1
|
Wei Z, Shen Y, Wang X, Song Y, Guo J. Recent advances of doping strategy for boosting the electrocatalytic performance of two-dimensional noble metal nanosheets. NANOTECHNOLOGY 2024; 35:402003. [PMID: 38986444 DOI: 10.1088/1361-6528/ad6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Benefiting from the ultrahigh specific surface areas, massive exposed surface atoms, and highly tunable microstructures, the two-dimensional (2D) noble metal nanosheets (NSs) have presented promising performance for various electrocatalytic reactions. Nevertheless, the heteroatom doping strategy, and in particular, the electronic structure tuning mechanisms of the 2D noble metal catalysts (NMCs) yet remain ambiguous. Herein, we first review several effective strategies for modulating the electrocatalytic performance of 2D NMCs. Then, the electronic tuning effect of hetero-dopants for boosting the electrocatalytic properties of 2D NMCs is systematically discussed. Finally, we put forward current challenges in the field of 2D NMCs, and propose possible solutions, particularly from the perspective of the evolution of electron microscopy. This review attempts to establish an intrinsic correlation between the electronic structures and the catalytic properties, so as to provide a guideline for designing high-performance electrocatalysts.
Collapse
Affiliation(s)
- Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030051, People's Republic of China
| |
Collapse
|
2
|
Dong M, Pan Y, Zhu J, Jia H, Dong H, Xu F. Real-time imaging reveal anisotropic dissolution behaviors of silver nanorods. NANOTECHNOLOGY 2024; 35:275703. [PMID: 38574465 DOI: 10.1088/1361-6528/ad3a6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.
Collapse
Affiliation(s)
- Meng Dong
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuchen Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Jingfang Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hui Dong
- School of Mechanical Engineering, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
3
|
Huang J, Chen Q, Shang Z, Lu J, Wang Z, Chen Q, Liang P. Fabrication of silver nanostructure array patterns (SNAPs) on silicon wafer for highly sensitive and reliable SERS substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123914. [PMID: 38266600 DOI: 10.1016/j.saa.2024.123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Metal nanostructure arrays with large amounts of nano-gaps are important for surface enhanced Raman scattering applications, though the fabrications of such nanostructures are difficult due to the complex and multiple synthetic steps. In this research, we report silver nanostructure array patterns (SNAPs) on silicon wafer, which is fabricated with semiconductor manufacturing technology, Cu2O electrochemistry deposition, and Ag In-situ oxidation-reduction growth. Benefiting from the dense and uniform distribution of Ag nanowires, the fabricated SNAPs demonstrate a very strong and uniform surface-enhanced Raman scattering (SERS) effect. The efficiency of SNAPs was investigated by using rhodamine 6G (R6G) dye as an analyte molecule. The results show that the minimum detectable concentration of R6G can reach as low as 10-11 M, and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation (RSD) of 4.77 %. These results indicate that the SNAPs perform a great sensitivity and uniformity as a SERS substrate. Furthermore, we used the SNAPs substrate to detect antibiotic sulfadiazine. The main peaks in sulfadiazine Raman and vibration modes assignments were obtained and the quantitative analysis model was established by principal component analysis (PCA). The detection and application results of sulfadiazine indicate that the SNAPs substrate can be applied for trace detection of antibiotics. In addition, we have cited the application of the SNAPs substrate in anti-counterfeiting labels. These practical applications demonstrate that the fabricated SNAPs can potentially provide a way to develop low-cost SERS platforms for environmental detections, biomedicine analysis, and commodities anti-counterfeiting.
Collapse
Affiliation(s)
- Jie Huang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Qing Chen
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Ziyang Shang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Jinqiao Lu
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Zhen Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310000, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| |
Collapse
|
4
|
Yoshida S, Tomizaki KY, Usui K. Shape control of Au nanostructures using peptides for biotechnological applications. Chem Commun (Camb) 2023; 59:13239-13244. [PMID: 37855705 DOI: 10.1039/d3cc04331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Metallic gold (Au) nanostructures have attracted attentions in various fields of materials science and electrical science in terms of catalysts, sensing systems, photonic devices, and drug delivery systems because of their characteristic physical, chemical, and biocompatible properties. Recently, Au nanostructures with near-infrared light absorbing properties have shown potential for applications such as biological imaging and thermotherapy in biotechnological fields. However, fabrication of Au nanostructures with complex shapes often requires the use of highly biotoxic substances such as surfactants and reducing agents. Peptides are promising compounds for controlling the shape of Au nanostructures by mineralization with several advantages for this purpose. In this highlight, we focus on the shapes with respect to the fabrication of Au nanostructures using biocompatible peptides. We classify the peptides that form Au nanostructures into three broad categories: those that bind Au ions, those that reduce Au ions, and those that control the direction of Au crystal growth. Then, we briefly summarize the correlations between peptide sequences and their roles, and propose future strategies for fabricating Au nanostructures using peptides for biotechnological applications.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, Hyogo, 6500047, Japan.
| | - Kin-Ya Tomizaki
- Department of Materials Chemistry and Innovative Materials and Processing Research Center, Ryukoku University, Seta-Oe, Otsu, Shiga, 5202194, Japan
| | - Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
5
|
Sangolkar AA, Kadiyam RK, Faizan M, Chedupaka O, Mucherla R, Pawar R. Electronic and photophysical properties of an atomically thin bowl-shaped beryllene encapsulated inside the cavity of [6]cycloparaphenylene (Be n@[6]CPP). Phys Chem Chem Phys 2023; 25:23262-23276. [PMID: 37608746 DOI: 10.1039/d3cp01952g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Exotic metallic nanostructures are being intensely pursued for a myriad of applications, with ultrathin membranes currently at the heart of several investigations. The objective of the present study was to systematically assess the atom-by-atom encapsulation of Be in the molecular nanoring of [6]cycloparaphenylene ([6]CPP). Further, the study aimed to scrutinize the structure, stability, and properties of the encapsulated Ben@[6]CPP systems. The outcomes clearly revealed that [6]CPP enabled the cooperative confinement of atomically thin bowl-shaped beryllene inside its circular cavity. The confinement of Be in [6]CPP generated topologically anisotropic surfaces with distinct interior and exterior charge distributions. The Ben@[6]CPP complexes could render a cationic or anionic nature to Be depending on its neighbouring environment. Thus, the systems may offer a promising opportunity for the synergistic co-adsorption of multiple reactants that are involved in multicomponent reactions. Energy decomposition analysis (EDA) elucidated that the bonding between Be and [6]CPP was partially ionic and covalent in character. The progressive encapsulation of Be atoms inside the cavity of [6]CPP led to a red-shift of the excitation wavelength to the visible region. The calculated optical absorption coefficient was higher than 104 L mol-1 cm-1, which shows promise for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Omshireesh Chedupaka
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Raghasudha Mucherla
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.
