1
|
López-Domínguez S, Cuevas-González JC, Espinosa-Cristóbal LF, Ríos-Arana JV, Saucedo Acuña RA, Cuevas-González MV, Zaragoza-Contreras EA, Tovar Carrillo KL. An Evaluation of Cellulose Hydrogels Derived from tequilana Weber Bagasse for the Regeneration of Gingival Connective Tissue in Lagomorphs. Gels 2025; 11:75. [PMID: 39852046 PMCID: PMC11764868 DOI: 10.3390/gels11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Cellulose hydrogels derived from agave bagasse were formulated to promote the regeneration of gingival connective tissue in lagomorphs. Three treatment modalities were randomly implanted in the gingival diastema area in 16 rabbits. The general characteristics were analyzed and histopathological studies were carried out at 4, 8, 12, and 16 weeks. A chi-squared test was performed using IBM-SPSS version 25, indicating that cellulose hydrogels implanted in lagomorph's gingival tissue showed the presence of greater angiogenesis and fibrogenesis at the four evaluation intervals during 16 consecutive weeks. The presence of inflammatory infiltrates had no significant impact. No significant changes were observed in body weight and water and food intake. This suggests that hydrogels contribute to the regeneration and/or repair of oral connective tissue, showing angiogenesis and fibrogenesis in 50 to 100% of rabbits tested with hydrogel cellulose membrane. Regarding angiogenesis, in the specimens where membranes were implanted, its presence predominated in all variants (50%), followed by diffuse angiogenesis (37.5%), and finally the absence of angiogenesis (12.5%).
Collapse
Affiliation(s)
- Silvia López-Domínguez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - Juan Carlos Cuevas-González
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - León Francisco Espinosa-Cristóbal
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - Judith Virginia Ríos-Arana
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - Rosa Alicia Saucedo Acuña
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - María Verónica Cuevas-González
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico
| | - Karla Lizette Tovar Carrillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960 Zona Pronaf. Cd. Juárez, Chihuahua C.P. 32315, Mexico; (S.L.-D.); (J.C.C.-G.); (L.F.E.-C.); (J.V.R.-A.); (R.A.S.A.); (M.V.C.-G.)
| |
Collapse
|
2
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
4
|
Tovar-Carrillo KL, Trujillo-Morales L, Cuevas-González JC, Ríos-Arana JV, Espinosa-Cristobal LF, Zaragoza-Contreras EA. Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility. Gels 2024; 10:606. [PMID: 39330208 PMCID: PMC11431176 DOI: 10.3390/gels10090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels elaborated from Dasylirion spp. and enriched with grape seed extract (GSE) were investigated for tentative use in dental treatment. Cellulose-GSE hydrogels were elaborated with varying GSE contents from 10 to 50 wt%. The mechanical and physical properties, antimicrobial effect, biocompatibility, and in vitro cytotoxicity were studied. In all the cases, the presence of GSE affects the hydrogel's mechanical properties. The elongation decreased from 12.67 mm for the hydrogel without GSE to 6.33 mm for the hydrogel with the highest GSE content. The tensile strength decrease was from 52.33 N/mm2 (for the samples without GSE) and went to 40 N/mm2 for the highest GSE content. Despite the adverse effects, hydrogels possess suitable properties for manipulation. In addition, all hydrogels exhibited excellent biocompatibility and no cytotoxicity, and the antibacterial performance was demonstrated against S. mutans, E. Faecalis, S. aureus, and P. aureginosa. Furthermore, the hydrogels with 30 wt% GSE inhibited more than 90% of the bacterial growth.
Collapse
Affiliation(s)
- Karla Lizette Tovar-Carrillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Lizett Trujillo-Morales
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Juan Carlos Cuevas-González
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Judith Virginia Ríos-Arana
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - León Francisco Espinosa-Cristobal
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Cd. Juárez, Av. Benjamín Franklin # 4960, Zona Pronaf, Ciudad Juárez 32315, Chihuahua, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 180, Complejo Industrial, Chihuahua 31136, Chihuahua, Mexico
| |
Collapse
|
5
|
Jiang Y, Wu A, Yang L, Wu J, Liang Y, Hu Z, Wang Y. Composite hydrogels based on deep eutectic solvents and lysine for pressure sensors and adsorption of Fe 3. RSC Adv 2024; 14:25359-25368. [PMID: 39144368 PMCID: PMC11323740 DOI: 10.1039/d4ra04397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
This study explored the preparation of a novel composite hydrogel based on deep eutectic solvent (DES) with lysine (Lys) and its application in pressure sensing and Fe3+ adsorption. DES was synthesized from acrylamide (AM) and urea (U) as hydrogen bond donors (HBD) with choline chloride (ChCl) as hydrogen bond acceptor (HBA), and Lys was used as a functional filler, and Lys/P(AM-U-ChCl) composite hydrogels were successfully prepared by frontal polymerization (FP) method. The structure of the hydrogels was characterized in depth using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effects of Lys content on the mechanical properties, pH-responsive behavior, pressure-sensitive properties, and Fe3+ adsorption capacity of the hydrogels were further analyzed. It was found that the introduction of Lys significantly improved the compressive and pressure-sensitive properties of the hydrogels. The composite hydrogels exhibited excellent swelling equilibrium rates at different pH values. The capacitance change of the hydrogel with 0.5 wt% Lys at 200 g pressure was 2.12-fold higher than that of the hydrogel without Lys addition, and the adsorption efficiency of the hydrogel for Fe3+ was greatly enhanced. This study provides a new idea for the functionalized design of composite hydrogels and demonstrates their great application prospects in high-performance pressure sensors and heavy metal ion adsorption.
