addressed, giving readers a comprehensive picture of the ability of the microfluidic platform to advance the field of oncology.
Collapse
Affiliation(s)
- Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur 44700, Nepal
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Chetan Poudel
- Department of Physics, Kathmandu University, Dhulikhel 45200, Nepal;
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu 44600, Nepal;
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
- Correspondence:
| |
Collapse
|
31
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
32
|
Kim JU, Park H, Ok J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, Kim TI. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced Soft Cranial Window for Long-Term In Vivo Brain Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15035-15046. [PMID: 35344336 DOI: 10.1021/acsami.2c01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, transparent poly(dimethyl siloxane) (PDMS)-based cranial windows in animal models have created many opportunities to investigate brain functions with multiple in vivo imaging modalities. However, due to the hydrophobic nature of PDMS, the wettability by cerebrospinal fluid (CSF) is poor, which may cause air bubble trapping beneath the window during implantation surgery, and favorable heterogeneous bubble nucleation at the interface between hydrophobic PDMS and CSF. This may result in excessive growth of the entrapped bubble under the soft cranial window. Herein, to yield biocompatibility-enhanced, trapped bubble-minimized, and soft cranial windows, this report introduces a CSF-philic PDMS window coated with hydroxyl-enriched poly(vinyl alcohol) (PVA) for long-term in vivo imaging. The PVA-coated PDMS (PVA/PDMS) film exhibits a low contact angle θACA (33.7 ± 1.9°) with artificial CSF solution and maintains sustained CSF-philicity. The presence of the PVA layer achieves air bubble-free implantation of the soft cranial window, as well as induces the formation of a thin wetting film that shows anti-biofouling performance through abundant water molecules on the surface, leading to long-term optical clarity. In vivo studies on the mice cortex verify that the soft and CSF-philic features of the PVA/PDMS film provide minimal damage to neuronal tissues and attenuate immune response. These advantages of the PVA/PDMS window are strongly correlated with the enhancement of cortical hemodynamic changes and the local field potential recorded through the PVA/PDMS film, respectively. This collection of results demonstrates the potential for future microfluidic platforms for minimally invasive CSF extraction utilizing a CSF-philic fluidic passage.
Collapse
Affiliation(s)
- Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyejin Park
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Juheon Lee
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jiwon Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaehyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN Inc., N Center Bldg. A 5F, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Effect of Photo-Mediated Ultrasound Therapy on Nitric Oxide and Prostacyclin from Endothelial Cells. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35983461 PMCID: PMC9384428 DOI: 10.3390/app12052617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI2) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used. The vessels were treated with ultrasound-only (0.5, 1.0, 1.5 and 2.0 MPa peak negative pressure at 0.5 MHz with 10% duty cycle), laser-only (5, 10, 15 and 20 mJ/cm2 at 532 nm with a pulse width of 5 ns), and synchronized laser and ultrasound (PUT) treatments. Passive cavitation detection was used to determine the cavitation activities during treatment. The levels of NO and PGI2 generally increased when the applied ultrasound pressure and laser fluence were low. The increases in NO and PGI2 levels were significantly reduced by 37.2% and 42.7%, respectively, from 0.5 to 1.5 MPa when only ultrasound was applied. The increase in NO was significantly reduced by 89.5% from 5 to 20 mJ/cm2, when only the laser was used. In the PUT group, for 10 mJ/cm2 laser fluence, the release of NO decreased by 76.8% from 0.1 to 1 MPa ultrasound pressure. For 0.5 MPa ultrasound pressure in the PUT group, the release of PGI2 started to decrease by 144% from 15 to 20 mJ/cm2 laser fluence. The decreases in NO and PGI2 levels coincided with the increased cavitation activities in each group. In conclusion, PUT can induce a significant reduction in the release of NO and PGI2 in comparison with ultrasound-only and laser-only treatments.
Collapse
|
34
|
Novel Microfluidics Device for Rapid Antibiotics Susceptibility Screening. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, excessive utilization of antibiotics has led to the emergence of antibiotic microbial resistance on a planetary scale. This recent phenomenon represents a serious threat to public health, as well as an enormous burden for healthcare systems’ budgets worldwide. Novel, rapid and cheap methods for antibiotic susceptibility screening are urgently needed for this obstacle to be overcome. In this paper, we present a microfluidic device for on-chip antibiotic resistance testing, which allows for antibiotic microbial resistance detection within 6 hours. The design, fabrication and experimental utilization of the device are thoroughly described and analyzed, as well as possibilities for future automation of the whole process. The accessibility of such a device for all people, regardless of economic status, was of utmost importance for us during the development of the project.