| |
Collapse
|
6
|
Wang Y, Sun M, Zhou J, Xiong Y, Zhang Q, Ye C, Wang X, Lu P, Feng T, Hao F, Liu F, Wang J, Ma Y, Yin J, Chu S, Gu L, Huang B, Fan Z. Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate. Proc Natl Acad Sci U S A 2023; 120:e2306461120. [PMID: 37523530 PMCID: PMC10410719 DOI: 10.1073/pnas.2306461120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong999077, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong999077, China
| | - Tianyi Feng
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Lin Gu
- Department of Materials Science and Engineering, Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Tsinghua University, Beijing100084, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
7
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Hydrothermal Synthesis of a Cellular NiO Film on Carbon Paper as a Promising Way to Obtain a Hierarchically Organized Electrode for a Flexible Supercapacitor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5208. [PMID: 37569912 PMCID: PMC10420231 DOI: 10.3390/ma16155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The formation of a cellular hierarchically organized NiO film on a carbon paper substrate under hydrothermal conditions using triethanolamine as a base has been studied. The thermal behavior of the carbon paper substrate with the applied semi-product shell was studied using synchronous thermal analysis (TGA/DSC) and it was demonstrated that such modification of the material surface leads to a noticeable increase in its thermal stability. Using scanning electron microscopy (SEM), it was shown that the NiO film grown on the carbon fiber surface is characterized by a complex cellular morphology, organized by partially layered individual nanosheets of about 4-5 nm thickness and lateral dimensions up to 1-2 μm, some edges and folds of which are located vertically relative to the carbon fiber surface. The surface of the obtained material was also examined using atomic force microscopy (AFM), and the electronic work function of the oxide shell surface was evaluated using the Kelvin probe force microscopy (KPFM) method. The electrochemical parameters of the obtained flexible NiO/CP electrode were analyzed: the dependence of the specific capacitance on the current density was determined and the stability of the material during cycling was studied, which showed that the proposed approach is promising for manufacturing hierarchically organized electrodes for flexible supercapacitors.
Collapse
Affiliation(s)
| | | | | | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., Moscow 119991, Russia; (T.L.S.); (N.P.S.); (P.Y.G.); (N.T.K.)
| | | |
Collapse
|
8
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
9
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Yi D, Marcelot C, Romana I, Tassé M, Fazzini PF, Peres L, Ratel-Ramond N, Decorse P, Warot-Fonrose B, Viau G, Serp P, Soulantica K. Etching suppression as a means to Pt dendritic ultrathin nanosheets by seeded growth. NANOSCALE 2023; 15:1739-1753. [PMID: 36598381 DOI: 10.1039/d2nr05105b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.
Collapse
Affiliation(s)
- Deliang Yi
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Cécile Marcelot
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Idaline Romana
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Laurent Peres
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Nicolas Ratel-Ramond
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Philippe Decorse
- ITODYS, UMR 7086, CNRS, Université de Paris, F-75013 Paris, France
| | | | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| |
Collapse
|
11
|
Shams M, Mansukhani N, Hersam MC, Bouchard D, Chowdhury I. Environmentally sustainable implementations of two-dimensional nanomaterials. Front Chem 2023; 11:1132233. [PMID: 36936535 PMCID: PMC10020365 DOI: 10.3389/fchem.2023.1132233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.
Collapse
Affiliation(s)
- Mehnaz Shams
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - Nikhita Mansukhani
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Dermont Bouchard
- National Exposure Research Laboratory, United States Environmental Protection Agency, Athens, GA, United States
| | - Indranil Chowdhury
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
- *Correspondence: Indranil Chowdhury,
| |
Collapse
|
12
|
Casey É, Holmes JD, Collins G. PdAu Nanosheets for Visible-Light-Driven Suzuki Cross-Coupling Reactions. ACS APPLIED NANO MATERIALS 2022; 5:16196-16206. [PMID: 36466303 PMCID: PMC9706499 DOI: 10.1021/acsanm.2c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Combining a two-dimensional (2D) morphology and plasmonic photocatalysis represents an efficient design for light-driven organic transformations. We report a one-pot synthesis of surfactant templated PdAu nanosheets (NSs). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses show the formation of 2D PdAu structures was initiated through nanoparticle seeds dispersed in the alkyl ammonium salt surfactant which acted as a template for the growth into NSs. The PdAu NSs were used for visible-light-enhanced Suzuki cross coupling. The PdAu bimetallic NSs outperformed monometallic Pd NSs and commercial Pd/C in room-temperature Suzuki cross-coupling reactions. The high catalytic activity is attributed to a combination of the 2D morphology giving rise to plasmon-enhanced catalysis and a high density of surface atoms, the electron-rich Pd surface due to alloying, and the presence of weakly bound amines. A comparative study of surfactant-assisted NSs and CO-assisted NSs was also carried out to assess the influence of surface ligands on the catalytic and photocatalytic enhancement of NSs with similar morphology. The surfactant-assisted NSs showed substantially superior performance compared to the CO-assisted for room-temperature Suzuki coupling reactions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Justin D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
13
|
Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers. Crit Rev Anal Chem 2022; 52:1795-1817. [DOI: 10.1080/10408347.2021.1919986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Formation of Ultimate Thin 2D Crystal of Pt in the Presence of Hexamethylenetetramine. Int J Mol Sci 2022; 23:ijms231810239. [PMID: 36142149 PMCID: PMC9499356 DOI: 10.3390/ijms231810239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
Platinum naturally crystalizes into a three-dimensional crystal due to its highly symmetrical fcc lattice, with a metallic bond which is non-directional and highly isotropic. This inherently means ultimately that 2D crystals of a few atoms thick growth are hardly available in this material. Here, we discovered that a combinative effect of formic acid reductant and hexamethylenetetramine surfactant during the reduction of their metal ions precursor can realize an ultimate thin 2D crystal growth in platinum. High-resolution transmission electron microscopy and filed-emission electron microscopy analysis have also discovered that the 2D crystal of Pt has 111 facets with a lateral dimension that can be up to more than 5 μm × 2 μm. The thickness of the 2D crystal of Pt is 1.55 nm. A mechanism for obtaining ultimate thin 2D crystal of Pt using the present approach is proposed.