Collapse
Affiliation(s)
- Yajun Jiang
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Aolin Wu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Lin Yang
- School of Intelligent Manufacturing, Chongqing Institute of Engineering Chongqing 400056 China
| | - Jun Wu
- School of Mathematics, Physics and Optical Engineering, Hubei University of Automotive Technology Shiyan Hubei 442002 China
| | - Yue Liang
- School of Mathematics and Statistics, Hubei University of Education Wuhan Hubei 430205 China
| | - Zhigang Hu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Ying Wang
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| |
Collapse
|
6
|
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics (Basel) 2024; 9:396. [PMID: 39056837 PMCID: PMC11274445 DOI: 10.3390/biomimetics9070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.
Collapse
Affiliation(s)
- Mihai Băbuțan
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024; 272:132583. [PMID: 38795882 DOI: 10.1016/j.ijbiomac.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hechun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Amr M Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga 72511, Egypt
| | - Wanqiang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Nazir A, Abbas M, Kainat F, Iqbal DN, Aslam F, Kamal A, Mohammed OA, Zafar K, Alrashidi AA, Alshawwa SZ, Iqbal M. Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA. Heliyon 2024; 10:e29854. [PMID: 38707453 PMCID: PMC11066320 DOI: 10.1016/j.heliyon.2024.e29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Ceftriaxone sodium belongs to the third-generation cephalosporin group and is used intramuscular and intravenous route as a broad-spectrum antibiotic. This research aims to prepare biocompatible hydrogels for targeted delivery of ceftriaxone sodium by parental route. Different proportions of polymers (natural and synthetic) in the presence of cross-linker were synthesized by solvent casting method. Ceftriaxone sodium was loaded in hydrogels in different concentrations and its drug release behavior was evaluated along with swelling and biodegradation analysis. The characterization of hydrogel was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) to analyze surface morphology and functional groups involved in the formation of dextrin/Na-alginate/PVA hydrogels loaded with the drug. Thermogravimetric analysis (TGA) was confirmed by thermal stability and degradation pattern of loaded and unloaded hydrogels. The drug-loaded samples presented promising antimicrobial activity against S. aureus and P. multocida and their cytotoxic nature was also studied. Drug release analysis using simulated intestinal fluid (SIF) and phosphate buffer saline(PBS) for the circulatory system shows the consistent release of the drug. The findings unveiled the development of a biocompatible and innovative hydrogel, which has potential advantages for biomedical application, particularly in enhancing the therapeutic efficacy of ceftriaxone sodium drug.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, (Jhang-Campus), Pakistan
| | - Faiza Kainat
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Farheen Aslam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Kinza Zafar
- Medical Unit#2, Lahore General Hospital, 54000, Lahore, Pakistan
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
9
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
10
|
Cecen B, Hassan S, Li X, Zhang YS. Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromol Biosci 2024; 24:e2200550. [PMID: 37728061 DOI: 10.1002/mabi.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/02/2023] [Indexed: 09/21/2023]
Abstract
Smart biomaterials with the capacity to alter their properties in response to an outside stimulus or from within the environment around them have picked up significant attention in the biomedical community. This is primarily due to the interest in their biomedical applications that may be anticipated from them in a considerable number of dynamic structures and devices. Shape-memory materials are some of these materials that have been exclusively used for these applications. They exhibit unique structural reconfiguration features they adapt as per the provided environmental conditions and can be designed for their enhanced biocompatibility. Numerous research initiatives have focused on these smart biocompatible materials over the last few decades to enhance their biomedical applications. Shape-memory materials play a significant role in this regard to meet new surgical and medical devices' requirements for special features and utility cases. Because of the favorable design variety, different biomedical shape-memory materials can be developed by modifying their chemical and physical behaviors to accommodate the desired requirements. In this review, recent advances and characteristics of smart biomaterials for biomedical applications are described. The authors also discuss about their clinical translations in tissue engineering, drug delivery, and medical devices.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, 127788, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University, SAN Campus, Abu Dhabi, 127788, UAE
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Bondarian S, Dekamin MG, Valiey E, Naimi-Jamal MR. Supramolecular Cu(ii) nanoparticles supported on a functionalized chitosan containing urea and thiourea bridges as a recoverable nanocatalyst for efficient synthesis of 1 H-tetrazoles. RSC Adv 2023; 13:27088-27105. [PMID: 37701273 PMCID: PMC10493853 DOI: 10.1039/d3ra01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.
Collapse
Affiliation(s)
- Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
12
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
Ahmad S, Sabir A, Khan SM. Synthesis and characterization of pectin/carboxymethyl cellulose-based hybrid hydrogels for heavy metal ions adsorption. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Machado A, Pereira I, Costa F, Brandão A, Pereira JE, Maurício AC, Santos JD, Amaro I, Falacho R, Coelho R, Cruz N, Gama M. Randomized clinical study of injectable dextrin-based hydrogel as a carrier of a synthetic bone substitute. Clin Oral Investig 2023; 27:979-994. [PMID: 36707442 PMCID: PMC9985577 DOI: 10.1007/s00784-023-04868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study aimed to improve the performance and mode of administration of a glass-reinforced hydroxyapatite synthetic bone substitute, Bonelike by Biosckin® (BL®), by association with a dextrin-based hydrogel, DEXGEL, to achieve an injectable and moldable device named DEXGEL Bone. METHODS Twelve participants requiring pre-molar tooth extraction and implant placement were enrolled in this study. BL® granules (250-500 µm) were administered to 6 randomized participants whereas the other 6 received DEXGEL Bone. After 6 months, a bone biopsy of the grafted area was collected for histological and histomorphometric evaluation, prior to implant placement. The performance of DEXGEL Bone and BL® treatments on alveolar preservation were further analyzed by computed tomography and Hounsfield density analysis. Primary implant stability was analyzed by implant stability coefficient technique. RESULTS The healing of defects was free of any local or systemic complications. Both treatments showed good osseointegration with no signs of adverse reaction. DEXGEL Bone exhibited increased granule resorption (p = 0.029) accompanied by a tendency for more new bone ingrowth (although not statistically significant) compared to the BL® group. The addition of DEXGEL to BL® granules did not compromise bone volume or density, being even beneficial for implant primary stability (p = 0.017). CONCLUSIONS The hydrogel-reinforced biomaterial exhibited an easier handling, a better defect filling, and benefits in implant stability. CLINICAL RELEVANCE This study validates DEXGEL Bone safety and performance as an injectable carrier of granular bone substitutes for alveolar ridge preservation. TRIAL REGISTRATION European Databank on Medical Devices (EUDAMED) No. CIV-PT-18-01-02,705; Registo Nacional de Estudos Clínicos, RNEC, No. 30122.