Collapse
|
35
|
Boudaghi A, Foroutan M. Investigation of the wettability of chemically heterogeneous smooth and rough surfaces using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
|
37
|
Yang L, Zheng G, Cao Y, Meng C, Li Y, Ji H, Chen X, Niu G, Yan J, Xue Y, Cheng H. Moisture-resistant, stretchable NO x gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. MICROSYSTEMS & NANOENGINEERING 2022; 8:78. [PMID: 35818382 PMCID: PMC9270215 DOI: 10.1038/s41378-022-00414-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 05/16/2023]
Abstract
The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NOx) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NOx gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm-1 to NO and 6.66‰ ppm-1 to NO2, an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO2, fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NOx gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guanghao Zheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yaoqian Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chuizhou Meng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, 100191 China
| | - Huadong Ji
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xue Chen
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guangyu Niu
- School of Architecture and Art Design, Hebei University of Technology, Tianjin, 300130 China
| | - Jiayi Yan
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
38
|
Dong P, Singh KA, Soltes AM, Ko BS, Gaharwar AK, McShane MJ, Grunlan MA. Silicone-containing thermoresponsive membranes to form an optical glucose biosensor. J Mater Chem B 2022; 10:6118-6132. [DOI: 10.1039/d2tb01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose biosensors that could be subcutaneously injected and interrogated without a physically connected electrode and transmitter affixed to skin would represent a major advancement in reducing the user burden of...
Collapse
|
39
|
Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira EMS, Lima R, Minas G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J Funct Biomater 2021; 13:2. [PMID: 35076525 PMCID: PMC8788510 DOI: 10.3390/jfb13010002] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields' needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.
Collapse
Affiliation(s)
- Inês Miranda
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - João Ribeiro
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Braganca, Portugal;
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| |
Collapse
|
40
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
41
|
Lagowala DA, Kwon S, Sidhaye VK, Kim DH. Human microphysiological models of airway and alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1072-L1088. [PMID: 34612064 PMCID: PMC8715018 DOI: 10.1152/ajplung.00103.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022] Open
Abstract
Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.
Collapse
Affiliation(s)
- Dave Anuj Lagowala
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Seoyoung Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Venkataramana K Sidhaye
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Amadeo F, Mukherjee P, Gao H, Zhou J, Papautsky I. Polycarbonate Masters for Soft Lithography. MICROMACHINES 2021; 12:1392. [PMID: 34832803 PMCID: PMC8622653 DOI: 10.3390/mi12111392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Fabrication of microfluidic devices by soft lithography is by far the most popular approach due to its simplicity and low cost. The approach relies on casting of elastomers, such as polydimethylsiloxane (PDMS), on masters fabricated from photoresists on silicon substrates. These masters, however, can be expensive, complicated to fabricate, and fragile. Here we describe an optimized replica molding approach to preserve the original masters by heat molding of polycarbonate (PC) sheets on PDMS molds. The process is faster and simpler than previously reported methods and does not result in a loss of resolution or aspect ratio for the features. The generated PC masters were used to successfully replicate a wide range of microfluidic devices, including rectangular channels with aspect ratios from 0.025 to 7.3, large area spiral channels, and micropost arrays with 5 µm spacing. Moreover, fabrication of rounded features, such as semi-spherical microwells, was possible and easy. Quantitative analysis of the replicated features showed variability of <2%. The approach is low cost, does not require cleanroom setting or hazardous chemicals, and is rapid and simple. The fabricated masters are rigid and survive numerous replication cycles. Moreover, damaged or missing masters can be easily replaced by reproduction from previously cast PDMS replicas. All of these advantages make the PC masters highly desirable for long-term preservation of soft lithography masters for microfluidic devices.
Collapse
Affiliation(s)
| | | | | | | | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; (F.A.); (P.M.); (H.G.); (J.Z.)