Collapse
|
15
|
Cheng N, Sun H, Beker AF, van Omme JT, Svensson E, Arandiyan H, Lee HR, Ge B, Basak S, Eichel RA, Pivak Y, Xu Q, Hugo Pérez Garza H, Shao Z. Nanoscale visualization of metallic electrodeposition in a well-controlled chemical environment. NANOTECHNOLOGY 2022; 33:445702. [PMID: 35878519 DOI: 10.1088/1361-6528/ac83c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Liquid phase transmission electron microscopy (TEM) provides a useful means to study a wide range of dynamics in solution with near-atomic spatial resolution and sub-microsecond temporal resolution. However, it is still a challenge to control the chemical environment (such as the flow of liquid, flow rate, and the liquid composition) in a liquid cell, and evaluate its effect on the various dynamic phenomena. In this work, we have systematically demonstrated the flow performance of anin situliquid TEM system, which is based on 'on-chip flow' driven by external pressure pumps. We studied the effects of different chemical environments in the liquid cell as well as the electrochemical potential on the deposition and dissolution behavior of Cu crystals. The results show that uniform Cu deposition can be obtained at a higher liquid flow rate (1.38μl min-1), while at a lower liquid flow rate (0.1μl min-1), the growth of Cu dendrites was observed. Dendrite formation could be further promoted byin situaddition of foreign ions, such as phosphates. The generality of this technique was confirmed by studying Zn electrodeposition. Our direct observations not only provide new insights into understanding the nucleation and growth but also give guidelines for the design and synthesis of desired nanostructures for specific applications. Finally, the capability of controlling the chemical environment adds another dimension to the existing liquid phase TEM technique, extending the possibilities to study a wide range of dynamic phenomena in liquid media.
Collapse
Affiliation(s)
- Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Anne France Beker
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - J Tijn van Omme
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Emil Svensson
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, 2006, Sydney, Australia
| | - Hye Ryoung Lee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Shibabrata Basak
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Rüdiger A Eichel
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | - Qiang Xu
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Zongping Shao
- WA School of Mines: Minerals, Energy, and Chemical Engineering, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
16
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
17
|
Subhiksha V, Kokilavani S, Sudheer Khan S. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. CHEMOSPHERE 2022; 290:133228. [PMID: 34896424 DOI: 10.1016/j.chemosphere.2021.133228] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Today, a major concern associated with the environment is the water pollution occurred due to the introduction of variety of persistent organic pollutants and residual dyes from different sources (e.g., dye and dye intermediates industries, paper and pulp industries, textile industries, tannery and craft bleaching industries, pharmaceutical industries, etc.) into our natural water resources. Recently, advanced oxidation processes (AOPs) by photocatalyst have garnered great attention as a new frontier promising eco-friendly and sustainable wastewater treatment technology. Utilization of the photocatalytic technology efficiently is significant for cleaner environment. Bismuth based photocatalyst have aroused widespread attention as a visible light responsive photocatalyst for waste water treatment due to their non-toxicity, low cost, modifiable morphology, and outstanding optical and chemical properties. In this review, we have dealt with the research progress on bismuth-based photocatalysts for waste water treatment. However, it seems to give limitation over pristine photocatalysts such as slow migration of charge carriers, charge carrier recombination, low visible light absorption, etc., Various bismuth based photocatalyst and its modifications via doping, heterojunction, Z-scheme etc., are discussed in detail. Further, the strategies adopted to improve the photocatalytic activity of bismuth based photocatalyst to improve the waste water treatment (mostly drugs and dyes) are critically reviewed. Also, we have discussed the bacterial inactivation by bismuth based photocatalyst. Finally, the challenges and future aspects against bismuth based photocatalyst are explored for further research.
Collapse
Affiliation(s)
- V Subhiksha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
18
|
Constructing Schottky junctions via Pd nanosheets on DUT-67 surfaces to accelerate charge transfer. J Colloid Interface Sci 2022; 608:3022-3029. [PMID: 34815078 DOI: 10.1016/j.jcis.2021.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
The separation, transfer and recombination of charge often affect the rate of photocatalytic reduction of CO2. Schottky junctions can promote the rapid separation of space charge. Therefore, in this paper, Pd nanosheets were grown on the surface of DUT-67 by a hydrothermal method, and a Schottky junction was constructed between DUT-67 and Pd. Under the action of the Schottky junction, the CO yield of 0.3-Pd/DUT-67 reached 12.15 μmol/g/h, which was 17 times higher than that of DUT-67. Efficient charge transfer was demonstrated in photochemical experiments. The large specific surface area and the increased light utilization rate also contributed to the increase in the CO2 reduction efficiency. In addition, the mechanism of Pd/DUT-67 photocatalytic reduction of CO2 was proposed.
Collapse
|
19
|
Liu X, Yang C, Yang W, Lin J, Zhou X, Li Y. Cu nanoplates with “clean surface”: synthesis and their enhanced biosensors performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Zheng Y, Zhang G, Ma Y, Kong Y, Liu F, Liu M. Kinetics-Controlled Synthesis of Gold-Silver Nanosheets with Abundant in-Plane Cracking and Their Trimetallic Derivatives for Plasmon-Enhanced Catalysis. CrystEngComm 2022. [DOI: 10.1039/d1ce01505b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled synthesis of two-dimensional noble metal nanomaterials with in-plane branching morphology has been of great research interest recently, which yet achieves limited success for AuAg-based nanocrystals. Herein, we report the...
Collapse
|
21
|
Li H, Shang H, Jiang F, Zhu X, Ruan Q, Zhang L, Wang J. Plasmonic O 2 dissociation and spillover expedite selective oxidation of primary C-H bonds. Chem Sci 2021; 12:15308-15317. [PMID: 34976351 PMCID: PMC8635223 DOI: 10.1039/d1sc04632b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Manipulating O2 activation via nanosynthetic chemistry is critical in many oxidation reactions central to environmental remediation and chemical synthesis. Based on a carefully designed plasmonic Ru/TiO2−x catalyst, we first report a room-temperature O2 dissociation and spillover mechanism that expedites the “dream reaction” of selective primary C–H bond activation. Under visible light, surface plasmons excited in the negatively charged Ru nanoparticles decay into hot electrons, triggering spontaneous O2 dissociation to reactive atomic ˙O. Acceptor-like oxygen vacancies confined at the Ru–TiO2 interface free Ru from oxygen-poisoning by kinetically boosting the spillover of ˙O from Ru to TiO2. Evidenced by an exclusive isotopic O-transfer from 18O2 to oxygenated products, ˙O displays a synergistic action with native ˙O2− on TiO2 that oxidizes toluene and related alkyl aromatics to aromatic acids with extremely high selectivity. We believe the intelligent catalyst design for desirable O2 activation will contribute viable routes for synthesizing industrially important organic compounds. Room-temperature O2 dissociation and spillover, as driven by plasmonic Ru on oxygen-deficient TiO2, expedite the selective oxidation of primary C–H bonds in alkyl aromatics for synthesizing industrially important organic compounds.![]()
Collapse
Affiliation(s)
- Hao Li
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| | - Huan Shang
- Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Fuze Jiang
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Lizhi Zhang
- Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| |
Collapse
|
22
|