Collapse
Affiliation(s)
- Alexandra Machado
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Isabel Pereira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Filomena Costa
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Brandão
- Biosckin, Molecular and Cell Therapies S.A., TecMaia, Rua Engenheiro Frederico Ulrich 2650, 4470-605, Maia, Portugal
| | - José Eduardo Pereira
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-495, Porto, Portugal
| | - Inês Amaro
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Falacho
- Institute of Oral Implantology and Prosthodontics, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui Coelho
- RESDEVMED, Unipessoal Lda., Travessa do Navega, 436 C, 3885-183, Ovar, Portugal
| | - Nuno Cruz
- Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Miguel Gama
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,LABBELS, Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
15
|
Synthesis of Xanthan Gum Anchored α-Fe 2O 3 Bionanocomposite Material for Remediation of Pb (II) Contaminated Aquatic System. Polymers (Basel) 2023; 15:polym15051134. [PMID: 36904374 PMCID: PMC10006926 DOI: 10.3390/polym15051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/12/2023] Open
Abstract
Increases in community and industrial activities have led to disturbances of the environmental balance and the contamination of water systems through the introduction of organic and inorganic pollutants. Among the various inorganic pollutants, Pb (II) is one of the heavy metals possessing non-biodegradable and the most toxic characteristics towards human health and the environment. The present study is focussed on the synthesis of efficient and eco-friendly adsorbent material that can remove Pb (II) from wastewater. A green functional nanocomposite material based on the immobilization of α-Fe2O3 nanoparticles with xanthan gum (XG) biopolymer has been synthesized in this study to be applied as an adsorbent (XGFO) for sequestration of Pb (II). Spectroscopic techniques such as scanning electron microscopy with energy dispersive X-ray (SEM-EDX), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet visible (UV-Vis) and X-ray photoelectron spectroscopy (XPS) were adopted for characterizing the solid powder material. The synthesized material was found to be rich in key functional groups such as -COOH and -OH playing important roles in binding the adsorbate particles through ligand-to-metal charge transfer (LMCT). Based on the preliminary results, adsorption experiments were conducted, and the data obtained were applied to four different adsorption isotherm models, viz the Langmuir, Temkin, Freundlich and D-R models. Based on the high values of R2 and low values of χ2, the Langmuir isotherm model was found to be the best model for simulation of data for Pb (II) adsorption by XGFO. The value of maximum monolayer adsorption capacity (Qm) was found to be 117.45 mg g-1 at 303 K, 126.23 mg g-1 at 313 K, 145.12 mg g-1 at 323 K and 191.27 mg g-1 at 323 K. The kinetics of the adsorption process of Pb (II) by XGFO was best defined by the pseudo-second-order model. The thermodynamic aspect of the reaction suggested that the reaction is endothermic and spontaneous. The outcomes proved that XGFO can be utilized as an efficient adsorbent material for the treatment of contaminated wastewater.
Collapse
|
16
|
Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh
pH
stability for drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Shounak Roy
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Prachi Bhatia
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| |
Collapse
|
17
|
Gan X, Li C, Sun J, Zhang X, Zhou M, Deng Y, Xiao A. GelMA/κ-carrageenan double-network hydrogels with superior mechanics and biocompatibility. RSC Adv 2023; 13:1558-1566. [PMID: 36688070 PMCID: PMC9817081 DOI: 10.1039/d2ra06101e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogels are crosslinked hydrophilic polymer networks of high-water content. Although they have been widely investigated, preparing hydrogels with excellent mechanical properties and biocompatibility remains a challenge. In the present work, we developed a novel GelMA/κ-carrageenan (GelMA/KC) double network (DN) hydrogel through a dual crosslinking strategy. The three-dimensional (3D) microstructure of KC is the first network, and covalently crosslinked on the κ-carrageenan backbone is the second network. The GelMA/KC hydrogel shows advantages in physical properties, including higher compression strength (10% GelMA/1% KC group, 130 kPa) and Young's modulus (10% GelMA/1% KC group, 300), suggesting its excellent elasticity and compressive capability. When using a higher concentration of GelMA, the hybrid hydrogel has even higher mechanical properties. In addition, the GelMA/KC hydrogel is favorable for cell spreading and proliferation, demonstrating its excellent biocompatibility. This study provides a new possibility for a biodegradable and high-strength hydrogel as a new generation material of orthopedic implants.
Collapse
Affiliation(s)
- Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
| | - Chen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
| | - Xidan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University Chengdu 610041 China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
- Department of Mechanical Engineering, The University of Hong Kong Hong Kong China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University Chengdu 610041 China
| |
Collapse
|
18
|
Slow water dynamics in polygalacturonate hydrogels revealed by NMR relaxometry and molecular dynamics simulation. Carbohydr Polym 2022; 298:120093. [DOI: 10.1016/j.carbpol.2022.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
|
19
|
Lali Raveendran R, Valsala M, Sreenivasan Anirudhan T. Development of nanosilver embedded injectable liquid crystalline hydrogel from alginate and chitosan for potent antibacterial and anticancer applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ashton MD, Cooper PA, Municoy S, Desimone MF, Cheneler D, Shnyder SD, Hardy JG. Controlled Bioactive Delivery Using Degradable Electroactive Polymers. Biomacromolecules 2022; 23:3031-3040. [PMID: 35748772 PMCID: PMC9277582 DOI: 10.1021/acs.biomac.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Biomaterials capable
of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances
have significant markets in the agriscience/healthcare industries.
