1
|
Corner SC, Gransbury GK, Mills DP. Influence of weakly coordinating anions binding to the hexa- tert-butyl dysprosocenium cation. Dalton Trans 2024. [PMID: 39526994 DOI: 10.1039/d4dt02713b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Complexes containing isolated dysprosocenium cations, [Dy(CpR)2][WCA] (CpR = substituted cyclopentadienyl, WCA = weakly coordinating anion), have recently emerged as leading examples of high-temperature single-molecule magnets (SMMs) due to a combination of the axial orientation and rigidity of the CpR rings. However, our understanding of the effects of transverse fields on the magnetic properties of [Dy(CpR)2]+ cations is underdeveloped. Here we investigate the impact of equatorially-bound WCAs via the synthesis of the Dy(III) bis-CpR complexes [Dy(Cpttt)2{AlCl[OC(CF3)3]3-κ-Cl}] (1) and [Dy(Cpttt)2{AlCl(C2H5)[OC(C6F5)3]2-κ-Cl}] (2), and their characterisation by single crystal XRD, elemental analysis, ATR-IR and NMR spectroscopy, and ab initio calculations. Despite the similarity of the Dy coordination spheres in 1 and 2 we find that their effective energy barriers to reversal of magnetisation are vastly different (Ueff = 886(17) cm-1 and 559(18) cm-1, respectively) and they both show waist-restricted magnetic hysteresis at 2 K. Together, these data provide fresh insights into the sensitivity of the magnetic properties of [Dy(CpR)2]+ cations to relatively weak equatorial interactions.
Collapse
Affiliation(s)
- Sophie C Corner
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Benner F, Demir S. Isolation of Elusive Fluoflavine Radicals in Two Differing Oxidation States. J Am Chem Soc 2024; 146:26008-26023. [PMID: 39265051 PMCID: PMC11440492 DOI: 10.1021/jacs.4c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Facile access and switchability between multiple oxidation states are key properties of many catalytic applications and spintronic devices yet poorly understood due to inherent complications arising from isolating a redox system in multiple oxidation states without drastic structural changes. Here, we present the first isolable, free fluoflavine (flv) radical flv(1-•) as a bottleable potassium compound, [K(crypt-222)](flv•), 1, and a new series of organometallic rare earth complexes [(Cp*2Y)2(μ-flvz)]X, (where Cp* = pentamethylcyclopentadienyl, X = [Al(OC{CF3}3)4]- (z = -1), 2; X = 0 (z = -2), 3; [K(crypt-222)]+ (z = -3), 4) comprising the flv ligand in three different oxidation states, two of which are paramagnetic flv1-• and flv3-•. Excitingly, 1, 2, and 4 constitute the first isolable flv1-• and flv3-• radical complexes and, to date, the only isolated flv radicals of any oxidation state. All compounds are accessible in good crystalline yields and were unambiguously characterized via single-crystal X-ray diffraction analysis, cyclic voltammetry, IR-, UV-vis, and variable-temperature EPR spectroscopy. Remarkably, the EPR spectra for 1, 2, and 4 are distinct and a testament to stronger spin delocalization onto the metal centers as a function of higher charge on the flv radical. In-depth analysis of the electron- and spin density via density functional theory (DFT) calculations utilizing NLMO, QTAIM, and spin density topology analysis confirmed the fundamental interplay of metal coordination, ligand oxidation state, aromaticity, covalency, and spin density transfer, which may serve as blueprints for the development of future spintronic devices, single-molecule magnets, and quantum information science at large.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Kumar Sahu P, Konar S. Enhancement of Effective Energy Barrier and Magnetic Blocking Temperature in Tetraoxolene Radical Coupled Dinuclear Dysprosium Complex. Chemistry 2024:e202402439. [PMID: 39278828 DOI: 10.1002/chem.202402439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
A well-judged combination of a high axial ligand field and a bridging radical ligand in a dinuclear lanthanide complex provides a single-molecule magnet with a higher effective energy barrier for magnetic relaxation and blocking temperature compared to its non-radical analog due to significant magnetic exchange coupling between radical and Ln(III) ions. In this work, we report two chloranilate (CA) bridged dinuclear dysprosium complexes, [{(bbpen)Dy(μ2-CA)Dy(bbpen)}] (1Dy) and [{(bbpen)Dy(μ2-CA⋅)Dy(bbpen)}-{CoCp2}+] (2Dy), where 2Dy is the radical bridged Dy-complex obtained via the chemical reduction of bridging CA moiety (H2bbpen=N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-methylpyridyl)ethylenediamine). The presence of high electronegative phenoxide moiety enhances the axial anisotropy of pseudo-square antiprismatic Dy(III) ions. The diffused spin of radical is efficiently coupled with anisotropic Dy(III) centres and decreases the quantum tunnelling of magnetization (QTM) in the magnetic relaxation process. The magnetic relaxation of 1Dy follows Orbach, Raman, and QTM processes whereas for 2Dy it follows Orbach and Raman Processes. Due to less involvement of the QTM relaxation process, 2Dy shows a higher thermal energy barrier (Ueff=700 K) and a high blocking temperature (6.7 K), compared to its non-radical analog. Remarkably, the radical coupled 2Dy complex shows the highest energy barrier among the radical bridged Dy(III)-based SMMs to date.
Collapse
Affiliation(s)
- Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Address IISER Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Braun J, Powell AK, Unterreiner AN. Gaining Insights into the Interplay between Optical and Magnetic Properties in Photoexcited Coordination Compounds. Chemistry 2024; 30:e202400977. [PMID: 38693865 DOI: 10.1002/chem.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.
Collapse
Affiliation(s)
- Jonas Braun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Halobenzene Adducts of a Dysprosocenium Single-Molecule Magnet. Inorg Chem 2024; 63:9552-9561. [PMID: 38359351 PMCID: PMC11134494 DOI: 10.1021/acs.inorgchem.3c04105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Dysprosium complexes with strong axial crystal fields are promising candidates for single-molecule magnets (SMMs), which could be used for high-density data storage. Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently shown magnetic hysteresis (a memory effect) above the temperature of liquid nitrogen. Synthetic efforts have focused on reducing strong transverse ligand fields in these systems as they are known to enhance magnetic relaxation by spin-phonon mechanisms. Here we show that equatorial coordination of the halobenzenes PhX (X = F, Cl, Br) and o-C6H4F2 to the cation of a recently reported dysprosocenium complex [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4] (Cpttt = C5H2tBu3-1,2,4; Cp* = C5Me5) reduces magnetic hysteresis temperatures compared to that of the parent cation. We find that this is due to increased effectiveness of both one- (Orbach) and two-phonon (Raman) relaxation mechanisms, which correlate with the electronegativity and number of interactions with the halide despite κ1-coordination of a single halobenzene having a minimal effect on the metrical parameters of [Dy(Cpttt)(Cp*)(PhX-κ1-X)]+ cations vs the isolated [Dy(Cpttt)(Cp*)]+ cation. We observe unusual divergent behavior of relaxation rates at low temperatures in [Dy(Cpttt)(Cp*)(PhX)][Al{OC(CF3)3}4], which we attribute to a phonon bottleneck effect. We find that, despite the transverse fields introduced by the monohalobenzenes in these cations, the interactions are sufficiently weak that the effective barriers to magnetization reversal remain above 1000 cm-1, being only ca. 100 cm-1 lower than for the parent complex, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4].