Khan K, Tareen AK, Iqbal M, Mahmood A, Mahmood N, Shi Z, Yin J, Qing D, Ma C, Zhang H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J Mater Chem B 2021; 9:9461-9484. [PMID: 34762090 DOI: 10.1039/d1tb01794b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphdiyne (GDY), which possess sp- and sp2-hybridized carbon and Dirac cones, offers unique physical and chemical properties, including an adjustable intrinsic bandgap, excellent charge carrier transfer efficiency, and superior conductivity compared to other carbon allotropes. These exceptional qualities of GDY and its derivatives have been successfully used in a variety of fields, including catalysis, energy, environmental protection, and biological applications. Herein, we focus on the potential application of GDY and its derivatives in the biomedical domain, including biosensing, biological protection, cancer therapy, and antibacterial agents, demonstrating how the biomimetic behavior of these materials can be a step forward in bridging the gap between nature and applications. Considering the excellent biocompatibility, solubility and selectivity of GDY and its derived materials, they have shown great potential as biosensing and bio-imaging materials. The unusual combination of properties in GDY has been used in biological applications such as "OFF-ON" DNA detection and enzymatic sensing, where GDY has a greater adsorption capacity than graphene and other 2D materials, resulting in increased sensitivity. GDY and its derivatives have also been used in cancer treatment due to their high doxorubicin (DOX) loading capacity (using-stacking) and photothermal conversion ability, and radiation protection since their initial biological use. The poor biodegradation rate of graphene demands the search for new nanomaterials. Accordingly, GDY has better biocompatibility and bio-safety than other 2D nanomaterials, especially graphene and its oxide, due to its absence of aggregation in the physiological environment. Thus, GDY-based nanomaterials have become promising candidates as bio-delivery carriers. Besides, GDY and GDY-based materials have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. Herein, we present a comprehensive review on the applications of GDY and its derivatives as biomedical materials, followed by their future perspectives. This review will provide an outlook for the application of graphene and its derivatives and may open up new horizons to inspire broader interests across various disciplines. Finally, the future prospects for GDY-based materials are examined for their potential biological use.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, China. .,Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ayesha Khan Tareen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China. .,College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, P. R. China.,School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Muhammad Iqbal
- Department of Bio-Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa (K.P.K.), 23200, Islamic Republic of Pakistan
| | - Asif Mahmood
- School of Chemical and Bio-molecular Engineering, The University of Sydney, 2006, Sydney, Australia
| | - Nasir Mahmood
- School of Engineering, The Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia
| | - Zhe Shi
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jinde Yin
- Shenzhen Nuoan Environmental & Safety Inc., Shenzhen 518107, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Duan Qing
- Shenzhen Nuoan Environmental & Safety Inc., Shenzhen 518107, P. R. China
| | - Chunyang Ma
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
23
|
Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D Nanomaterials for Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:276-302. [PMID: 34970073 PMCID: PMC8713997 DOI: 10.1016/j.mattod.2021.04.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of biomaterials with remarkable potential for biomedical applications. The planar topography of these nanomaterials confers unique physical, chemical, electronic and optical properties, making them attractive candidates for therapeutic delivery, biosensing, bioimaging, regenerative medicine, and additive manufacturing strategies. The high surface-to-volume ratio of 2D nanomaterials promotes enhanced interactions with biomolecules and cells. A range of 2D nanomaterials, including transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), layered silicates (nanoclays), 2D metal carbides and nitrides (MXenes), metal-organic framework (MOFs), covalent organic frameworks (COFs) and polymer nanosheets have been investigated for their potential in biomedical applications. Here, we will critically evaluate recent advances of 2D nanomaterial strategies in biomedical engineering and discuss emerging approaches and current limitations associated with these nanomaterials. Due to their unique physical, chemical, and biological properties, this new class of nanomaterials has the potential to become a platform technology in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Aparna Murali
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Giriraj Lokhande
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A. Deo
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Facile Synthesis of PdCuRu Porous Nanoplates as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. METALS 2021. [DOI: 10.3390/met11091451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ru is a key component of electrocatalysts for hydrogen evolution reaction (HER), especially in alkaline media. However, the catalytic activity and durability of Ru-based HER electrocatalysts are still far from satisfactory. Here we report a solvothermal approach for the synthesis of PdCuRu porous nanoplates with different Ru compositions by using Pd nanoplates as the seeds. The PdCuRu porous nanoplates were formed through underpotential deposition (UPD) of Cu on Pd, followed by alloying Cu with Pd through interdiffusion and galvanic replacement between Cu atoms and Ru precursor simultaneously. When evaluated as HER electrocatalysts, the PdCuRu porous nanoplates exhibited excellent catalytic activity and durability. Of them, the Pd24Cu29Ru47/C achieved the lowest overpotential (40.7 mV) and smallest Tafel slope (37.5 mV dec−1) in an alkaline solution (much better than commercial Pt/C). In addition, the Pd24Cu29Ru47/C only lost 17% of its current density during a stability test for 10 h, while commercial Pt/C had a 59.5% drop under the same conditions. We believe that the electron coupling between three metals, unique porous structure, and strong capability of Ru for water dissociation are responsible for such an enhancement in HER performance.
Collapse
|
25
|
Qian W, Xu S, Zhang X, Li C, Yang W, Bowen CR, Yang Y. Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. NANO-MICRO LETTERS 2021; 13:156. [PMID: 34264418 PMCID: PMC8282827 DOI: 10.1007/s40820-021-00681-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Weiqi Qian
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Suwen Xu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Xiaoming Zhang
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315016, People's Republic of China.
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AK, UK
| | - Ya Yang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
26
|
Zhu X, Shi H, Zhang S, Yang Z, Liao J, Quan J, Xue S, Zou C, Zhang J, Duan H. Intraband hot-electron photoluminescence of a silver nanowire-coupled gold film via high-order gap plasmons. NANOSCALE 2021; 13:11204-11214. [PMID: 34143167 DOI: 10.1039/d1nr02002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a strong one-photon photoluminescence (PL) behavior of a silver nanowire directly coupled gold film. The PL peak position of the silver nanowire-coupled gold film deviates from the intrinsic interband transition of gold materials and is not sensitive to the diameter change of the silver nanowire. We attribute this strong PL behavior to the intraband transition of hot electrons dominated by high-order gap plasmons, which are excited in the ultra-small gap formed by an ultra-thin polyvinyl pyrrolidone (PVP) layer coated on the silver nanowire. The results show that the energy required for the strong PL of the heterogeneous system mainly comes from the gold film, acting as an incident energy absorber enhanced by the high-order gap plasmons, while the silver nanowire acts an efficient incident energy focusing antenna. In situ Raman scattering spectra and time-resolved PL intensity integral curves were used to record the carbonization and disappearance process of PVP. The understanding of the PL behavior of the silver nanowire directly coupled gold film proves the universality of plasmon-modulated PL theory and is also of great significance to improve the generation and utilization efficiency of hot electrons with high-order gap plasmons in the fields of catalysis and incident energy capture.