Here, we report the development of degradable electroactive polymers
and their application for the controlled delivery of a clinically
relevant drug (the anti-inflammatory dexamethasone phosphate, DMP).
Electroactive copolymers composed of blocks of polycaprolactone (PCL)
and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin,
biliverdin, and hemin) were prepared and solution-processed to produce
films (optionally doped with DMP). A combination of in silico/in vitro/in
vivo studies demonstrated the cytocompatibility of the polymers. The
release of DMP in response to the application of an electrical stimulus
was observed to be enhanced by ca. 10–30% relative to the passive
release from nonstimulated samples in vitro. Such stimuli-responsive
biomaterials have the potential for integration devices capable of
delivering a variety of molecules for technical/medical applications.
Collapse
Affiliation(s)
- Mark D Ashton
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Sofia Municoy
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - Martin F Desimone
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - David Cheneler
- Department of Engineering, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - John G Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| |
Collapse
|
21
|
Singh N, Aery S, Juneja S, Kumari L, Lone MS, Dar AA, Pawar SV, Mehta SK, Dan A. Chitosan Hydrogels with Embedded Thermo- and pH-Responsive Microgels as a Potential Carrier for Controlled Release of Drugs. ACS APPLIED BIO MATERIALS 2022; 5:3487-3499. [PMID: 35729496 DOI: 10.1021/acsabm.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a promising strategy based on chitosan (CS) hydrogels and dual temperature- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels to facilitate release of a model drug, moxifloxacin (MFX). In this protocol, first, the microgels were prepared using a free radical copolymerization method, and subsequently, these carboxyl-group-rich soft particles were incorporated inside the hydrogel matrix using an EDC-NHS amidation method. Interestingly, the resulting microgel-embedded hydrogel composites (MG-HG) acting as a double barrier system largely reduced the drug release rate and prolonged the delivery time for up to 68 h, which was significantly longer than that obtained using microgels or hydrogels alone (20 h). On account of the dual-responsive features of the embedded microgels and the variation of water-solubility of drug molecules as a function of pH, MFX could be released in a controllable manner by regulating the temperature and pH of the delivery medium. The release kinetics followed a Korsmeyer-Peppas model, and the drug delivery mechanism was described by Fickian diffusion. Both the gel precursors and the hydrogel composites exhibited low cytotoxicity against mammalian cell lines (HeLa and HEK-293) and no deleterious hemolytic activity up to a certain higher concentration, indicating excellent biocompatibility of the materials. Thus, the unprecedented combination of modularity of physical properties caused by soft particle entrapment, unique macromolecular architecture, biocompatibility, and the general utility of the stimuli-responsive polymers offers a great promise to use these composite materials in drug delivery applications.
Collapse
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Shikha Aery
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Smayira Juneja
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Mohd Sajid Lone
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar - 190006, Jammu and Kashmir, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Surinder K Mehta
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| | - Abhijit Dan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh - 160014, India
| |
Collapse
|
22
|
Hoti G, Matencio A, Rubin Pedrazzo A, Cecone C, Appleton SL, Khazaei Monfared Y, Caldera F, Trotta F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int J Mol Sci 2022; 23:4102. [PMID: 35456919 PMCID: PMC9031143 DOI: 10.3390/ijms23084102] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (G.H.); (A.M.); (A.R.P.); (C.C.); (S.L.A.); (Y.K.M.); (F.C.)
| |
Collapse
|
23
|
Kopač T, Abrami M, Grassi M, Ručigaj A, Krajnc M. Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohydr Polym 2022; 277:118895. [PMID: 34893297 DOI: 10.1016/j.carbpol.2021.118895] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
A simple relation between pendant groups of polymers in hydrogels is introduced to determine the crosslink density of (complex) hydrogel systems (mixtures of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) modified nanocellulose, alginate, scleroglucan and Laponite in addition of crosslinking agents). Furthermore, the rheological properties and their great potential connection to design complex hydrogel systems with desired properties have been thoroughly investigated. Hydrogel structures governing internal friction and flow resistance were described by the predominant effect of ionic, hydrogen, and electrostatic interactions. The relationship between rheological properties and polymer-polymer interactions in the hydrogel network is explained and expressed in a new mathematical model for determining the crosslink density of (crosslinked) hydrogels based on single or mixture of polymer systems. In the end, the combined used of rheology and low field nuclear magnetic resonance spectroscopy (LF-NMR) for the characterization of hydrogel networks is developed.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Michela Abrami
- University of Trieste, Department of Engineering and Architecture, Building B, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- University of Trieste, Department of Engineering and Architecture, Building B, via Valerio 6, I-34127 Trieste, Italy
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
Chen YH, Chuang EY, Jheng PR, Hao PC, Hsieh JH, Chen HL, Mansel BW, Yeh YY, Lu CX, Lee JW, Hsiao YC, Bolouki N. Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112488. [PMID: 34857274 DOI: 10.1016/j.msec.2021.112488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/05/2023]
Abstract
The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.