Collapse
Affiliation(s)
| | | | | | - George F. S. Whitehead
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Synthesis and Magnetic Properties of Bis-Halobenzene Decamethyldysprosocenium Cations. Inorg Chem 2024; 63:9562-9571. [PMID: 38382535 PMCID: PMC11134500 DOI: 10.1021/acs.inorgchem.3c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
The decamethyldysprosocenium cation, [Dy(Cp*)2]+ (Cp* = {C5Me5}), was a target single-molecule magnet (SMM) prior to the isolation of larger dysprosocenium cations, which have recently shown magnetic memory effects up to 80 K. However, the relatively short Dy···Cp*centroid distances of [Dy(Cp*)2]+, together with the reduced resonance of its vibrational modes with electronic states compared to larger dysprosocenium cations, could lead to more favorable SMM behavior. Here, we report the synthesis and magnetic properties of a series of solvated adducts containing bis-halobenzene decamethyldysprosocenium cations, namely [Dy(Cp*)2(PhX-κ-X)2][Al{OC(CF3)3}4] (X = F or Cl) and [Dy(Cp*)2(C6H4F2-κ2-F,F)(C6H4F2-κ-F)][Al{OC(CF3)3}4]. These complexes were prepared by the sequential reaction of [Dy(Cp*)2(μ-BH4)]∞ with allylmagnesium chloride and [NEt3H][Al{OC(CF3)3}4], followed by recrystallization from parent halobenzenes. The complexes were characterized by powder and single crystal X-ray diffraction, NMR and ATR-IR spectroscopy, elemental analysis, and SQUID magnetometry; experimental data were rationalized by a combination of density functional theory and ab initio calculations. We find that bis-halobenzene adducts of the [Dy(Cp*)2]+ cation exhibit highly bent Cp*···Dy···Cp* angles; these cations are also susceptible to decomposition by C-X (X = F, Cl, Br) activation and displacement of halobenzenes by O-donor ligands. The effective energy barrier to reversal of magnetization measured for [Dy(Cp*)2(PhF-κ-F)2][Al{OC(CF3)3}4] (930(6) cm-1) sets a new record for SMMs containing {Dy(Cp*)2} fragments, though all SMM parameters are lower than would be predicted for an isolated [Dy(Cp*)2]+ cation, as expected due to transverse ligand fields introduced by halobenzenes and the large deviation of the Cp*···Dy···Cp* angle from linearity promoting magnetic relaxation.
Collapse
Affiliation(s)
- Sophie
C. Corner
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Delano F, Deshapriya S, Demir S. Guanidinate Yttrium Complexes Containing Bipyridyl and Bis(benzimidazolyl) Radicals. Inorg Chem 2024; 63:9659-9669. [PMID: 38569134 PMCID: PMC11134503 DOI: 10.1021/acs.inorgchem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Ancillary ligand scaffolds that sufficiently stabilize a metal ion to allow its coordination to an open-shell ligand are scarce, yet their development is essential for next-generation spin-based materials with topical applications in quantum information science. To this end, a synthetic challenge must be met: devising molecules that enable the binding of a redox-active ligand through facile displacement and clean removal of a weakly coordinating anion. Here, we probe the accessibility of unprecedented radical-containing rare-earth guanidinate complexes by combining our recently discovered yttrium tetraphenylborate complex [{(Me3Si)2NC(NiPr)2}2Y][(μ-η6-Ph)(BPh3)] with the redox-active ligands 2,2'-bipyridine (bpy) and 2,2'-bis(benzimidazole) (Bbim), respectively, under reductive conditions. Our endeavor resulted in the first evidence of guanidinate complexes that contain radicals, namely, a mononuclear bipyridyl radical complex, {(Me3Si)2NC(NiPr)2}2Y(bpy•) (1), and a dinuclear bis(benzimidazolyl) radical-bridged complex, [K(crypt-222)][{(Me3Si)2NC(NiPr)2}2Y]2(μ-Bbim•) (2'). The latter was achieved by an in situ reduction of [{(Me3Si)2NC(NiPr)2}2Y]2(μ-Bbim) (2), which was isolated from a salt metathesis reaction. 1 and 2 were characterized by X-ray crystallography and IR and UV-vis spectroscopy. Variable-temperature electron paramagnetic resonance spectroscopy was applied to gain insight into the distribution of unpaired spin density on 1 and 2'. Density functional theory calculations were conducted on 1 and 2' to elucidate further their electronic structures. The redox activity of 1 and 2' was also probed by electrochemical methods.
Collapse
Affiliation(s)
| | | | - Selvan Demir
- Department of Chemistry, Michigan
State University (MSU), 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Arumugam S, Schwarz B, Ravichandran P, Kumar S, Ungur L, Mondal KC. Dipotassiumtetrachloride-bridged dysprosium metallocenes: a single-molecule magnet. Dalton Trans 2023; 52:15326-15333. [PMID: 37387215 DOI: 10.1039/d3dt01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present work describes the dynamic magnetic properties of the complex [(CpAr3)4DyIII2Cl4K2]·3.5(C7H8) (1), synthesized by employing a tri-aryl-substituted cyclopentadienyl ligand (CpAr3), [4,4'-(4-phenylcyclopenta-1,3-diene-1,2-diyl)bis(methylbenzene) = CpAr3H]. Each Dy(III)-metallocene weakly couples via K2Cl4, displaying slow relaxation of magnetization below 14.5 K under zero applied dc field via KD3 energy levels with an energy barrier of 136.9/133.7 cm-1 on the Dy sites. The single-ion axial anisotropy energy barrier is reduced by geometrical distortion due to the coordination of two chloride ions at each Dy centre.
Collapse
Affiliation(s)
- Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | - Sunil Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, Singapore.
| | | |
Collapse
|
9
|
Mondal A, Price CG, Tang J, Layfield RA. Targeted Synthesis of End-On Dinitrogen-Bridged Lanthanide Metallocenes and Their Reactivity as Divalent Synthons. J Am Chem Soc 2023; 145:20121-20131. [PMID: 37656516 PMCID: PMC10510326 DOI: 10.1021/jacs.3c07600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 09/03/2023]
Abstract
High-yield syntheses of the lanthanide dinitrogen complexes [(Cp2tttM)2(μ-1,2-N2)] (1M, M = Gd, Tb, Dy; Cpttt = 1,2,4-C5tBu3H2), in which the [N2]2- ligands solely adopt the rare end-on or 1,2-bridging mode, are reported. The bulk of the tert-butyl substituents and the smaller radii of gadolinium, terbium, and dysprosium preclude formation of the side-on dinitrogen bonding mode on steric grounds. Elongation of the nitrogen-nitrogen bond relative to N2 is observed in 1M, and their Raman spectra show a major absorption consistent with N═N double bonds. Computational analysis of 1Gd identifies that the local symmetry of the metallocene units lifts the degeneracy of two 5dπ orbitals, leading to differing overlap with the π* orbitals of [N2]2-, a consequence of which is that the dinitrogen ligand occupies a singlet ground state. Magnetic measurements reveal antiferromagnetic exchange in 1M and single-molecule magnet (SMM) behavior in 1Dy. Ab initio calculations show that the magnetic easy axis in the ground doublets of 1Tb and 1Dy align with the {M-N═N-M} connectivity, in contrast to the usual scenario in dysprosium metallocene SMMs, where the axis passes through the cyclopentadienyl ligands. The [N2]2- ligands in 1M allow these compounds to be regarded as two-electron reducing agents, serving as synthons for divalent gadolinium, terbium, and dysprosium. Proof of principle for this concept is obtained in the reactions of 1M with 2,2'-bipyridyl (bipy) to give [Cp2tttM(κ2-bipy)] (2M, M = Gd, Tb, Dy), in which the lanthanide is ligated by a bipy radical anion, with strong metal-ligand direct exchange coupling.
Collapse
Affiliation(s)
- Arpan Mondal
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Christopher G.
T. Price
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Jinkui Tang
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, P.R. China
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
10
|
Xia CC, Zhang XY, Zhang CC, Li G, Wei HY, Wang XY. Syntheses and magnetic properties of a bis-bidentate nitronyl nitroxide radical based on triazolopyrimidine and its metal complexes. Dalton Trans 2023. [PMID: 37326416 DOI: 10.1039/d3dt01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel bis-bidentate nitronyl nitroxide radical based on triazolopyrimidine, NIT-2-TrzPm (NIT-2-TrzPm = (2-(2'-triazolopyrimidine)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)) and six new transition metal complexes of this ligand, namely [M(hfac)2(NIT-2-TrzPm)]·CH2Cl2 (M = Mn (1Mn) and Co (2Co)), [M(hfac)2]2(NIT-2-TrzPm) (M = Mn (3Mn) and Co (4Co)), [Mn(NIT-2-TrzPm)2(MeOH)2](ClO4)2·MeOH (5Mn), and [Co(NIT-2-TrzPm)2(MeOH)2]2(ClO4)4·4MeOH (6Co) were prepared and characterized structurally and magnetically. These complexes can be selectively synthesized by controlling the reaction ratio of M(hfac)2·2H2O to the radical ligand (for 1Mn to 4Co) or using metal perchlorates as the starting materials (for 5Mn and 6Co). Single crystal X-ray crystallographic analyses confirmed that 1Mn and 2Co are isostructural 3d-2p MII-radical complexes, in which the NIT-2-TrzPm radical acts as a terminal bidentate ligand chelating to one 3d ion, while 3Mn and 4Co are isostructural 3d-2p-3d MII-radical-MII complexes with the NIT-2-TrzPm radical acting as a bridging ligand between two 3d ions. For complexes 5Mn and 6Co, two NIT-2-TrzPm ligands from the equatorial positions coordinate with the metal center to form the 2p-3d-2p structures with the axial positions occupied by two methanol molecules. Magnetic analysis on the MnII complexes revealed the existence of a strong antiferromagnetic interaction between the MnII and the NIT radical spin, while weak ferromagnetic coupling for Mn⋯Mn and Rad⋯Rad in the Mn-NIT-Mn and Rad-Mn-Rad spins was confirmed. Interestingly, although the NIT-bridged complexes 3Mn and 4Co possess significantly different magnetic anisotropy, field-induced slow magnetic relaxation can be observed in both complexes, which was assigned to the phonon bottleneck effect for 3Mn and field-induced SMM behavior for 4Co. To the best of our knowledge, 3Mn is the first example of the NIT-bridged binuclear MnII complex undergoing slow magnetic relaxation.