Collapse
Affiliation(s)
- Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Huimin Shi
- Center for Research on Leading Technology of Special Equipment, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shi Zhang
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| | - Zhengmei Yang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jun Liao
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Jun Quan
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Shuwen Xue
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Changwei Zou
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Jun Zhang
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| |
Collapse
|
27
|
Wu X, Li X, Yan Y, Luo S, Huang J, Li J, Yang D, Zhang H. Facile Synthesis of Pd@PtM ( M = Rh, Ni, Pd, Cu) Multimetallic Nanorings as Efficient Catalysts for Ethanol Oxidation Reaction. Front Chem 2021; 9:683450. [PMID: 34095088 PMCID: PMC8170318 DOI: 10.3389/fchem.2021.683450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pt-based multimetallic nanorings with a hollow structure are attractive as advanced catalysts due to their fantastic structure feature. However, the general method for the synthesis of such unique nanostructures is still lack. Here we report the synthesis of Pd@PtM (M = Rh, Ni, Pd, Cu) multimetallic nanorings by selective epitaxial growth of Pt alloyed shells on the periphery of Pd nanoplates in combination with oxidative etching of partial Pd in the interior. In situ generation of CO and benzoic acid arising from interfacial catalytic reactions between Pd nanoplates and benzaldehyde are critical to achieve high-quality Pt-based multimetallic nanorings. Specifically, the in-situ generated CO promotes the formation of Pt alloyed shells and their epitaxial growth on Pd nanoplates. In addition, the as-formed benzoic acid and residual oxygen are responsible for selective oxidative etching of partial Pd in the interior. When evaluated as electrocatalysts, the Pd@PtRh nanorings exhibit remarkably enhanced activity and stability for ethanol oxidation reaction (EOR) compared to the Pd@PtRh nanoplates and commercial Pt/C due to their hollow nanostructures.
Collapse
Affiliation(s)
- Xingqiao Wu
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiao Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.,BTR New Material Group CO., LTD., Shenzhen, China
| | - Sai Luo
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Junjie Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Innovation Center, Institute of Advanced Semiconductors, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Sugimoto W, Takimoto D. Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. CHEM LETT 2021. [DOI: 10.1246/cl.210087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wataru Sugimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Takimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
29
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
30
|
Kolesnik DL, Pyaskovskaya ON, Gnatyuk OP, Cherepanov VV, Karakhim SO, Polovii IO, Posudievsky OY, Konoshchuk NV, Strelchuk VV, Nikolenko AS, Dovbeshko GI, Solyanik GI. The effect of 2D tungsten disulfide nanoparticles on Lewis lung carcinoma cells in vitro. RSC Adv 2021; 11:16142-16150. [PMID: 35479162 PMCID: PMC9030634 DOI: 10.1039/d1ra01469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
The unique physicochemical properties of modern two-dimensional (2D) nanomaterials with graphene-like structures make them promising candidates for biology and medicine purposes. In this article, we investigate the influence of the two-dimensional tungsten disulfide (2D WS2) water suspension nanoparticles obtained by an improved mechanochemical method from powdered WS2 on morphological and structural characteristics of Lewis lung carcinoma cells using FT-IR, Raman spectroscopy, and confocal microscopy. The characterization of the 2D WS2 nanoparticles by different physical methods is given also. We have highlighted that 2D WS2 does not exert cytotoxic activity in the case of 1 day incubation with tumor cells. Prolongation of the incubation period up to 2 days has caused a statistically significant (p < 0.05) concentration-dependent decrease of the number of viable cells by more than 30% with the maximum cytotoxic effect at concentrations of 2D WS2 close to 2 μg ml−1. In the Raman spectra of 2D WS2 treated cells the bands centered at 354 cm−1 and 419 cm−1, which are assigned to characteristics and modes of WS2 nanoparticles were observed. The obtained data indicate, that the cytotoxic effect of 2D WS2 on tumor cells in the case of long-term incubation is realized particularly through the ability of 2D WS2 to enter tumor cells and/or accumulate on their surface, which gives a rationale to conduct further studies of their antitumor efficacy in vitro and in vivo when combined with chemotherapeutic drugs. WS2 2D nanoparticles show no cytotoxic and/or cytostatic effect on Lewis lung carcinoma cells after one day incubation. Only after two days incubation we registered cytotoxic effect. Cells incubated with 2D WS2 nanoparticles have luminescence in the blue spectral region.![]()
Collapse
Affiliation(s)
- D. L. Kolesnik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. N. Pyaskovskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. P. Gnatyuk
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Cherepanov
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - S. O. Karakhim
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine
- Kyiv 01601
- Ukraine
| | - I. O. Polovii
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - O. Yu. Posudievsky
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - N. V. Konoshchuk
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Strelchuk
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - A. S. Nikolenko
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Dovbeshko
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Solyanik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| |
Collapse
|
31
|
Deshmukh K, Kovářík T, Khadheer Pasha S. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213514] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Shi S, Zhang Y, Ahn J, Qin D. Revitalizing silver nanocrystals as a redox catalyst by modifying their surface with an isocyanide-based compound. Chem Sci 2020; 11:11214-11223. [PMID: 34094362 PMCID: PMC8162456 DOI: 10.1039/d0sc04385k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
Silver is an excellent catalyst for oxidation reactions such as ethylene epoxidation, but it shows limited activity toward reduction reactions. Here we report a strategy to revitalize Ag nanocrystals as a redox catalyst for the production of an aromatic azo compound by modifying their surface with an isocyanide-based compound. We also leverage in situ fingerprint spectroscopy to acquire molecular insights into the reaction mechanism by probing the vibrational modes of all chemical species at the catalytic surface with surface-enhanced Raman spectroscopy. We establish that binding of isocyanide to Ag nanocrystals makes it possible for Ag to extract the oxygen atoms from the nitro-groups of nitroaromatics and then use these atoms to oxidize isocyanide to isocyanate. Concurrently, the coupling between two adjacent deoxygenated nitroaromatic molecules leads to the formation of an aromatic azo compound.