Collapse
Affiliation(s)
- Yun-Hsuan Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yen Yeh
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chu-Xuan Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan.
| | - Nima Bolouki
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
25
|
Bolouki N, Hsu YN, Hsiao YC, Jheng PR, Hsieh JH, Chen HL, Mansel BW, Yeh YY, Chen YH, Lu CX, Lee JW, Chuang EY. Cold atmospheric plasma physically reinforced substances of platelets-laden photothermal-responsive methylcellulose complex restores burn wounds. Int J Biol Macromol 2021; 192:506-515. [PMID: 34599990 DOI: 10.1016/j.ijbiomac.2021.09.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Patients with irregular, huge burn wounds require time-consuming healing. The skin has an epithelial barrier mechanism. Hence, the penetration and retention of therapeutics across the skin to deep lesion is generally quite difficult and these usually constrain the delivery/therapeutic efficacies for wound healing. Effective burn wound healing also necessitates proper circulation. Conventional polymeric dressing usually exhibits weak mechanical behaviors, obstructing their load-bearing applications. Cold atmospheric plasma (CAP) was used as an efficient, environmentally friendly, and biocompatible process to crosslink methylcellulose (MC) designed for topical administration such as therapeutic substances of platelets (SP) and polyethyleneimine-polypyrrole nanoparticle (PEI-PPy NP)-laden MC hydrogel carriers, and wound dressings. The roles of framework parameters for CAP-treated SP-PEI-PPy NP-MC polymeric complex system; chemical, physical, and photothermal effects; morphological, spectroscopical, mechanical, rheological, and surface properties; in vitro drug release; and hydrophobicity are discussed. Furthermore, CAP-treated SP-PEI-PPy NP-MC polymeric complex possessed augmented mechanical properties, biocompatibility, sustainable drug release, drug-retention effects, and near-infrared (NIR)-induced hyperthermia effects that drove heat-shock protein (HSP) expression with drug permeation to deep lesions. This work sheds light on the CAP crosslinking polymeric technology and the efficacy of combining sustained drug release with photothermal therapy in burn wound bioengineering carrier designs.
Collapse
Affiliation(s)
- Nima Bolouki
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Yu-Nu Hsu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yen Yeh
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Hsuan Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chu-Xuan Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
26
|
Wu IE, Anggelia MR, Lin SY, Chen CY, Chu IM, Lin CH. Thermosensitive Polyester Hydrogel for Application of Immunosuppressive Drug Delivery System in Skin Allograft. Gels 2021; 7:229. [PMID: 34842721 PMCID: PMC8628764 DOI: 10.3390/gels7040229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Tacrolimus (FK506) is a common immunosuppressive drug that is capable of suppressing acute rejection reactions, and is used to treat patients after allotransplantation. A stable and suitable serum concentration of tacrolimus is desirable for better therapeutic effects. However, daily drug administration via oral or injection routes is quite inconvenient and may encounter drug overdose or low patient compliance problems. In this research, our objective was to develop an extended delivery system using a thermosensitive hydrogel of poly ethylene glycol, D,L-lactide (L), and ϵ-caprolactone (CL) block copolymer, mPEG-PLCL, as a drug depot. The formulation of mPEG-PLCL and 0.5% PVP-dissolved tacrolimus was studied and the optimal formulation was obtained. The in vivo data showed that in situ gelling is achieved, a stable and sustained release of the drug within 30 days can be maintained, and the hydrogel was majorly degraded in that period. Moreover, improved allograft survival was achieved. Together, these data imply the potential of the current formulation for immunosuppressive treatments.
Collapse
Affiliation(s)
- I-En Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (I.-E.W.); (S.-Y.L.); (C.-Y.C.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Memorial Medical College, Chang Gung University, Taoyuan 333, Taiwan; or
| | - Sih-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (I.-E.W.); (S.-Y.L.); (C.-Y.C.)
| | - Chiao-Yun Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (I.-E.W.); (S.-Y.L.); (C.-Y.C.)
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (I.-E.W.); (S.-Y.L.); (C.-Y.C.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Memorial Medical College, Chang Gung University, Taoyuan 333, Taiwan; or
| |
Collapse
|
27
|
Priyadarsini M, Biswal T, Dash S. Biodegradable superabsorbent with potential biomedical application as drug delivery system of “pectin-g-P(AN-co-AM)/chicken eggshell” bio-composite. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Al-Gethami W, Al-Qasmi N. Antimicrobial Activity of Ca-Alginate/Chitosan Nanocomposite Loaded with Camptothecin. Polymers (Basel) 2021; 13:polym13203559. [PMID: 34685318 PMCID: PMC8541277 DOI: 10.3390/polym13203559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to prepare antimicrobial nanocomposites consisting of alginate, chitosan, and camptothecin (CPT). CPT-loaded calcium alginate (Ca-Alg2) and calcium alginate/chitosan (Ca-Alg2-CH) nanomaterials were synthesized and characterized using infrared (IR) spectroscopy, X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The antimicrobial activity and the genetic effects of Ca-Alg2/CPT and Ca-Alg2-CH/CPT nanomaterials on Staphylococcus aureus, Escherichia coli, and Klebsiella pneumonia were studied. The repetitive element polymerase chain reaction analysis technique was used to assess the changes in the bacterial genetic material due to the processing of the nanomaterials. The results showed the presence of a strong chemical interaction between alginate and chitosan, and CPT was loaded successfully in both Ca-Alg2/CPT and Ca-Alg2-CH/CPT nanomaterials. Furthermore, the antimicrobial test showed that the Ca-Alg2/CPT nanocomposite was susceptible to S. aureus, E. coli, and K. pneumonia; on the other hand, Ca-Alg2-CH/CPT nanocomposite was more susceptible to E. coli and K. pneumonia and was resistant to S. aureus. The results showed that the Ca-Alg2/CPT nanocomposite was less efficient than Ca-Alg2-CH/CPT nanocomposite in killing Gram-negative treated bacteria. Moreover, results revealed that the PCR analysis revealed a polymorphic banding pattern. This observation provides an excellent guide to the ability of some polymers to induce point mutations in DNA.