Collapse
Affiliation(s)
- Cheng-Cai Xia
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Gang Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Benner F, La Droitte L, Cador O, Le Guennic B, Demir S. Magnetic hysteresis and large coercivity in bisbenzimidazole radical-bridged dilanthanide complexes. Chem Sci 2023; 14:5577-5592. [PMID: 37265712 PMCID: PMC10231311 DOI: 10.1039/d3sc01562a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
A judicious combination of radical ligands innate to diffuse spin orbitals with paramagnetic metal ions elicits strong magnetic exchange coupling which leads to properties important for future technologies. This metal-radical approach aids in effective magnetic communication of especially lanthanide ions as their 4f orbitals are contracted and not readily accessible. Notably, a high spin density on the donor atoms of the radical is required for strong coupling. Such molecules are extremely rare owing to high reactivity rendering their isolation challenging. Herein, we present two unprecedented series of bisbenzimidazole-based dilanthanide complexes [(Cp*2Ln)2(μ-Bbim)] (1-Ln = Gd, Tb, Dy, Bbim = 2,2'-bisbenzimidazole) and [K(crypt-222)][(Cp*2Ln)2(μ-Bbim˙)] -(2-Ln = Gd, Tb, Dy), where the latter contains the first Bbim3-˙ radical matched with any paramagnetic metal ion. The magnetic exchange constant for 2-Gd of J = -1.96(2) cm-1 suggests strong antiferromagnetic Gd-radical coupling, whereas the lanthanides in 1-Gd are essentially uncoupled. Ab initio calculations on 2-Tb and 2-Dy uncovered coupling strengths of -4.8 and -1.8 cm-1. 1-Dy features open hysteresis loops with a coercive field of Hc of 0.11 T where the single-molecule magnetism can be attributed to the single-ion effect due to lack of coupling. Excitingly, pairing the effective magnetic coupling with the strong magnetic anisotropy of Dy results in magnetic hysteresis with a blocking temperature TB of 5.5 K and coercive field HC of 0.54 T, ranking 2-Dy as the second best dinuclear single-molecule magnet containing an organic radical bridge. A Bbim4- species is formed electrochemically hinting at the accessibility of Bbim-based redox-active materials.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
12
|
Li HD, Wu SG, Tong ML. Lanthanide-radical single-molecule magnets: current status and future challenges. Chem Commun (Camb) 2023; 59:6159-6170. [PMID: 37129902 DOI: 10.1039/d2cc07042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the field of molecular magnetism, the lanthanide-radical (Ln-Rad) method has become one of the most appealing tactics for introducing strong magnetic interactions and has spurred on the booming development of heterospin single-molecule magnets (SMMs). The article is a timely retrospect on the research progress of Ln-Rad heterospin systems and special attention is invested on low dimensional Ln-Rad compounds with SMM behavior, primarily concerning with nitrogen-based radicals, semiquinone and nitroxide radicals. Rational design, molecular structures, magnetic behaviors and magneto-structural correlations are highlighted. Meanwhile, particular attention is focused on the influence of exchange couplings on the dynamic magnetic properties, with the purpose of helping to guide the design of prospective radical-based Ln-SMMs.
Collapse
Affiliation(s)
- Hong-Dao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
13
|
Zhang P, Nabi R, Staab JK, Chilton NF, Demir S. Taming Super-Reduced Bi 23- Radicals with Rare Earth Cations. J Am Chem Soc 2023; 145:9152-9163. [PMID: 37043770 PMCID: PMC10141245 DOI: 10.1021/jacs.3c01058] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 04/14/2023]
Abstract
Here, we report the synthesis of two new sets of dibismuth-bridged rare earth molecules. The first series contains a bridging diamagnetic Bi22- anion, (Cp*2RE)2(μ-η2:η2-Bi2), 1-RE (where Cp* = pentamethylcyclopentadienyl; RE = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy), Y (1-Y)), while the second series comprises the first Bi23- radical-containing complexes for any d- or f-block metal ions, [K(crypt-222)][(Cp*2RE)2(μ-η2:η2-Bi2•)]·2THF (2-RE, RE = Gd (2-Gd), Tb (2-Tb), Dy (2-Dy), Y (2-Y); crypt-222 = 2.2.2-cryptand), which were obtained from one-electron reduction of 1-RE with KC8. The Bi23- radical-bridged terbium and dysprosium congeners, 2-Tb and 2-Dy, are single-molecule magnets with magnetic hysteresis. We investigate the nature of the unprecedented lanthanide-bismuth and bismuth-bismuth bonding and their roles in magnetic communication between paramagnetic metal centers, through single-crystal X-ray diffraction, ultraviolet-visible/near-infrared (UV-vis/NIR) spectroscopy, SQUID magnetometry, DFT and multiconfigurational ab initio calculations. We find a πz* ground SOMO for Bi23-, which has isotropic spin-spin exchange coupling with neighboring metal ions of ca. -20 cm-1; however, the exchange coupling is strongly augmented by orbitally dependent terms in the anisotropic cases of 2-Tb and 2-Dy. As the first examples of p-block radicals beneath the second row bridging any metal ions, these studies have important ramifications for single-molecule magnetism, main group element, rare earth metal, and coordination chemistry at large.
Collapse
Affiliation(s)
- Peng Zhang
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rizwan Nabi
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jakob K. Staab
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Selvan Demir
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Dodonov VA, Makarov VM, Zemnyukova MN, Razborov DA, Baranov EV, Bogomyakov AS, Ovcharenko VI, Fedushkin IL. Stability and Solution Behavior of [(dpp-Bian)Ln] and [(dpp-Bian)LnX] (Ln = Yb, Tm, or Dy; X = I, F, or N 3). Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Vladimir A. Dodonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Valentin M. Makarov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Marina N. Zemnyukova
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Danila A. Razborov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Evgeny V. Baranov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Artem S. Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Street 3a, Novosibirsk 630090, Russian Federation
| | - Victor I. Ovcharenko
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya Street 3a, Novosibirsk 630090, Russian Federation
| | - Igor L. Fedushkin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
15
|
Acikgoz M, Mollabashi L, Rahimi S, Jalali-Asadabadi S, Rudowicz C. DFT computations combined with semiempirical modeling of variations with temperature of spectroscopic and magnetic properties of Gd 3+-doped PbTiO 3. Phys Chem Chem Phys 2023; 25:3986-4004. [PMID: 36648488 DOI: 10.1039/d2cp03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rare-earth or 3d transition metal dopants in perovskites have potential to induce interesting features, thus opening opportunities for investigations and applications. Hence, understanding some features, i.e., defect structure, site of incorporation, valence state, and mechanism of charge compensation, in a wide range of temperature is crucial for their technological applications. A comprehensive understanding of the mechanism of structural changes in PbTiO3 doped with trivalent rare-earths is significant for their potential applications in photonics. To unravel the structural changes, we utilize the density functional theory (DFT) to optimize structural data, which then serve as input for the semiempirical superposition model (SPM) analysis of spectroscopic and magnetic properties of Gd3+-doped PbTiO3. We compute the formation energies of the doped compounds with and without O-vacancy to determine the stable composition. Analysis of the Bader electron charges computed using DFT plus quantum theory of atoms in molecules enables elucidating the effects of the Gd dopant and O-vacancy on the ionic and covalent bonds and, thereby, chemical stability of the compositions. To explain and corroborate the zero-field splitting parameters (ZFSPs) measured by EMR and the lattice parameter changes obtained from XRD, we employ SPM. The optimized structures obtained from ab initio computations for various structural models of Gd3+ doped PbTiO3 are utilized as input data for SPM calculations of ZFPs. This enables theoretical analysis of variations of ZFSPs from 5 to 780 K. The results were fine-tuned by matching with available experimental EMR data for Gd3+ probes in PbTiO3 nanoparticles. Modeling has been carried out considering several possible structural models and the role of an O-vacancy around Gd3+ centers. The results show that the two-fold modeling approach, combining DFT and SPM, provides a reliable description of experimental data. Comparative analysis indicates that the Ti-site is less favorable for being replaced by Gd3+ with/without O-vacancy. This analysis confirms the plausibility of the Pb2+ site for Gd3+ dopants and sheds light on the changes of crystal structure during the phase transitions occurring in PbTiO3 with decreasing temperature.