Collapse
Affiliation(s)
- Shi Shi
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Yadong Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Jaewan Ahn
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
33
|
A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces. Biochim Biophys Acta Gen Subj 2020; 1864:129617. [DOI: 10.1016/j.bbagen.2020.129617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/18/2022]
|
34
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
35
|
Salek Maghsoudi A, Hassani S, Rezaei Akmal M, Ganjali MR, Mirnia K, Norouzi P, Abdollahi M. An Electrochemical Aptasensor Platform Based on Flower-Like Gold Microstructure-Modified Screen-Printed Carbon Electrode for Detection of Serpin A12 as a Type 2 Diabetes Biomarker. Int J Nanomedicine 2020; 15:2219-2230. [PMID: 32280216 PMCID: PMC7127862 DOI: 10.2147/ijn.s244315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose In the present study, a highly sensitive and simple electrochemical (EC) aptasensor for the detection of serpin A12 as a novel biomarker of diabetes was developed on a platform where flower-like gold microstructures (FLGMs) are electrodeposited onto a disposable screen-printed carbon electrode. Meanwhile, serpin A12-specific thiolated aptamer was covalently immobilized on the FLGMs. Methods The electrochemical activity of a fabricated aptasensor under various conditions were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Aptamer concentration, deposition time, self-assembly time, and incubation time were optimized for assay of serpin A12. The differential pulse voltammetry (DPV) was implemented for quantitative detection of serpin A12 in K3 [Fe (CN) 6]/K4 [Fe (CN) 6] solution (redox probe). Results The label-free aptasensor revealed a linear range of serpin A12 concentration (0.039–10 ng/mL), detection limit of 0.020 ng/mL (S/N=3), and 0.031 ng/mL in solution buffer and plasma, respectively. Conclusion The results indicate that this aptasensor has a high sensitivity, selectivity, stability, and acceptable reproducibility for detection of serpin A12 in diabetic patients.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Nosheen F, Wasfi N, Aslam S, Anwar T, Hussain S, Hussain N, Shah SN, Shaheen N, Ashraf A, Zhu Y, Wang H, Ma J, Zhang Z, Hu W. Ultrathin Pd-based nanosheets: syntheses, properties and applications. NANOSCALE 2020; 12:4219-4237. [PMID: 32026907 DOI: 10.1039/c9nr09557h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) noble metal-based nanosheets (NSs) have received considerable interest in recent years due to their unique properties and widespread applications. Pd-based NSs, as a typical member of 2D noble metal-based NSs, have been most extensively studied. In this review, we first summarize the research progress on the synthesis of Pd-based NSs, including pure Pd NSs, Pd-based alloy NSs, Pd-based core-shell NSs and Pd-based hybrid NSs. The synthetic strategy and growth mechanism are systematically discussed. Then their properties and applications in catalysis, biotherapy, gas sensing and so on are introduced in detail. Finally, the challenges and opportunities towards the rational design and controlled synthesis of Pd-based NSs are proposed.
Collapse
Affiliation(s)
- Farhat Nosheen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. NANOSCALE 2020; 12:3535-3559. [PMID: 32003390 DOI: 10.1039/c9nr10178k] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Monitoring harmful and toxic chemicals, gases, microorganisms, and radiation has been a challenge to the scientific community for the betterment of human health and environment. Two-dimensional (2D)-material-based sensors are highly efficient and compatible with modern fabrication technology, which yield data that can be proficiently used for health and environmental monitoring. Graphene and its oxides, black phosphorus (BP), transition metal dichalcogenides (TMDCs), metal oxides, and other 2D nanomaterials have demonstrated properties that have been alluring for the manufacture of highly sensitive sensors due to their unique material properties arising from their inherent structures. This review summarizes the properties of 2D nanomaterials that can provide a platform to develop high-performance sensors. In this review, we have also discussed the advances made in the field of infrared photodetectors and electrochemical sensors and how the structural properties of 2D nanomaterials affect sensitivity and performance. Further, this review highlights 2D-nanomaterial-based electrochemical sensors that can be used to check for contaminations from heavy metals, organic/inorganic compounds, poisonous gases, pesticides, bacteria, antibiotics, etc., in water or air, which are severe risks to human wellbeing as well as the environment. Moreover, the limitations, future prospects, and challenges for the development of sensors based on 2D materials are also discussed for future advancements.
Collapse
Affiliation(s)
- Deepika Tyagi
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China. and College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Huide Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Weichun Huang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, P. R. China
| | - Zhinan Guo
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Zhengbiao Ouyang
- College of Electronic Science and Technology of Shenzhen University, THz Technical Research Center of Shenzhen University, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
38
|
Minakawa M, Imura Y, Kawai T. Synthesis of water-dispersible, plate-like perovskites and their core-shell nanocrystals. RSC Adv 2020; 10:5972-5977. [PMID: 35497444 PMCID: PMC9049589 DOI: 10.1039/d0ra00657b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 01/20/2023] Open
Abstract
Shape-controlled halide perovskite nanocrystals are attractive as an emerging functional material; however, these nanocrystals are prepared using organic solvents containing alkylamines and there are few reports on the synthesis of water-dispersible halide perovskite nanocrystals. We report a simple method to prepare water-dispersible, plate-like perovskite nanocrystals by mixing a long-chain amidoamine derivative (C18AA) and potassium tetrachloropalladate (K2PdCl4) in water. The obtained nanocrystals have a 2D layered perovskite structure represented by the chemical formula (C18AAH2)PdCl4. Furthermore, because seed-mediated growth is useful for preparing shape-controlled nanocrystals, such as rods, plates, wires and cubes, we used the water-dispersible (C18AAH2)PdCl4 nanocrystals as seeds to grow (C18AAH2)PdCl4@Pt core–shell nanocrystals. The core–shell nanocrystals have rough surfaces due to the deposition of Pt on the (C18AAH2)PdCl4 seeds. In addition, plate-like (C18AAH2)PdCl4@Au core–shell nanocrystals were easily obtained using this seed-mediated growth method. Water-dispersible, plate-like perovskite nanocrystals were prepared using a long-chain amidoamine derivative (C18AA) and perovskite@Pt or Au core–shell nanocrystals were synthesized using the plate-like perovskite nanocrystals as seeds.![]()
Collapse
Affiliation(s)
- Muneharu Minakawa
- Department of Industrial Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
39
|
Zhou G. Effects of a graphene substrate on the structure and properties of atomically thin metal sheets. Phys Chem Chem Phys 2020; 22:667-673. [PMID: 31829359 DOI: 10.1039/c9cp05466a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The production and use of atomically thin metal sheets are desirable but challenging. Here, density functional theory calculations indicate that the introduction of graphene as a support can play an unexpected role in the stability and function of Rh monolayer, as a representative of single-layer metal nanosheets. The graphene stabilizes the otherwise unstable Rh monolayer by the substrate interaction that not only impedes the out-of-plane movement of the Rh atoms but also decreases the surface energy. The Rh/graphene bilayer has good mechanical properties, comparable to those of emerging 2D graphene-based materials. The interfacial stress from the substrate interaction causes surface corrugations to form on the bilayer, exhibiting a degree of consistency in the direction and the area. Discrete magnetic units, compatible with the substrate interaction, are present in the corrugated Rh sheet. The visible magnetic anisotropy and spin-splitting of polarized carrier states of the corrugated Rh sheet dominate the spin-dependent transport in the bilayer film, which can be used as a building block for ultrathin electronic/spintronic devices.
Collapse
Affiliation(s)
- Gang Zhou
- School of Science, Hubei University of Technology, Wuhan 430068, People's Republic of China.
| |
Collapse
|
40
|
de Oliveira PFM, Michalchuk AAL, Marquardt J, Feiler T, Prinz C, Torresi RM, Camargo PHC, Emmerling F. Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles. CrystEngComm 2020. [DOI: 10.1039/d0ce00826e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The influence of reducing agents on the mechanochemical synthesis of Au nanoparticles differ significantly from analogous solution syntheses. Environmentally benign mechanochemical syntheses of metal nanoparticles therefore require dedicated studies.