| |
Collapse
|
43
|
Bakhchova L, Jantaree P, Gupta A, Isermann B, Steinmann U, Naumann M. On-a-Chip-Based Sensitive Detection of Drug-Induced Apoptosis in Polarized Gastric Epithelial Cells. ACS Biomater Sci Eng 2021; 7:5474-5483. [PMID: 34704732 DOI: 10.1021/acsbiomaterials.1c01094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microfluidic devices for culturing cells have been successfully utilized for biomedical applications, including drug screening. Several cell lines could be cultivated in microengineered environments with promising results, but gastric cell lines have not yet been widely used or studied. Therefore, this study focuses on establishing a polarized gastric epithelial monolayer on-a-chip and describes a general-purpose methodology applicable for bonding any porous material to PDMS through an adhesive sublayer. The fully transparent microfluidic chip consists of two microfluidic channels separated by a collagen-coated porous membrane and lined by human polarized gastric epithelial (NCI-N87) cells. We present considerations on how to ensure continuous and stable flow through the channels. The continuous flow rate was achieved using a pressure-driven pump. Media flow at a constant rate (0.5 μL/min) rapidly led the gastric epithelial cells to develop into a polarized monolayer. The barrier integrity was assessed by the FITC-dextran test. The generation of a monolayer was faster than in the static Boyden chamber. Moreover, fluorescence microscopy was used to monitor the apoptotic cell death of gastric epithelial monolayers on-a-chip in response to camptothecin, a therapeutic gastric cancer drug.
Collapse
Affiliation(s)
- Liubov Bakhchova
- Institute for Automation Technology, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| | - Anubhuti Gupta
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany.,Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, Universitätsklinikum Leipzig, Paul-List-Straße 13-15, Leipzig 04103, Germany
| | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, Universitätsklinikum Leipzig, Paul-List-Straße 13-15, Leipzig 04103, Germany
| | - Ulrike Steinmann
- Institute for Automation Technology, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| |
Collapse
|
44
|
Carvalho V, Rodrigues RO, Lima RA, Teixeira S. Computational Simulations in Advanced Microfluidic Devices: A Review. MICROMACHINES 2021; 12:mi12101149. [PMID: 34683199 PMCID: PMC8539624 DOI: 10.3390/mi12101149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Numerical simulations have revolutionized research in several engineering areas by contributing to the understanding and improvement of several processes, being biomedical engineering one of them. Due to their potential, computational tools have gained visibility and have been increasingly used by several research groups as a supporting tool for the development of preclinical platforms as they allow studying, in a more detailed and faster way, phenomena that are difficult to study experimentally due to the complexity of biological processes present in these models—namely, heat transfer, shear stresses, diffusion processes, velocity fields, etc. There are several contributions already in the literature, and significant advances have been made in this field of research. This review provides the most recent progress in numerical studies on advanced microfluidic devices, such as organ-on-a-chip (OoC) devices, and how these studies can be helpful in enhancing our insight into the physical processes involved and in developing more effective OoC platforms. In general, it has been noticed that in some cases, the numerical studies performed have limitations that need to be improved, and in the majority of the studies, it is extremely difficult to replicate the data due to the lack of detail around the simulations carried out.
Collapse
Affiliation(s)
- Violeta Carvalho
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- ALGORITMI, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Correspondence:
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Rui A. Lima
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- CEFT, R. Dr. Roberto Frias, Faculty of Engineering of the University of Porto (FEUP), 4200-465 Porto, Portugal
| | - Senhorinha Teixeira
- ALGORITMI, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
45
|
Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc Natl Acad Sci U S A 2021; 118:2111904118. [PMID: 34518214 DOI: 10.1073/pnas.2111904118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Robust polymeric nanofilms can be used to construct gas-permeable soft electronics that can directly adhere to soft biological tissue for continuous, long-term biosignal monitoring. However, it is challenging to fabricate gas-permeable dry electrodes that can self-adhere to the human skin and retain their functionality for long-term (>1 d) health monitoring. We have succeeded in developing an extraordinarily robust, self-adhesive, gas-permeable nanofilm with a thickness of only 95 nm. It exhibits an extremely high skin adhesion energy per unit area of 159 μJ/cm2 The nanofilm can self-adhere to the human skin by van der Waals forces alone, for 1 wk, without any adhesive materials or tapes. The nanofilm is ultradurable, and it can support liquids that are 79,000 times heavier than its own weight with a tensile stress of 7.82 MPa. The advantageous features of its thinness, self-adhesiveness, and robustness enable a gas-permeable dry electrode comprising of a nanofilm and an Au layer, resulting in a continuous monitoring of electrocardiogram signals with a high signal-to-noise ratio (34 dB) for 1 wk.
Collapse
|
46
|
Qiang Y, Liu J, Dao M, Du E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. LAB ON A CHIP 2021; 21:3458-3470. [PMID: 34378625 PMCID: PMC8440480 DOI: 10.1039/d1lc00598g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidic-based assay for characterization of the effects of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. The viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to that of normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When the oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results indicate an important biophysical mechanism underlying RBC senescence in which the cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision that the application of this assay can be further extended to RBCs in other blood diseases and other cell types.