Collapse
Affiliation(s)
- Muhammed Acikgoz
- Department of Science, The State University of New York (SUNY) Maritime College, New York 10465, USA.
| | - Leila Mollabashi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Shahrbano Rahimi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Saeid Jalali-Asadabadi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan 81746-73441, Iran.
| | - Czesław Rudowicz
- Faculty of Chemistry, A. Mickiewicz University (AMU), 61-614 Poznań, Poland
| |
Collapse
|
16
|
Mahieu N, Piątkowski J, Simler T, Nocton G. Back to the future of organolanthanide chemistry. Chem Sci 2023; 14:443-457. [PMID: 36741512 PMCID: PMC9848160 DOI: 10.1039/d2sc05976b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
At the dawn of the development of structural organometallic chemistry, soon after the discovery of ferrocene, the description of the LnCp3 complexes, featuring large and mostly trivalent lanthanide ions, was rather original and sparked curiosity. Yet, the interest in these new architectures rapidly dwindled due to the electrostatic nature of the bonding between π-aromatic ligands and 4f-elements. Almost 70 years later, it is interesting to focus on how the discipline has evolved in various directions with the reports of multiple catalytic reactivities, remarkable potential in small molecule activation, and the development of rich redox chemistry. Aside from chemical reactivity, a better understanding of their singular electronic nature - not precisely as simplistic as anticipated - has been crucial for developing tailored compounds with adapted magnetic anisotropy or high fluorescence properties that have witnessed significant popularity in recent years. Future developments shall greatly benefit from the detailed reactivity, structural and physical chemistry studies, particularly in photochemistry, electro- or photoelectrocatalysis of inert small molecules, and manipulating the spins' coherence in quantum technology.
Collapse
Affiliation(s)
- Nolwenn Mahieu
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Jakub Piątkowski
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| |
Collapse
|
17
|
Roy S, Paul S, Misra A. A Theoretical Account of the Coupling between Metal- and Ligand-centred Spins. Chemphyschem 2023; 24:e202200889. [PMID: 36622254 DOI: 10.1002/cphc.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.
Collapse
Affiliation(s)
- Sriparna Roy
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 R.C Sarani, Kolkata, 700009, India
| | - Anirban Misra
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| |
Collapse
|
18
|
Xia CC, Ji WJ, Zhang XY, Miao H, Zhang YQ, Wang XY. Syntheses, structures, and magnetic properties of the lanthanide complexes of imidazole-substituted nitronyl nitroxide biradicals. Dalton Trans 2022; 51:12362-12372. [PMID: 35904351 DOI: 10.1039/d2dt01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new bis-bidentate imidazole-substituted nitronyl nitroxide biradicals, BNITIm-C2 (BNITIm-C2 = 1,1'-(1,2-ethanediyl)bis(1H-imidazole-2-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)) and BNITIm-C4 (BNITIm-C4 = 1,1'-(1,4-butanediyl)bis(1H-imidazole-2-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)), and two series of lanthanide complexes, namely [(BNITIm-C2)Ln(NO3)3](MeOH) (Ln = Gd (1Gd) and Tb (2Tb)), (BNITIm-C2)Dy(NO3)3 (3Dy) and (BNITIm-C4)[Ln(hfac)3]2(C7H8)2 (Ln = Gd (4Gd), Tb (5Tb) and Dy (6Dy), hfac = hexafluoroacetylacetonate), have been prepared and characterized structurally and magnetically. Single crystal X-ray crystallographic analyses revealed that complexes 1Gd-3Dy exhibit 1D chain structures where the Ln(NO3)3 units are bridged by the BNITIm-C2 bis-bidentate biradical, while complexes 4Gd-6Dy exhibit binuclear structures with two Ln(hfac)3 units bridged by the BNITIm-C4 biradical. The bulky hfac anions prohibit the further coordination of LnIII to another NIT ligand and the formation of a similar 1D chain structure. Due to the very long intra- and intermolecular distances of the spin centers, complexes 1Gd-3Dy can be magnetically regarded as an isolated 2p-4f-2p tri-spin system while complex 4Gd-6Dy can be regarded as an isolated 2p-4f bi-spin system. Magnetic analyses on the two GdIII compounds revealed the ferromagnetic GdIII-NIT interactions and antiferromagnetic NIT-NIT interactions through the GdIII ion in 1Gd. Alternating-current (ac) magnetic susceptibility investigations revealed that complex 5Tb exhibits the typical SMM behavior under a zero dc field while complex 6Dy was proved to be a field-induced SMM. Ab initio calculations were performed on complexes 2Tb and 5Tb to understand their magnetic anisotropy together with their different magnetic dynamics.
Collapse
Affiliation(s)
- Cheng-Cai Xia
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wen-Jie Ji
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Miao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Dunstan MA, Brown DS, Sorace L, Mole RA, Boskovic C. Modulation of Slow Magnetic Relaxation in Gd(III)-Tetrahalosemiquinonate Complexes. Chem Asian J 2022; 17:e202200325. [PMID: 35644855 PMCID: PMC9400849 DOI: 10.1002/asia.202200325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Incorporating lanthanoid(III)-radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single-molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln-radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)-radical compounds of formula [Gd(18-c-6)X4 SQ(NO3 )].I3 (18-c-6=18-crown-6, X4 SQ⋅- =tetrahalo-1,2-semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X-ray crystallography, UV-Visible-NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd-SQ ∼-2.0 cm-1 (Hex =-2JGd-SQ (SGd SSQ )) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization.
Collapse
Affiliation(s)
- Maja A. Dunstan
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Dominic S. Brown
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| | - Lorenzo Sorace
- Department of Chemistry, “Ugo Schiff”Universita Degli Studi FirenzeVia della Lastruccia, 1350019Sesto FiorentinoItaly
| | - Richard A. Mole
- Australian Centre for Neutron ScatteringAustralian Nuclear Science and Technology OrganisationLocked Bag 2001Kirrawee DC2232Australia
| | - Colette Boskovic
- School of ChemistryThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
20
|
Ahmed N, Ansari KU. Zero-field slow magnetic relaxation behavior of Zn 2Dy in a family of trinuclear near-linear Zn 2Ln complexes: synthesis, experimental and theoretical investigations. Dalton Trans 2022; 51:8766-8776. [PMID: 35615914 DOI: 10.1039/d2dt00926a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We hereby report a series of near-linear trinuclear [Zn2LnIII(HL)4(CH3COO)]·(NO3)2 (where LnIII = La (1-La), Ce (2-Ce), Nd (3-Nd), Sm (4-Sm), Tb (5-Tb), and Dy (6-Dy)) complexes with Schiff base ligand (H2L). Magnetization relaxation dynamic studies on complexes 2-Ce, 5-Tb, and 6-Dy reveal the existence of well resolved frequency dependent zero-field out-of-phase χ''M signals, which is an indicator of a typical single-ion magnet behavior observed only for complex 6-Dy with Ueff = 43.7 K (τ0 = 2.42 × 10-6 s). The presence of two Zn(II) ions near the coordination geometry of Dy(III) ion in 6-Dy is likely to keep the first excited mJ levels significantly away from the ground state mJ level and is responsible for the observation of zero field slow magnetic relaxation behavior. The data collected in the presence of a magnetic field of Hdc = 2 kOe enhances the energy barrier by two-fold (88.63 K, τ0 = 1.36 × 10-7 s) in 6-Dy, suggesting the presence of QTM at zero field along with other under barrier relaxations, such as the Raman process. On the other hand, complex 2-Ce shows field induced slow relaxation of magnetization behavior with an effective energy barrier of 12.24 K (τ0 = 1.89 × 10-4 s). The CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations using MOLCAS 8.0 code further rationalized our experimentally observed magnetization dynamics.