Collapse
Affiliation(s)
- Paulo F. M. de Oliveira
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Julien Marquardt
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
| | - Torvid Feiler
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
| | - Carsten Prinz
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
| | - Roberto M. Torresi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Pedro H. C. Camargo
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | |
Collapse
|
41
|
Guo X, Wang S, Yang B, Xu Y, Liu Y, Pang H. Porous pyrrhotite Fe 7S 8 nanowire/SiO x/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. J Colloid Interface Sci 2019; 561:801-807. [PMID: 31767394 DOI: 10.1016/j.jcis.2019.11.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Iron sulfides, known as attractive anode materials for rechargeable lithium-ion batteries, have been extensively studied. Nevertheless, low electrical conductivity and huge volume expansion of iron sulfides hinder its practical applications. Herein, a novel method was developed to synthesize ternary porous Fe7S8 nanowires/SiOx/nitrogen-doped carbon matrix by facile hydrothermal method and subsequent sulfidation derived from bamboo leaves. The SiOx/nitrogen-doped carbon matrix can ensure the growth of nanowires, maintain the structural stability, improve the conductivity and provide improved capacity of Fe7S8. The 3D matrix structure and porous properties of Fe7S8 nanowires effectively relieve the volume change upon the insertion/extraction of Li+. The Fe7S8/SiOx/nitrogen-doped carbon anode exhibited a superior discharge capacity of 1060.2 mA h g-1 at 200 mA g-1 along with good long cycling performance of 415.8 mA h g-1 at the 1000th cycle at 5 A g-1. The facile strategy for preparing ternary Fe7S8 composites with superb LIB electrochemical performances demonstrates a great potential in electrochemical energy storage.
Collapse
Affiliation(s)
- Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Sibo Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Biao Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yong Liu
- Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, Henan University of Science and Technology, Luoyang, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
42
|
Wang H, Li J, Shi H, Xie S, Zhang C, Zhao G. Enhanced Photoelectrocatalytic Reduction and Removal of Atrazine: Effect of Co-Catalyst and Cathode Potential. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38663-38673. [PMID: 31553556 DOI: 10.1021/acsami.9b12139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoelectrocatalytic (PEC) reduction and removal of atrazine, one typical endocrine disruptor chemical, was achieved on Pd quantum dots modified TiO2 nanotubes (PdQDs@TiO2NTs) under regulating potentials. Compared with that on TiO2NTs, the PEC reduction efficiency of atrazine on PdQDs@TiO2NTs significantly increased, mainly attributed to the reduced electron transfer resistance, longer lifetime of the photogenerated electrons and the faster electron injection from the catalyst to atrazine in the solution. Meanwhile, PdQDs could also function as cocatalyst so that the electrocatalytic activity of PdQDs@TiO2NTs was evidently improved. Moreover, the investigation indicated that the applied potential not only played important role in accelerating the separation of photogenerated electrons and holes, but also with the increment of the cathodic potential, the PEC reduction mechanism of atrazine underwent the variation of electro-assisted photocatalysis, synergetic photoelectro-catalysis, and photoassisted electro-catalysis. A highest atrazine PEC reduction efficiency was achieved as 99.5% on PdQDs@TiO2NTs in about 5 h under the potential of -1.3 V vs. SCE, whereas the highest synergetic effect of photo- and electro- catalysis was achieved at a lower potential of -0.9 V vs. SCE.
Collapse
Affiliation(s)
- Haoying Wang
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Jie Li
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Huijie Shi
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Siqi Xie
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Guohua Zhao
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| |
Collapse
|
43
|
Li N, Wang Q, Zhang H. 2D Materials in Light: Excited‐State Dynamics and Applications. CHEM REC 2019; 20:413-428. [DOI: 10.1002/tcr.201900050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Na Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringKey Laboratory of Special Function Materials and Structure DesignMinistry of EducationLanzhou University Lanzhou 730000 China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringKey Laboratory of Special Function Materials and Structure DesignMinistry of EducationLanzhou University Lanzhou 730000 China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringKey Laboratory of Special Function Materials and Structure DesignMinistry of EducationLanzhou University Lanzhou 730000 China
| |
Collapse
|
44
|
Lu W, Guo X, Yang B, Wang S, Liu Y, Yao H, Liu C, Pang H. Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem 2019. [DOI: 10.1002/celc.201901006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenjie Lu
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Xiaotian Guo
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Biao Yang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Sibo Wang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province Henan Key Laboratory of High-Temperature Structural and Functional Materials School of Materials Science and EngineeringHenan University of Science and Technology Luoyang China
| | - Hang Yao
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Chun‐Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Huan Pang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| |
Collapse
|
45
|
Golze SD, Hughes RA, Rouvimov S, Neal RD, Demille TB, Neretina S. Plasmon-Mediated Synthesis of Periodic Arrays of Gold Nanoplates Using Substrate-Immobilized Seeds Lined with Planar Defects. NANO LETTERS 2019; 19:5653-5660. [PMID: 31365267 DOI: 10.1021/acs.nanolett.9b02215] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The seed-mediated growth of noble metal nanostructures with planar geometries requires the use of seeds lined with parallel stacking faults so as to provide a break in symmetry in an otherwise isotropic metal. Although such seeds are now routinely synthesized using colloidal pathways, equivalent pathways have not yet been reported for the fabrication of substrate-based seeds with the same internal defect structures. The challenge is not merely to form seeds with planar defects but to do so in a deterministic manner so as to have stacking faults that only run parallel to the substrate surface while still allowing for the lithographic processes needed to regulate the placement of seeds. Here, we demonstrate substrate-imposed epitaxy as a viable synthetic control able to induce planar defects in Au seeds while simultaneously dictating nanostructure in-plane alignment and crystallographic orientation. The seeds, which are formed in periodic arrays using nanoimprint lithography in combination with a vapor-phase assembly process, are subjected to a liquid-phase plasmon-mediated synthesis that uses light as an external stimuli to drive a reaction yielding periodic arrays of hexagonal Au nanoplates. These achievements not only represent the first of their kind demonstrations but also advance the possibility of integrating wafer-based technologies with a rich and exciting nanoplate colloidal chemistry.