Collapse
|
29
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
30
|
Soylu HM, Chevallier P, Copes F, Ponti F, Candiani G, Yurt F, Mantovani D. A Novel Strategy to Coat Dopamine-Functionalized Titanium Surfaces With Agarose-Based Hydrogels for the Controlled Release of Gentamicin. Front Cell Infect Microbiol 2021; 11:678081. [PMID: 34178721 PMCID: PMC8224171 DOI: 10.3389/fcimb.2021.678081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction The use of spinal implants for the treatment of back disorders is largely affected by the insurgence of infections at the implantation site. Antibacterial coatings have been proposed as a viable solution to limit such infections. However, despite being effective at short-term, conventional coatings lack the ability to prevent infections at medium and long-term. Hydrogel-based drug delivery systems may represent a solution controlling the release of the loaded antibacterial agents while improving cell integration. Agarose, in particular, is a biocompatible natural polysaccharide known to improve cell growth and already used in drug delivery system formulations. In this study, an agarose hydrogel-based coating has been developed for the controlled release of gentamicin (GS). Methods Sand blasted Ti6Al4V discs were grafted with dopamine (DOPA) solution. After, GS loaded agarose hydrogels have been produced and additioned with tannic acid (TA) and calcium chloride (CaCl2) as crosslinkers. The different GS-loaded hydrogel formulations were deposited on Ti6Al4V-DOPA surfaces, and allowed to react under UV irradiation. Surface topography, wettability and composition have been analyzed with profilometry, static contact angle measurement, XPS and FTIR spectroscopy analyses. GS release was performed under pseudo-physiological conditions up to 28 days and the released GS was quantified using a specific ELISA test. The cytotoxicity of the produced coatings against human cells have been tested, along with their antibacterial activity against S. aureus bacteria. Results A homogeneous coating was obtained with all the hydrogel formulations. Moreover, the coatings presented a hydrophilic behavior and micro-scale surface roughness. The addition of TA in the hydrogel formulations showed an increase in the release time compared to the normal GS-agarose hydrogels. Moreover, the GS released from these gels was able to significantly inhibit S. aureus growth compared to the GS-agarose hydrogels. The addition of CaCl2 to the gel formulation was able to significantly decrease cytotoxicity of the TA-modified hydrogels. Conclusions Due to their surface properties, low cytotoxicity and high antibacterial effects, the hereby proposed gentamicin-loaded agarose-hydrogels provide new insight, and represent a promising approach for the surface modification of spinal implants, greatly impacting their application in the orthopedic surgical scenario.
Collapse
Affiliation(s)
- H Melis Soylu
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| | - Federica Ponti
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada.,GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- GenT LΛB and µBioMI LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Fatma Yurt
- Department Biomedical Technologies, The Institute of Natural and Applied Sciences, Ege University, Bornova, Turkey.,Department Nuclear Applications, Institute Nuclear Science, Ege University, Bornova, Turkey
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier 1, Department of Min-Met-Materials Eng., University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QB, Canada
| |
Collapse
|
31
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
32
|
Huang K, Xu H, Chen C, Shi F, Wang F, Li J, Hu S. A novel dual crosslinked polysaccharide hydrogel with self-healing and stretchable properties. Polym Chem 2021. [DOI: 10.1039/d1py00936b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized oxidatively modified acetoacetyl cellulose OCAA, and then a double-network polysaccharide complex hydrogel was prepared. The hydrogel exhibited very good mechanical strength, self-healing behavior, and good biocompatibility.
Collapse
Affiliation(s)
- Kexin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Haotian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Cheng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Fengna Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Fang Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
- Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Jiarui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| | - Sheng Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Peoples R China
| |
Collapse
|
33
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
34
|
Das S, Roy S. 6-acylamino nicotinic acid-based hydrogelators applicable in phase selective gelation, reproducible mat formation and toxic dye removal. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Przybysz-Romatowska M, Haponiuk J, Formela K. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Shetty P, Mu L, Shi Y. Fat mimicking compounds as grease thickeners in Poly(ethylene glycol)/water: Adopting the solution from history. J Colloid Interface Sci 2020; 578:619-628. [PMID: 32554144 DOI: 10.1016/j.jcis.2020.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Water-based lubricants are thought to be the next generation green lubricants, however, there are very few developments of aqueous grease lubricants. Here, water-based grease lubricants were developed using the food fat replacers. The concept of using fat replacers was inspired by the historical usage of fat as a lubricant. Dextrins were chosen as the fat replacers and mixture of water and PEG as the base fluid. Dextrins with different molecular weights were selected to study its effect on the rheological, tribological and thermal behavior of the gels. It was found that only higher molecular weight dextrins will form the colloidal gels, whereas low molecular weight dextrins will form the colloidal solution. The SEM images of the dried samples showed the agglomerated micro-spherical network with the void to hold the base fluid. It was found that, at an optimum concentration, the fat replacers showed 35-58% lower friction and 29-41% lower wear than the pure PEG200/water solution regardless of their molecular weight. The spherical shaped colloidal particles will form the film over the metal surface by nano-filling and these particles will act as nano-bearings which will reduce the wear and friction. These gel lubricants can be used where the highly biodegradable and bio-compatible green lubricant is needed.
Collapse
Affiliation(s)
- Pramod Shetty
- Division of Machine Elements, Luleå University of Technology, Luleå 97187, Sweden
| | - Liwen Mu
- Division of Machine Elements, Luleå University of Technology, Luleå 97187, Sweden.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, Luleå 97187, Sweden.
| |
Collapse
|
37
|
Oldenhof S, Mytnyk S, Arranja A, de Puit M, van Esch JH. Imaging-assisted hydrogel formation for single cell isolation. Sci Rep 2020; 10:6595. [PMID: 32313146 PMCID: PMC7171092 DOI: 10.1038/s41598-020-62623-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
We report a flexible single-cell isolation method by imaging-assisted hydrogel formation. Our approach consists of imaging-aided selective capture of cells of interest by encasing them into a polymeric hydrogel, followed by removal of unwanted cells and subsequent release of isolated cells by enzymatic hydrogel degradation, thus offering an opportunity for further analysis or cultivation of selected cells. We achieved high sorting efficiency and observed excellent viability rates (>98%) for NIH/3T3 fibroblasts and A549 carcinoma cells isolated using this procedure. The method presented here offers a mask-free, cost-efficient and easy-to-use alternative to many currently existing surface-based cell-sorting techniques, and has the potential to impact the field of cell culturing and isolation, e.g. single cell genomics and proteomics, investigation of cellular heterogeneity and isolation of best performing mutants for developing new cell lines.