Collapse
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai-400076, Maharashtra, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
21
|
Lüert D, Kreyenschmidt AK, Legendre CM, Herbst-Irmer R, Stalke D. A Sodium Sodate as Precursor for Lanthanide Bis(4- R-benzoxazol-2-yl)methanide Single-Molecule Magnets. Inorg Chem 2022; 61:5234-5244. [PMID: 35316598 DOI: 10.1021/acs.inorgchem.1c03714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From the sodium sodate precursor [(Na(thf)6][Na{(4-Me-NCOC6H3)2CH}2] (1) three isostructural dinuclear lanthanide complexes [(μ-Cl)LnIII{(4-MeNCOC6H3)2CH}2]2 with Ln = Gd (2), Dy (3), and Er (4) based on the N,N'-chelating monoanionic bis(4-methylbenzoxazol-2-yl)methanide ligand (titled "Mebox") were synthesized and characterized by X-ray diffraction and magnetic measurements. The sodium precursor 1 was analyzed via X-ray diffraction and diffusion-ordered NMR spectroscopy experiments (DOSY-NMR) in order to investigate its aggregation in solution and the solid state. The sodium analog [(thf)3Na(NCOC6H4)2CH] (1') based on the bis(benzoxazol-2-yl)-methanide ligand (titled "box") was prepared and analyzed for comparison reasons. From the lanthanide derivatives 2-4, the DyIII complex 3 displays slow relaxation of magnetization at zero field, with a relaxation barrier of U = 315.7 cm-1. The coupling strength between the two lanthanide centers was estimated with the GdIII equivalent 2, giving a weak antiferromagnetic coupling of J = -0.035 cm-1.
Collapse
Affiliation(s)
- Daniel Lüert
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Anne-Kathrin Kreyenschmidt
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Christina M Legendre
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Regine Herbst-Irmer
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| | - Dietmar Stalke
- Department of Inorganic Chemistry, University of Goettingen, Tammannstrasse 4, 37077 Goettingen, Germany
| |
Collapse
|
22
|
Pugliese ER, Benner F, Castellanos E, Delano F, Demir S. Heteroleptic Rare-Earth Tris(metallocenes) Containing a Dibenzocyclooctatetraene Dianion. Inorg Chem 2022; 61:2444-2454. [PMID: 35042339 DOI: 10.1021/acs.inorgchem.1c03230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isolable heteroleptic tris(metallocenes) containing five-membered and larger rings remain extremely scarce. The utilization of tripositive rare-earth-metal ions with ionic radii >1 Å allowed access to unprecedented and sterically congested dibenzocyclooctatetraenyl (dbCOT) metallocenes, [K(crypt-222)][Cptet2RE(η2-dbCOT)] (RE = Y (1), Dy (2); Cptet = tetramethylcyclopentadienyl), through a salt metathesis reaction involving Cptet2RE(BPh4) and the potassium salt of the dbCOT dianion. The solid-state structures were investigated by single-crystal X-ray diffraction, magnetometry, and IR spectroscopy and provided evidence for the first crystallographically characterized (dbCOT)2- anion in a complex containing d- or f-block metals. Remarkably, the (Cptet)- ligands force a distortion from planarity within the (dbCOT)2- moiety, engendering a rare η2-bonding motif, as opposed to the classical η8 conformation observed in complexes bearing a (COT)2- ion. The η2 coordination mode was proven crystallographically between 100 and 298 K and computationally (DFT and NBO). Furthermore, nucleus independent chemical shift (NICS) calculations uncovered significant ring current within the dbCOT ligand. The solution-state properties of 1 and 2 were analyzed via cyclic voltammetry, NMR, and UV-vis spectroscopy. Cyclic voltammograms of 1 and 2 exhibit a quasi-reversible feature indicating the accessibility of complexes with dbCOT in two oxidation states (dbCOT2-/3-•). Importantly, the dysprosium congener, 2, is a zero-field single-molecule magnet (SMM).
Collapse
Affiliation(s)
- Elizabeth R Pugliese
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Francis Delano
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| |
Collapse
|
23
|
Dinuclear dysprosium(III) complex derived from a multidentate bis-hydrazone Schiff base ligand: Synthesis, crystal structure and magnetic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Benner F, Demir S. Isolation of the elusive bisbenzimidazole Bbim 3−˙ radical anion and its employment in a metal complex. Chem Sci 2022; 13:5818-5829. [PMID: 35685798 PMCID: PMC9132035 DOI: 10.1039/d1sc07245e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89Y (I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim3−˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp*2Y)2(μ-Bbim˙)] is provided. Access of Bbim3−˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim2− (1) and Bbim3−˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vis spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim3−˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim3−˙ an ideal candidate for single-molecule magnet design. The long sought-after bisbenzimidazole radical was isolated through complexation to two rare earth metallocenes followed by reduction, and analysed through crystallography, VT EPR spectroscopy, electrochemistry, magnetometry, and DFT computations.![]()
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| |
Collapse
|
25
|
Modder DK, Batov MS, Rajeshkumar T, Sienkiewicz A, Zivkovic I, Scopelliti R, Maron L, Mazzanti M. Assembling Diuranium Complexes in Different States of Charge with a Bridging Redox-Active Ligand. Chem Sci 2022; 13:11294-11303. [PMID: 36320571 PMCID: PMC9533398 DOI: 10.1039/d2sc03592h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2′-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(μ-bpym2−)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(μ-bpym)], 2, which is best described as a radical-bridged UIII–bpym˙−–UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(μ-bpym2−)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(μ-bpym˙−)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation. Convenient routes to dinuclear complexes of uranium where two uranium centers are bridged by the redox-active ligand bpym were identified resulting in unique and stable radical-bridged dimetallic complexes of U(iii) and U(iv) showing SMM behaviour.![]()
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mikhail S Batov
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl Route de Genève 60B 1028 Préverenges Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
26
|
Wang HS, Zhou PF, Wang J, Long QQ, Hu Z, Chen Y, Li J, Song Y, Zhang YQ. Significantly Enhancing the Single-Molecule-Magnet Performance of a Dinuclear Dy(III) Complex by Utilizing an Asymmetric Auxiliary Organic Ligand. Inorg Chem 2021; 60:18739-18752. [PMID: 34865470 DOI: 10.1021/acs.inorgchem.1c02169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we employed an asymmetric auxiliary organic ligand (1,1,1-trifluoroacetylacetone, Htfac) to further regulate the magnetic relaxation behavior of series of Dy2 single-molecule magnets (SMMs) with a N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2L) ligand. Fortunately, an air-stable Dy2 complex, [Dy2(L)2(tfac)2] (1; Htfac = 1,1,1-trifluoroacetylacetone) was obtained at room temperature. A structural analysis indicated that some Dy-O or Dy-N bond lengths for 1 are not in the range of those for the complexes [DyIII2(L)2(acac)2]·2CH2Cl2 (Dy2-acac; Hacac = acetylacetone) and [DyIII2(L)2(hfac)2] (Dy2-hfac; Hhfac = hexafluoroacetylacetone), although the electron-withdrawing ability of tfac- is stronger than that of acac- but weaker than that of hfac-. Additionally, the Dy-O3/O3a (the two O atoms bridged to DyIII ions) bond lengths are also affected by the asymmetrical Htfc ligand. This indicated that the charge distribution of the coordination atoms around DyIII has been modified in 1, which leads to the fine-tuning of the magnetic relaxation behavior of 1. Magnetic studies indicated that the values of effective energy barrier (Ueff) for 1 and its diluted sample (2) are 234.8(3) and 188.0(6) K, respectively, which are both higher than the reported value of 110 K for the complex Dy2-hfac. More interestingly, 1 exhibits a magnetic hysteresis opening when T < 2.5 K at zero field, while the hysteresis loops of 2 are closed at a zero dc field. This discrepancy is due to the weak intramolecular exchange coupling in 2, which cannot overcome the QTM of the single DyIII ion. Ab initio calculations for 1 revealed that the charge distributions of the coordination atoms around DyIII ions were regulated and the intramolecular exchange coupling was indeed improved when the asymmetrical Htfc was employed as a ligand for the synthesis of this kind of Dy2 SMM.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Peng-Fei Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Zhaobo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jing Li
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