Collapse
Affiliation(s)
- Yuhao Qiang
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, USA.
| | - Jia Liu
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, USA.
| | - E Du
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida, USA.
| |
Collapse
|
47
|
López-Lugo JD, Pimentel-Domínguez R, Benítez-Martínez JA, Hernández-Cordero J, Vélez-Cordero JR, Sánchez-Arévalo FM. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules 2021; 26:molecules26175376. [PMID: 34500809 PMCID: PMC8433747 DOI: 10.3390/molecules26175376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites' photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.
Collapse
Affiliation(s)
- Jonathan David López-Lugo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Reinher Pimentel-Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Jorge Alejandro Benítez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Hernández-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Rodrigo Vélez-Cordero
- Cátedras CONACyT-Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Francisco Manuel Sánchez-Arévalo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
- Correspondence:
| |
Collapse
|
48
|
Joseph A, Rajendran A, Karthikeyan A, Nair BG. Implantable Microfluidic Device: An Epoch of Technology. Curr Pharm Des 2021; 28:679-689. [PMID: 34525928 DOI: 10.2174/1381612827666210825114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Implantable microfluidic devices are milestones in developing devices that can either measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity. It is a multidisciplinary approach with immense potential in the area of the biomedical field. Significant resources are utilizing on for the research and development of these devices for various applications. The induction of an implantable microfluidic device into an animal would enable us to measure the responses without any repeated invasive procedures. Such data would help in the development of a better drug delivery profile. Implantable microfluidic devices with reservoirs deliver specific chemical or biological products to treat situations like cancers and diabetes. They can also deliver fluorophores for specific imaging inside the body. Implantable microfluidic devices help provide a microenvironment for various cell differentiation procedure. These devices know no boundaries, and this article reviews these devices based on their design and applications.
Collapse
Affiliation(s)
- Abey Joseph
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Arivazhagan Rajendran
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Akash Karthikeyan
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Baiju G Nair
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| |
Collapse
|
49
|
Läubli NF, Gerlt MS, Wüthrich A, Lewis RTM, Shamsudhin N, Kutay U, Ahmed D, Dual J, Nelson BJ. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Anal Chem 2021; 93:9760-9770. [PMID: 34228921 PMCID: PMC8295982 DOI: 10.1021/acs.analchem.1c01209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Acoustically excited microstructures have demonstrated significant potential for small-scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (poly(dimethylsiloxane)) and microbubbles (air-filled cavity) to combine the benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.
Collapse
Affiliation(s)
- Nino F. Läubli
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Molecular
Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, United Kingdom
| | - Michael S. Gerlt
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Wüthrich
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Renard T. M. Lewis
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Naveen Shamsudhin
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Ulrike Kutay
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Daniel Ahmed
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Department
of Mechanical and Process Engineering, ETH Zurich, Acoustic Robotics Systems Lab, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jürg Dual
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
50
|
Kang BH, Lee Y, Yu ES, Na H, Kang M, Huh HJ, Jeong KH. Ultrafast and Real-Time Nanoplasmonic On-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics. ACS NANO 2021; 15:10194-10202. [PMID: 34008961 DOI: 10.1021/acsnano.1c02154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advent and fast spread of pandemic diseases draw worldwide attention to rapid, prompt, and accurate molecular diagnostics with technical development of ultrafast polymerase chain reaction (PCR). Microfluidic on-chip PCR platforms provide highly efficient and small-volume bioassay for point-of-care diagnostic applications. Here we report ultrafast, real-time, and on-chip nanoplasmonic PCR for rapid and quantitative molecular diagnostics at point-of-care level. The plasmofluidic PCR chip comprises glass nanopillar arrays with Au nanoislands and gas-permeable microfluidic channels, which contain reaction microchamber arrays, a precharged vacuum cell, and a vapor barrier. The on-chip configuration allows both spontaneous sample loading and microbubble-free PCR reaction during which the plasmonic nanopillar arrays result in ultrafast photothermal cycling. After rapid sample loading less than 3 min, two-step PCR results for 40 cycles show rapid amplification in 264 s for lambda-DNA, and 306 s for plasmids expressing SARS-CoV-2 envelope protein. In addition, the in situ cyclic real-time quantification of amplicons clearly demonstrates the amplification efficiencies of more than 91%. This PCR platform can provide rapid point-of-care molecular diagnostics in helping slow the fast-spreading pandemic.
Collapse
Affiliation(s)
- Byoung-Hoon Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Youngseop Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Sil Yu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Na
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences and Technology), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|