Collapse
Affiliation(s)
- Sander Oldenhof
- The Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, Den Haag, the Netherlands
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Serhii Mytnyk
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Alexandra Arranja
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands
| | - Marcel de Puit
- The Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, Den Haag, the Netherlands.
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands.
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg, 2629, HZ Delft, the Netherlands.
| |
Collapse
|
38
|
Maire du Poset A, Börjesson M, Rameau C, Madeleine-Perdrillat C, Lerbret A, Loupiac C, Cousin F, Assifaoui A. Controlled Loading and Release of Beta-Lactoglobulin in Calcium-Polygalacturonate Hydrogels. Biomacromolecules 2020; 21:1417-1426. [PMID: 32109357 DOI: 10.1021/acs.biomac.9b01722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and release rate of beta-lactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found to be similar to those obtained from a polyGalA solution in our previous study (Maire du Poset et al. Biomacromolecules 2019, 20 (7), 2864-2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentrations. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the part of the hydrogels with the largest mesh size, where more BLG proteins are present. This gradient enables one to tune the amount of protein loaded within the hydrogel. At a local scale, the proteins are distributed evenly within the hydrogel network, as shown by small-angle neutron scattering (SANS). The release of proteins from hydrogels is driven by Fickian diffusion, and the release rate increases with the mesh size of the network, with a characteristic time of a few hours. The specific structure of these polysaccharide-based hydrogels allows for control of both the dosage and the release rate of the loaded protein and makes them good candidates for use as oral controlled-delivery systems.
Collapse
Affiliation(s)
- Aline Maire du Poset
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.,Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 St Aubin, 91192 Gif-sur-Yvette, France
| | - Mikaela Börjesson
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Céline Rameau
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | | | - Adrien Lerbret
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Camille Loupiac
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.,Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Ali Assifaoui
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
39
|
Koneru A, Dharmalingam K, Anandalakshmi R. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose–grapefruit seed extract nanoparticles for potential wound healing applications. Int J Biol Macromol 2020; 148:833-842. [DOI: 10.1016/j.ijbiomac.2020.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
|
40
|
Sun H, Choi D, Heo J, Jung SY, Hong J. Studies on the Drug Loading and Release Profiles of Degradable Chitosan-Based Multilayer Films for Anticancer Treatment. Cancers (Basel) 2020; 12:cancers12030593. [PMID: 32150885 PMCID: PMC7140006 DOI: 10.3390/cancers12030593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
This study demonstrates the possibility of developing a rapidly degradable chitosan-based multilayer film for controlled drug release. The chitosan (CHI)-based multilayer nanofilms were prepared with three different types of anions, hyaluronic acid (HA), alginic acid (ALG) and tannic acid (TA). Taking advantage of the Layer-by-Layer (LBL) assembly, each multilayer film has different morphology, porosity and thickness depending on their ionic density, molecular structure and the polymer functionality of the building blocks. We loaded drug models such as doxorubicin hydrochloride (DOX), fluorescein isothiocyanate (FITC) and ovalbumin (Ova) into multilayer films and analyzed the drug loading and release profiles in phosphate-buffered saline (PBS) buffer with the same osmolarity and temperature as the human body. Despite the rapid degradation of the multilayer film in a high pH and salt solution, the drug release profile can be controlled by increasing the functional group density, which results in interaction with the drug. In particular, the abundant carboxylate groups in the CHI/HA film increased the loading amount of DOX and decreased rapid drug release. The TA interaction with DOX via electrostatic interaction, hydrogen bonding and hydrophobic interaction showed a sustained drug release profile. These results serve as principles for fabricating a tailored multilayer film for drug delivery application.
Collapse
Affiliation(s)
- Hyeongdeok Sun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (H.S.); (D.C.); (J.H.)
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (H.S.); (D.C.); (J.H.)
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (H.S.); (D.C.); (J.H.)
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (S.Y.J.); (J.H.); Tel.: +82-2-2123-5748 (S.Y.J. & J.H.)
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (H.S.); (D.C.); (J.H.)
- Correspondence: (S.Y.J.); (J.H.); Tel.: +82-2-2123-5748 (S.Y.J. & J.H.)
| |
Collapse
|
41
|
Singh J, Kumar S, Dhaliwal A. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Dou Y, Zhang W, Kaiser A. Electrospinning of Metal-Organic Frameworks for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902590. [PMID: 32042570 PMCID: PMC7001619 DOI: 10.1002/advs.201902590] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Indexed: 05/05/2023]
Abstract
Herein, recent developments of metal-organic frameworks (MOFs) structured into nanofibers by electrospinning are summarized, including the fabrication, post-treatment via pyrolysis, properties, and use of the resulting MOF nanofiber architectures. The fabrication and post-treatment of the MOF nanofiber architectures are described systematically by two routes: i) the direct electrospinning of MOF-polymer nanofiber composites, and ii) the surface decoration of nanofiber structures with MOFs. The unique properties and performance of the different types of MOF nanofibers and their derivatives are explained in respect to their use in energy and environmental applications, including air filtration, water treatment, gas storage and separation, electrochemical energy conversion and storage, and heterogeneous catalysis. Finally, challenges with the fabrication of MOF nanofibers, limitations for their use, and trends for future developments are presented.