Collapse
|
46
|
Ruffino F, Grimaldi MG. Nanostructuration of Thin Metal Films by Pulsed Laser Irradiations: A Review. NANOMATERIALS 2019; 9:nano9081133. [PMID: 31390842 PMCID: PMC6723593 DOI: 10.3390/nano9081133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Metal nanostructures are, nowadays, extensively used in applications such as catalysis, electronics, sensing, optoelectronics and others. These applications require the possibility to design and fabricate metal nanostructures directly on functional substrates, with specifically controlled shapes, sizes, structures and reduced costs. A promising route towards the controlled fabrication of surface-supported metal nanostructures is the processing of substrate-deposited thin metal films by fast and ultrafast pulsed lasers. In fact, the processes occurring for laser-irradiated metal films (melting, ablation, deformation) can be exploited and controlled on the nanoscale to produce metal nanostructures with the desired shape, size, and surface order. The present paper aims to overview the results concerning the use of fast and ultrafast laser-based fabrication methodologies to obtain metal nanostructures on surfaces from the processing of deposited metal films. The paper aims to focus on the correlation between the process parameter, physical parameters and the morphological/structural properties of the obtained nanostructures. We begin with a review of the basic concepts on the laser-metal films interaction to clarify the main laser, metal film, and substrate parameters governing the metal film evolution under the laser irradiation. The review then aims to provide a comprehensive schematization of some notable classes of metal nanostructures which can be fabricated and establishes general frameworks connecting the processes parameters to the characteristics of the nanostructures. To simplify the discussion, the laser types under considerations are classified into three classes on the basis of the range of the pulse duration: nanosecond-, picosecond-, femtosecond-pulsed lasers. These lasers induce different structuring mechanisms for an irradiated metal film. By discussing these mechanisms, the basic formation processes of micro- and nano-structures is illustrated and justified. A short discussion on the notable applications for the produced metal nanostructures is carried out so as to outline the strengths of the laser-based fabrication processes. Finally, the review shows the innovative contributions that can be proposed in this research field by illustrating the challenges and perspectives.
Collapse
Affiliation(s)
- Francesco Ruffino
- Dipartimento di Fisica e Astronomia "Ettore Majorana"-Università di Catania and MATIS CNR-IMM, via S. Sofia 64, 95123 Catania, Italy.
| | - Maria Grazia Grimaldi
- Dipartimento di Fisica e Astronomia "Ettore Majorana"-Università di Catania and MATIS CNR-IMM, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
47
|
Cheng H, Yang N, Liu X, Yun Q, Goh MH, Chen B, Qi X, Lu Q, Chen X, Liu W, Gu L, Zhang H. Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. Natl Sci Rev 2019; 6:955-961. [PMID: 34691956 PMCID: PMC8291566 DOI: 10.1093/nsr/nwz078] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 01/13/2023] Open
Abstract
Phase engineering is arising as an attractive strategy to tune the properties and functionalities of nanomaterials. In particular, amorphous/crystalline heterophase nanostructures have exhibited some intriguing properties. Herein, the one-pot wet-chemical synthesis of two types of amorphous/crystalline heterophase PdCu nanosheets is reported, in which one is amorphous phase-dominant and the other one is crystalline phase-dominant. Then the aging process of the synthesized PdCu nanosheets is studied, during which their crystallinity increases, accompanied by changes in some physicochemical properties. As a proof-of-concept application, their aging effect on catalytic hydrogenation of 4-nitrostyrene is investigated. As a result, the amorphous phase-dominant nanosheets initially show excellent chemoselectivity. After aging for 14 days, their catalytic activity is higher than that of crystalline phase-dominant nanosheets. This work demonstrates the intriguing properties of heterophase nanostructures, providing a new platform for future studies on the regulation of functionalities and applications of nanomaterials by phase engineering.
Collapse
Affiliation(s)
- Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinbai Yun
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Min Hao Goh
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 638075, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoying Qi
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 638075, Singapore
| | - Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoping Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
González-García A, López-Pérez W, González-Hernández R, Rodríguez JA, Milośević MV, Peeters FM. Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:265502. [PMID: 30840939 DOI: 10.1088/1361-648x/ab0d70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from [Formula: see text]-K indirect in isolated monolayer to [Formula: see text]-[Formula: see text] direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The [Formula: see text]-[Formula: see text] direct bandgap of GaAs remains unchanged in graphene/GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.
Collapse
Affiliation(s)
- A González-García
- Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia. Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Du P, Wen Y, Chiang FK, Yao A, Wang JQ, Kang J, Chen L, Xie G, Liu X, Qiu HJ. Corrosion Engineering To Synthesize Ultrasmall and Monodisperse Alloy Nanoparticles Stabilized in Ultrathin Cobalt (Oxy)hydroxide for Enhanced Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14745-14752. [PMID: 30932466 DOI: 10.1021/acsami.8b22268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) nanomaterials decorated with ultrasmall and well-alloyed bimetallic nanoparticles (NPs) have many important applications. Developing a facile and scalable 2D material/hybrid synthesis strategy is still a big challenge. Herein, a top-down corrosion strategy is developed to prepare ultrathin cobalt (oxy)hydroxide nanosheets decorated with ultrasmall (∼1.6 nm) alloy NPs. The formation of ultrathin (oxy)hydroxide nanosheets has a restrain effect to prevent the growth of small NPs into bigger ones. Thanks to the ultrathin 2D nature and strong electronic interaction between Co(OH)2 and alloy NPs, the Pt-based binary alloy NPs are greatly stabilized by the Co(OH)2 nanosheets and the hybrids exhibit much enhanced electrocatalytic performance for water splitting. Especially, the mass activities of the PtPd- and PtCu-decorated samples for hydrogen evolution are ∼8 times that of Pt/C. When used as both cathode and anode electrocatalysts to split water, the hybrid nanosheets outperform the commercial Pt/C-RuO2 combination. At 10 mA cm-2, the needed potential is only 1.53 V. This work provides us a highly controllable and scalable means to produce clean 2D nanomaterials decorated with a series of alloy NPs such as PtPd, PtCu, AuNi, and so forth.
Collapse
Affiliation(s)
- Peng Du
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Yuren Wen
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Fu-Kuo Chiang
- National Institute of Clean and Low Carbon Energy , Beijing 102209 , China
| | - Ayan Yao
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Jun-Qiang Wang
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , China
| | - Jianli Kang
- State Key Laboratory of Separation Membrane and Membrane Processes and School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Luyang Chen
- School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Guoqiang Xie
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Xingjun Liu
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| |
Collapse
|
50
|
Wu F, Niu W, Lai J, Zhang W, Luque R, Xu G. Highly Excavated Octahedral Nanostructures Integrated from Ultrathin Mesoporous PtCu 3 Nanosheets: Construction of Three-Dimensional Open Surfaces for Enhanced Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804407. [PMID: 30724461 DOI: 10.1002/smll.201804407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Developing electrocatalysts with ultrathin nanostructures and high mesoporosity is a relevant high-priority research direction toward enhancing the performance of noble metals. Herein, mesoporous, highly excavated octahedral PtCu3 nanostructures are prepared by a facile one-pot synthesis. The mesoporous, highly excavated octahedral PtCu3 nanostructures are built with mutually perpendicular interlaced mesoporous nanosheets with a thickness of ≈4.5 nm. Benefiting from its mesoporous features, three-dimensional (3D) open surfaces, ultrathin nanosheets, and a Cu-rich surface, PtCu3 exhibits excellent electrocatalytic performance and high antipoisoning activity toward the methanol oxidation reaction.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianping Lai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Departamento de Química Orgánica, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie (C-3), Km 396, Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| |
Collapse
|