27
|
Delano Iv F, Castellanos E, McCracken J, Demir S. A rare earth metallocene containing a 2,2'-azopyridyl radical anion. Chem Sci 2021; 12:15219-15228. [PMID: 34976342 PMCID: PMC8634996 DOI: 10.1039/d1sc04285h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Introducing spin onto organic ligands that are coordinated to rare earth metal ions allows direct exchange with metal spin centres. This is particularly relevant for the deeply buried 4f-orbitals of the lanthanide ions that can give rise to unparalleled magnetic properties. For efficacy of exchange coupling, the donor atoms of the radical ligand require high-spin density. Such molecules are extremely rare owing to their reactive nature that renders isolation and purification difficult. Here, we demonstrate that a 2,2′-azopyridyl (abpy) radical (S = 1/2) bound to the rare earth metal yttrium can be realized. This molecule represents the first rare earth metal complex containing an abpy radical and is unambigously characterized by X-ray crystallography, NMR, UV-Vis-NIR, and IR spectroscopy. In addition, the most stable isotope 89Y with a natural abundance of 100% and a nuclear spin of ½ allows an in-depth analysis of the yttrium–radical complex via EPR and HYSCORE spectroscopy. Further insight into the electronic ground state of the radical azobispyridine-coordinated metal complex was realized through unrestricted DFT calculations, which suggests that the unpaired spin density of the SOMO is heavily localized on the azo and pyridyl nitrogen atoms. The experimental results are supported by NBO calculations and give a comprehensive picture of the spin density of the azopyridyl ancillary ligand. This unexplored azopyridyl radical anion in heavy element chemistry bears crucial implications for the design of molecule-based magnets particularly comprising anisotropic lanthanide ions. Unambiguous characterization of the first 2,2′-azobispyridine radical-containing rare earth metal complex through X-ray crystallography, DFT computations, EPR and HYSCORE spectroscopy.![]()
Collapse
Affiliation(s)
- Francis Delano Iv
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Ernesto Castellanos
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - John McCracken
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
28
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical‐Bridged Ln
4
Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
29
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical-Bridged Ln 4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021; 60:24206-24213. [PMID: 34427984 DOI: 10.1002/anie.202110813] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/05/2022]
Abstract
Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
30
|
Jung J, Benner F, Herbst‐Irmer R, Demir S, Stalke D. Slow Magnetic Relaxation in Mono- and Bimetallic Lanthanide Tetraimido-Sulfate S(NtBu) 4 2- Complexes. Chemistry 2021; 27:12310-12319. [PMID: 33978251 PMCID: PMC8453918 DOI: 10.1002/chem.202101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Lanthanide ions are particularly well-suited for the design of single-molecule magnets owing to their large unquenched orbital angular momentum and strong spin-orbit coupling that gives rise to high magnetic anisotropy. Such nanoscopic bar magnets can potentially revolutionize high-density information storage and processing technologies, if blocking temperatures can be increased substantially. Exploring non-classical ligand scaffolds with the aim to boost the barriers to spin-relaxation are prerequisite. Here, the synthesis, crystallographic and magnetic characterization of a series of each isomorphous mono- and dinuclear lanthanide (Ln=Gd, Tb, Dy, Ho, Er) complexes comprising tetraimido sulfate ligands are presented. The dinuclear Dy complex [{(thf)2 Li(NtBu)2 S(tBuN)2 DyCl2 }2 ⋅ ClLi(thf)2 ] (1c) shows true signatures of single-molecule magnet behavior in the absence of a dc field. In addition, the mononuclear Dy and Tb complexes [{(thf)2 Li(NtBu)2 S(tBuN)2 LnCl2 (thf)2 ] (2b,c) show slow magnetic relaxation under applied dc fields.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Florian Benner
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Selvan Demir
- Department of ChemistryMichigan State University578 S Shaw LaneEast LansingMI 48824USA
| | - Dietmar Stalke
- Institut für Anorganische ChemieGeorg-August Universität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
31
|
Mayans J, Tesi L, Briganti M, Boulon ME, Font-Bardia M, Escuer A, Sorace L. Single-Ion Anisotropy and Intramolecular Interactions in Ce III and Nd III Dimers. Inorg Chem 2021; 60:8692-8703. [PMID: 34110135 PMCID: PMC8277162 DOI: 10.1021/acs.inorgchem.1c00647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/11/2022]
Abstract
This article reports the syntheses, characterization, structural description, together with magnetic and spectroscopic properties of two isostructural molecular magnets based on the chiral ligand N,N'-bis((1,2-diphenyl-(pyridine-2-yl)methylene)-(R,R/S,S)-ethane-1,2-diamine), L1, of general formula [Ln2(RR-L1)2(Cl6)]·MeOH·1.5H2O, (Ln = Ce (1) or Nd (2)). Multifrequency electron paramagnetic resonance (EPR), cantilever torque magnetometry (CTM) measurements, and ab initio calculations allowed us to determine single-ion magnetic anisotropy and intramolecular magnetic interactions in both compounds, evidencing a more important role of the anisotropic exchange for the NdIII derivative. The comparison of experimental and theoretical data indicates that, in the case of largely rhombic lanthanide ions, ab initio calculations can fail in determining the orientation of the weakest components, while being reliable in determining their principal values. However, they remain of paramount importance to set the analysis of EPR and CTM on sound basis, thus obtaining a very precise picture of the magnetic interactions in these systems. Finally, the electronic structure of the two complexes, as obtained by this approach, is consistent with the absence of zero-field slow relaxation observed in ac susceptibility.
Collapse
Affiliation(s)
- Júlia Mayans
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotechnology
(INUB), Universitat de Barcelona, Martí i Franques 1-11, Barcelona-08028, Spain
| | - Lorenzo Tesi
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Matteo Briganti
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Marie-Emmanuelle Boulon
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mercè Font-Bardia
- Unitat
de Difracció de R-X, Centre Científic i Tecnològic
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Albert Escuer
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotechnology
(INUB), Universitat de Barcelona, Martí i Franques 1-11, Barcelona-08028, Spain
| | - Lorenzo Sorace
- Dipartimento
di Chimica “Ugo Schiff” & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
32
|
Li H, Jing P, Lu J, Xie J, Zhai L, Xi L. Dipyridyl-Decorated Nitronyl Nitroxide-Dy III Single-Molecule Magnet with a Record Energy Barrier of 146 K. Inorg Chem 2021; 60:7622-7626. [PMID: 34010554 DOI: 10.1021/acs.inorgchem.1c00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nitronyl nitroxide biradical with a capping N-donor group was discovered to improve single-molecule-magnet behavior of the Dy-biradical cluster, generating a magnetic reversal barrier of 146 K. As far as we know, the effective energy barrier of the Dy compound is largest in the nitronyl nitroxide 4f system by far.
Collapse
Affiliation(s)
- Hongdao Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.,Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pei Jing
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiao Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lijun Zhai
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Lu Xi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Nguyen GT, Ungur L. Understanding the magnetization blocking mechanism in N 23--radical-bridged dilanthanide single-molecule magnets. Phys Chem Chem Phys 2021; 23:10303-10310. [PMID: 33908512 DOI: 10.1039/d1cp00452b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a theoretical investigation of the electronic structure and magnetic properties in [(Cp2Me4HLn(THF))2(μ-N2˙)]- and [(Cp2Me4HLn)2(μ-N2˙)]- (THF = tetrahydrofuran, CpMe4H = tetramethylcyclopentadienyl, Ln = Tb, Dy) complexes [as reported in Demir et al., Nat. Commun., 8, 1-9, 2144 (2017)]. By ab initio methods, their magnetic blocking behaviors are successfully characterized allowing elucidation of the origin of the two blocking barriers observed experimentally. In addition, a detailed analysis of exchange wave functions explains why the blocking barrier of the Tb complexes is roughly twice as large as that of the Dy analogues, a fact which appears to be a general trend exhibited in this family of compounds.