Collapse
Affiliation(s)
- Yibo Dou
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| | - Wenjing Zhang
- Department of Environmental EngineeringTechnical University of DenmarkMiljøvej 113DK‐2800Kongens LyngbyDenmark
| | - Andreas Kaiser
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| |
Collapse
|
43
|
Kong M, Peng X, Cui H, Liu P, Pang B, Zhang K. pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 2020; 10:4860-4868. [PMID: 35498333 PMCID: PMC9049203 DOI: 10.1039/c9ra10280a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biodegradable nanoparticles (NPs) have shown great promise as intracellular imaging probes, nanocarriers and drug delivery vehicles. In this study, we designed and prepared amphiphilic cellulose derivatives via Schiff base reactions between 2,3-dialdehyde cellulose (DAC) and amino compounds. Polymeric NPs were facilely fabricated via the self-assembly of the as-synthesized amphiphilic macromolecules. The size distribution of the obtained NPs can be tuned by changing the amount and length of the grafted hydrophobic side-chains. Anticancer drugs (DOX) were encapsulated in the NPs and the drug-loaded NPs based on cellulose derivatives were stable in neutral and alkaline environments for at least a month. They rapidly decomposed with the efficient release of the drug in acidic tumor microenvironments. These drug-loaded NPs have the potential for application in cancer treatment.
Collapse
Affiliation(s)
- Mengle Kong
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Xinwen Peng
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Hao Cui
- College of Chemistry and Chemical Engineering, College of Life Science, Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University Nanchang Jiangxi 330022 PR China
| | - Peiwen Liu
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Bo Pang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Georg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
44
|
Low‐temperature assembling of naturally driven copper ferrite starch nanocomposites hydrogel with magnetic and antibacterial activities. J Appl Polym Sci 2020. [DOI: 10.1002/app.48961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Vashist A, Ghosal A, Vashist A, Kaushik A, Gupta YK, Nair M, Ahmad S. Impact of Nanoclay on the pH-Responsiveness and Biodegradable Behavior of Biopolymer-Based Nanocomposite Hydrogels. Gels 2019; 5:E44. [PMID: 31623182 PMCID: PMC6955902 DOI: 10.3390/gels5040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
This research work deployed free radical polymerization for the development of pH-responsive hybrid nanocomposite hydrogels (NCHs) with the formation of improved interpenetrating networks (IPN). The crosslinked biopolymeric system was composed of (chitosan (CH)/guar gum (GG)/polyol) and a nanofiller (Cloisite 30B). The study was aimed to investigate the role of Cloisite 30B as a nanofiller and linseed oil-derived polyol to induce stable interpenetrating networks in chitosan‒guar gum-based hydrogels. FT-IR analysis confirmed the formation of crosslinked networks with the formation of hydrogen bonds in the synthesized NCHs. Thermogravimetric analysis and differential scanning calorimetry revealed high thermal stability of the NCHs. The hydrolytic and soil burial degradation tests confirmed the biodegradability of the synthesized NCHs. An extraordinarily high swelling capacity in a buffer solution of pH 4.0 and 7.4 demonstrated their pH-responsive behavior. It has been demonstrated that even the minimal addition of polyol to the guar gum-based hydrogels has influenced the stability and characteristic features such as high swelling capacity owing to the formation of interpenetrating networks and the biodegradability of the hydrogels.
Collapse
Affiliation(s)
- Arti Vashist
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology & Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Anujit Ghosal
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
- School of Lifesciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology & Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
- Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL 33805-8531, USA.
| | - Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology & Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
46
|
Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym 2019; 221:94-112. [PMID: 31227171 PMCID: PMC6626612 DOI: 10.1016/j.carbpol.2019.05.067] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
Abstract
This review investigates the significant role polysaccharide particles play in functional drug delivery. The importance of these systems is due to the wide variety of polysaccharides and their natural source meaning that they can provide biocompatible and biodegradable systems with a range of both biological and chemical functionality valuable for drug delivery. This functionality includes protection and presentation of working therapeutics through avoidance of the reticuloendothelial system, stabilization of biomacromolecules and increasing the bioavailability of incorporated small molecule drugs. Transport of the therapeutic is also key to the utility of polysaccharide particles, moving drugs from the site of administration through mucosal binding and transport and using chemistry, size and receptor mediated drug targeting to specific tissues. This review also scrutinizes the methods of synthesizing and constructing functional polysaccharide particle drug delivery systems that maintain and extend the functionality of the natural polysaccharides.
Collapse
Affiliation(s)
- Thomas G Barclay
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Candace Minhthu Day
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 1 Flinders Drive, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia.
| | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
47
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
48
|
Wang X, Liu Z, Huang L. pH and thermo dual-responsive starch-g-P(DEAEMA-co-PEGMA): Synthesis via SET-LRP, self-assembly and drug release behaviors. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ojah N, Deka J, Haloi S, Kandimalla R, Gogoi D, Medhi T, Mandal M, Ahmed GA, Choudhury AJ. Chitosan coated silk fibroin surface modified by atmospheric dielectric-barrier discharge (DBD) plasma: a mechanically robust drug release system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1142-1160. [DOI: 10.1080/09205063.2019.1622844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Namita Ojah
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, India
| | - Jyotishikha Deka
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, India
| | - Saurav Haloi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Raghuram Kandimalla
- Drug Discovery Laboratory, Institute of Advanced study in Science and Technology, Guwahati, Assam, India
| | - Dolly Gogoi
- Central Instruments Facility, Indian Institute of Technology, Guwahati, Assam, India
| | - Tapas Medhi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Gazi Ameen Ahmed
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, India
| | - Arup Jyoti Choudhury
- Laboratory for Plasma Processing of Materials, Department of Physics, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
50
|
Barber E, Turasan H, Gezer P, Devina D, Liu G, Kokini J. Effect of plasticizing and crosslinking at room temperature on microstructure replication using soft lithography on zein films. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|