Collapse
Affiliation(s)
- Giang T Nguyen
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | - Liviu Ungur
- Department of Chemistry, Faculty of Science, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
34
|
Wu Y, Xia CC, Wang XY. Syntheses, structures and magnetic properties of a series of lanthanide complexes with reduced nitronyl nitroxide radical ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Brock AJ, Etchells IM, Moore EG, Clegg JK. Dinuclear triple stranded phenyl-spaced 1,3-bis-β-diketonato lanthanide(iii) complexes: synthesis, structures and spectroscopy. Dalton Trans 2021; 50:4874-4879. [PMID: 33877184 DOI: 10.1039/d1dt00393c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and crystal structures of a series of Ln(iii) (Ln = Gd, Nd, Yb as well as Y) complexes of a bis-β-diketone ligand incorporating a 1,3-substituted phenyl ring between its two β-diketone domains (1,1'-(1,3-phenylene)bis(4,4-dimethylpentane-1,3-dione), H2L1) is reported. The crystal structures show the complexes are seven coordinate in the solid state with the general formula [Ln2L13(solvent)2]. The photophysical properties of the complexes were explored in both solution and the solid state, which show an increase in coordination number in solution.
Collapse
Affiliation(s)
- A J Brock
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia 4072.
| | | | | | | |
Collapse
|
36
|
Cai LL, Zhang SM, Li Y, Wang K, Li XM, Muller G, Liang FP, Hu YT, Wang GX. Lanthanide nitrato complexes bridged by the bis-tridentate ligand 2,3,5,6-tetra(2-pyridyl)pyrazine: Syntheses, crystal structures, Hirshfeld surface analyses, luminescence properties, DFT calculations, and magnetic behavior. JOURNAL OF LUMINESCENCE 2021; 232:117835. [PMID: 34565833 PMCID: PMC8460135 DOI: 10.1016/j.jlumin.2020.117835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six dinuclear lanthanide(III) nitrato complexes [Ln(NO3)3(H2O)]2(μ-tppz) (where tppz = 2,3,5,6-tetra(2-pyridyl) pyrazine and Ln(III) = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), and Dy (6)) with bis-tridentate N-heterocyclic 2,3,5,6-tetra(2-pyridyl)pyrazine as bridging ligand have been solvothermally synthesized and characterized via elemental analysis, infrared spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder X-ray diffraction. The 3-D Hirshfeld surface and 2-D fingerprint plots show that the main interactions in 1-6 are the O⋯H/H⋯O intermolecular interactions with relative contributions of about 62%. Although the poor lanthanide(III)-centered luminescence properties clearly point to the efficiency of nonradiative quenching processes (presence of water molecules in the coordination sphere of the lanthanide(III) ions), the ligand tppz is better suited to sensitize the lanthanide(III)'s emissions of EuIII and NdIII than SmIII, TbIII, and DyIII. Finally, the magnetic data of DyIII comple×6 reveals antiferromagnetic coupling between DyIII ions.
Collapse
Affiliation(s)
- Li-Ling Cai
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Sheng-Mei Zhang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Yan Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Kai Wang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Xue-Ming Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Gilles Muller
- Department of Chemistry, San José State University, One Washington Square, San José, CA, 95192-0101, USA
| | - Fu-Pei Liang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ya-Tao Hu
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Gui-Xia Wang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| |
Collapse
|
37
|
Lu J, Jing P, Jin C, Xie J, Li L. Modulating the magnetization dynamics in Ln-Cu-Rad hetero-tri-spin complexes through cis/ trans coordination of nitronyl nitroxide radicals around the metal center. Dalton Trans 2021; 50:3280-3288. [PMID: 33587736 DOI: 10.1039/d1dt00090j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembling the novel nitronyl nitroxide radical NIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) with Ln(hfac)3·2H2O and Cu(hfac)2 (hfac = hexafluoroacetylacetonate) resulted in two heterometallic complexes with formula [LnCu(hfac)5(NIT-3Py-5-Ph)2] (Ln = Gd 1, Dy 2), in which two NIT-3Py-5-Ph radicals are coordinated with the LnIII ion via their nitroxide units in the cis-arrangement manner and the CuII ion is ligated by the pyridyl N donors of the radicals. Interestingly, when the phenyl group of NIT-3Py-5-Ph was replaced with a p-pyridyl group, a new family of 2D networks, namely, {[Ln(hfac)3][Cu(hfac)2]2(NIT-3Py-5-4Py)2}n (Ln = Gd 3, Tb 4, Dy 5; NIT-3Py-5-4Py = 2-(5-(4-pyridyl)-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was obtained. In the 2D sheet, each NIT-3Py-5-4Py ligand serves as a μ3-bridge to bind one LnIII center by the aminoxyl moiety and two CuII ions through two pyridine groups to form a 2D structure. The LnIII ion is coordinated by two NO units of two radicals in a trans configuration. DC magnetic measurements indicate that ferromagnetic LnIII-NO exchange occurs in 1-5. AC studies reveal that 2 displays slow relaxation of the magnetization while no such magnetic relaxation is found in complex 5. The observed different magnetic relaxation behaviors of two Dy analogues could be attributed to the different coordination modes of NO groups of the radicals, and the coordination geometry of the Dy center is from C2v in 2 to D2d in 5.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Pei Jing
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
39
|
Modder DK, Palumbo CT, Douair I, Fadaei-Tirani F, Maron L, Mazzanti M. Delivery of a Masked Uranium(II) by an Oxide-Bridged Diuranium(III) Complex. Angew Chem Int Ed Engl 2021; 60:3737-3744. [PMID: 33085160 DOI: 10.1002/anie.202013473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Oxide is an attractive linker for building polymetallic complexes that provide molecular models for metal oxide activity, but studies of these systems are limited to metals in high oxidation states. Herein, we synthesized and characterized the molecular and electronic structure of diuranium bridged UIII /UIV and UIII /UIII complexes. Reactivity studies of these complexes revealed that the U-O bond is easily broken upon addition of N-heterocycles resulting in the delivery of a formal equivalent of UIII and UII , respectively, along with the uranium(IV) terminal-oxo coproduct. In particular, the UIII /UIII oxide complex effects the reductive coupling of pyridine and two-electron reduction of 4,4'-bipyridine affording unique examples of diuranium(III) complexes bridged by N-heterocyclic redox-active ligands. These results provide insight into the chemistry of low oxidation state metal oxides and demonstrate the use of oxo-bridged UIII /UIII complexes as a strategy to explore UII reactivity.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
40
|
Modder DK, Palumbo CT, Douair I, Fadaei‐Tirani F, Maron L, Mazzanti M. Delivery of a Masked Uranium(II) by an Oxide‐Bridged Diuranium(III) Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dieuwertje K. Modder
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Chad T. Palumbo
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets Institut National des Sciences Appliquées 31077 Toulouse, Cedex 4 France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
41
|
Mavragani N, Kitos AA, Brusso JL, Murugesu M. Enhancing Magnetic Communication between Metal Centres: The Role of s-Tetrazine Based Radicals as Ligands. Chemistry 2021; 27:5091-5106. [PMID: 33079452 DOI: 10.1002/chem.202004215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Although 1,2,4,5-tetrazines or s-tetrazines have been known in the literature for more than a century, their coordination chemistry has become increasingly popular in recent years due to their unique redox activity, multiple binding sites and their various applications. The electron-poor character of the ring and stabilization of the radical anion through all four nitrogen atoms in their metal complexes provide new aspects in molecular magnetism towards the synthesis of new high performing Single Molecule Magnets (SMMs). The scope of this review is to examine the role of s-tetrazine radical ligands in transition metal and lanthanide based SMMs and provide a critical overview of the progress thus far in this field. As well, general synthetic routes and new insights for the preparation of s-tetrazines are discussed, along with their redox activity and applications in various fields. Concluding remarks along with the limitations and perspectives of these ligands are discussed.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
42
|
Xiao Y, Sun R, Liang J, Fang Y, Liu Z, Jiang S, Wang B, Gao S, Huang W. Homoleptic tris(6,6′-dimethyl-2,2′-bipyridine) rare earth metal complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00240f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic tris(bipy) rare earth metal complexes were synthesized and structurally characterized. While two parallel bipy radical anions were strongly antiferromagnetically coupled, the remaining bipy radical anion hosted most spin densities.
Collapse
Affiliation(s)
- Yuyuan Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yuhui Fang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zheng Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shangda Jiang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Material Chemistry and Application
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
43
|
Gould CA, Mu E, Vieru V, Darago LE, Chakarawet K, Gonzalez MI, Demir S, Long JR. Substituent Effects on Exchange Coupling and Magnetic Relaxation in 2,2′-Bipyrimidine Radical-Bridged Dilanthanide Complexes. J Am Chem Soc 2020; 142:21197-21209. [DOI: 10.1021/jacs.0c10612] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Veacheslav Vieru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | - Selvan Demir
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Perfetti M, Caneschi A, Sukhikh TS, Vostrikova KE. Lanthanide Complexes with a Tripodal Nitroxyl Radical Showing Strong Magnetic Coupling. Inorg Chem 2020; 59:16591-16598. [PMID: 33119277 DOI: 10.1021/acs.inorgchem.0c02477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO3)3] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnO7N2, can be described as a tricapped trigonal prism with symmetry not far from D3h. The extracted value of 23 cm-1 for the antiferromagnetic coupling of Gd-Rad established from the DC magnetic and EPR data is a record strength for the complexes of 4f elements with nitroxyl radicals. The terbium derivative displays frequency-dependent out-of-phase signals in zero field, indicating single-molecule magnetic behavior. With an applied field of 0.1 T, an effective barrier of 57 cm-1 is found.
Collapse
Affiliation(s)
- Mauro Perfetti
- Department of Chemistry U. Schiff, University of Florence and INSTM Reseach Unit, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy
| | - Andrea Caneschi
- Dipartimento di Ingegneria Industriale - DIEF, Università degli Studi di Firenze, INSTM Research Unit of Firenze, Via di Santa Marta n. 3, 50139 Firenze, Italy
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kira E Vostrikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
45
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
46
|
Nitronyl Nitroxide Biradical-Based Binuclear Lanthanide Complexes: Structure and Magnetic Properties. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Employing a new nitronyl nitroxide biradical NITPhPzbis(NITPhPzbis = 5-(1-pyrazolyl)-1,3-bis(1’-oxyl-3’-oxido-4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), a series of 2p-4f complexes [Ln2(hfac)6(H2O)(NITPhPzbis)] (LnIII = Gd1, Tb2, Dy3; hfac = hexafluoroacetylacetonate) were successfully synthesized. In complexes 1–3, the designed biradical NITPhPzbis coordinates with two LnIII ions in chelating and bridging modes to form a four-spin binuclear structure. Direct-current magnetic study of Gd analogue indicates that ferromagnetic exchange exists between the Gd ion and the radical while antiferromagnetic coupling dominates between two mono-radicals. Dynamic magnetic data show that the χ” signals of complex 3 exhibit frequency dependence under zero field, demonstrating slow magnetic relaxation behavior in complex 3. And the estimated values of Ueff and τ0 are about 8.4 K and 9.1 × 10−8 s, respectively.
Collapse
|
47
|
Errulat D, Gabidullin B, Mansikkamäki A, Murugesu M. Two heads are better than one: improving magnetic relaxation in the dysprosium metallocene upon dimerization by use of an exceptionally weakly-coordinating anion. Chem Commun (Camb) 2020; 56:5937-5940. [PMID: 32347247 DOI: 10.1039/d0cc01980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Partial metathesis between two weakly-coordinating anions in the archetypical dysprosium metallocene results in the first example of [BPh4]- as a bridging ligand in 4f metals, with a unique η2,η2:η2,η2-bridge. Magnetic susceptibility and relaxation dynamics studies along with ab initio calculations reveal improved slow relaxation of the magnetization in over its mononuclear congener, resulting in an energy barrier of 490 K/340 cm-1 and waist-restricted hysteresis up to 6.5 K.
Collapse
Affiliation(s)
- Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | | | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
48
|
Evans P, Reta D, Goodwin CAP, Ortu F, Chilton NF, Mills DP. A double-dysprosocenium single-molecule magnet bound together with neutral ligands. Chem Commun (Camb) 2020; 56:5677-5680. [PMID: 32319462 DOI: 10.1039/c9cc08945d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A dinuclear dysprosocenium dication has been synthesised that is bound together by weak interactions between {Dy(Cp*)2}+ fragments and neutral NEt3AlMe3 molecules. The axiality of the Dy3+ crystal fields are perturbed by these equatorial interactions but a relatively large effective barrier to magnetisation reversal of 860(60) cm-1 and magnetic hysteresis up to 12 K are observed.
Collapse
Affiliation(s)
- Peter Evans
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Reta
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Conrad A P Goodwin
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Fabrizio Ortu
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David P Mills
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
49
|
Zhong L, Chen WB, Li XH, OuYang ZJ, Yang M, Zhang YQ, Gao S, Dong W. Four Dinuclear and One-Dimensional-Chain Dysprosium and Terbium Complexes Based on 2-Hydroxy-3-methoxybenzoic Acid: Structures, Fluorescence, Single-Molecule-Magnet, and Ab Initio Investigation. Inorg Chem 2020; 59:4414-4423. [PMID: 32191444 DOI: 10.1021/acs.inorgchem.9b03555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unique electronic configurations of lanthanide(III) ions generate abundant electronic energy levels, resulting in the fantastic magnetic and optical multifunctional properties of lanthanide complexes. Here, 2-hydroxy-3-methoxybenzoic acid (H2MBA) was used to construct four Dy(III) and Tb(III) complexes containing two isostructural dinuclear complexes of [Ln2(HMBA)2(MBA)2(DMF)2(H2O)2]·6H2O [Ln = Dy (1), Tb (2); DMF = N,N-dimethylformamide] and two other isostructural beltlike one-dimensional-chain complexes of [NH4][Ln(HMBA)4] [Ln = Dy (3), Tb (4)]. Fluorescence measurements reveal that H2MBA can sensitize Dy(III) and Tb(III) characteristic luminescence. Furthermore, complex 3 can emit white light under UV-light irradiation originating from a dichromatic mixture of a blue emission of H2MBA and a dominating yellow emission of Dy3+ ions. Magnetic susceptibility measurements show that two Dy(III) complexes are single-molecule magnets with anisotropy barriers of 90(2) and 31(5) cm-1 for 1 and 3, respectively. The magnet-luminescence-structure correlations as well as relaxation pathways are investigated by ab initio calculations and fluorescent spectrometry.
Collapse
Affiliation(s)
- Li Zhong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiao-Hui Li
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhi-Jian OuYang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Song Gao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
50
|
Watt FA, Krishna A, Golovanov G, Ott H, Schoch R, Wölper C, Neuba AG, Hohloch S. Monoanionic Anilidophosphine Ligand in Lanthanide Chemistry: Scope, Reactivity, and Electrochemistry. Inorg Chem 2020; 59:2719-2732. [PMID: 31961137 DOI: 10.1021/acs.inorgchem.9b03071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present the synthesis of a series of new lanthanide(III) complexes supported by a monoanionic bidentate anilidophosphine ligand (N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide, short PN-). The work comprises the characterization of a variety of heteroleptic complexes containing either one or two PN ligands as well as a study on further functionalization possibilities. The new heteroleptic complexes cover selected examples over the whole lanthanide(III) series including lanthanum, cerium, neodymium, gadolinium, terbium, dysprosium, and lutetium. In case of the two diamagnetic metal cations lanthanum(III) and lutetium(III), we have furthermore studied the influence of the lanthanide ion (early vs. late) on the reactivity of these complexes. Thereby we found that the radius of the lanthanide ion has a major influence on the reactivity. Using sterically demanding, multidentate ligand systems, e.g., cyclopentadienide (Cp-), we found that the lanthanum complex La(PN)2Cl (1-La) reacts well to the corresponding cyclopentadienide complex, while for Lu(PN)2Cl (1-Lu) no reaction was observed under any conditions tested. On the contrary, employing monodentate ligands such as mesitolate, thiomesitolate, 2,4,6-trimethylanilide or 2,4,6-trimethylphenylphosphide, results in the clean formation of the desired complexes for both lanthanum and lutetium. All complexes have been studied by various techniques, including multi nuclear NMR spectroscopy and X-ray crystallography. 31P NMR spectroscopy was furthermore used to evaluate the presence of open coordination sites on the complexes using coordinating and noncoordinating solvents, and as a probe for estimating the Ce-P distance in the corresponding complexes. Additionally, we present cyclic voltammetry (CV) data for Ce(PN)2Cl (1-Ce), La(PN)2Cl (1-La), Ce(PN)(HMDS)2 (8-Ce) and La(PN)(HMDS)2 (8-La) (with HMDS = hexamethyldisilazide, (Me3Si)2N-) exploring the potential of the anilidophosphane ligand framework to stabilize a potential Ce(IV) ion.
Collapse
Affiliation(s)
- Fabian A Watt
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Athul Krishna
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Grigoriy Golovanov
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Holger Ott
- Training Center, Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Roland Schoch
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christoph Wölper
- Faculty of Chemistry, University of Essen-Duisburg, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Adam G Neuba
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|