1
|
Ramezani Khorsand F, Hakimi Naeini S, Molakarimi M, Dehnavi E, Zeinoddini M, Sajedi RH. Surface display provides an efficient expression system for production of recombinant proteins and bacterial whole cell biosensor in E. coli. Anal Biochem 2024; 694:115599. [PMID: 38964699 DOI: 10.1016/j.ab.2024.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 μM concentration range, respectively, with a 1.3 nM and 0.14 μM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.
Collapse
Affiliation(s)
- Fereshteh Ramezani Khorsand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Saghi Hakimi Naeini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Ehsan Dehnavi
- Gene Transfer Pioneers (GTP) Research Group, Incubation Center of Pharmaceutical Technologies, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
2
|
Akintelu SA, Zhang Q, Yao B. Postassembly Modification of Peptides by Histidine-Directed β-C(sp 3)-H Arylation of Alanine at the Internal Positions: Overcoming the Inhibitory Effect of Peptide Bonds. Org Lett 2024; 26:3991-3996. [PMID: 38691578 DOI: 10.1021/acs.orglett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the β-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.
Collapse
Affiliation(s)
- Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Qi Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
3
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Chen Y, Pang S, Li J, Lu Y, Gao C, Xiao Y, Chen M, Wang M, Ren X. Genetically encoded protein sensors for metal ion detection in biological systems: a review and bibliometric analysis. Analyst 2023; 148:5564-5581. [PMID: 37872814 DOI: 10.1039/d3an01412f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal ions are indispensable elements in living organisms and are associated with regulating various biological processes. An imbalance in metal ion content can lead to disorders in normal physiological functions of the human body and cause various diseases. Genetically encoded fluorescent protein sensors have the advantages of low biotoxicity, high specificity, and a long imaging time in vivo and have become a powerful tool to visualize or quantify the concentration level of biomolecules in vivo and in vitro, temporal and spatial distribution, and life activity process. This review analyzes the development status and current research hotspots in the field of genetically encoded fluorescent protein sensors by bibliometric analysis. Based on the results of bibliometric analysis, the research progress of genetically encoded fluorescent protein sensors for metal ion detection is reviewed, and the construction strategies, physicochemical properties, and applications of such sensors in biological imaging are summarized.
Collapse
Affiliation(s)
- Yuxueyuan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - ShuChao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun Lu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxia Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyu Xiao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Roshid MHO, Moraskie M, O’Connor G, Dikici E, Zingg JM, Deo S, Bachas LG, Daunert S. A Portable, Encapsulated Microbial Whole-Cell Biosensing System for the Detection of Bioavailable Copper (II) in Soil. Microchem J 2023; 193:109088. [PMID: 37982106 PMCID: PMC10655828 DOI: 10.1016/j.microc.2023.109088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A portable, field deployable whole-cell biosensor was developed that can withstand the complex matrices of soil and requires minimal to no sample preparation to monitor bioavailable concentrations of the essential micronutrient copper (II). Conventional measurement of micronutrients is often complex, laboratory-based, and not suitable for monitoring their bioavailable concentration. To address this need, we developed a fluorescence based microbial whole-cell biosensing (MWCB) system encoding for a Cu2+-responsive protein capable of generating a signal upon binding to Cu2+. The sensing-reporting protein was designed by performing circular permutation on the green fluorescent protein (GFP) followed by insertion of a Cu2+ binding motif into the structure of GFP. The design included insertion of several binding motifs and creating plasmids that encoded the corresponding sensing proteins. The signal generated by the sensing-reporting protein is directly proportional to the concentration of Cu2+ in the sample. Evaluation of the resulting biosensing systems carrying these plasmids was performed prior to selection of the optimal fluorescence emitting Cu2+-binding protein. The resulting optimized biosensing system was encapsulated in polyacrylate-alginate beads and embedded in soil for detection of the analyte. Once exposed to the soil, the beads were interrogated to measure the fluorescence signal emitted by the sensing-reporting protein using a portable imaging device. The biosensor was optimized for detection of Cu2+ in terms of selectivity, sensitivity, matrix effects, detection limits, and reproducibility in both liquid and soil matrices. The limit of detection (LoD) of the optimized encapsulated biosensor was calculated as 0.27 mg/L and 1.26 mg/kg of Cu2+ for Cu2+ in solution and soil, respectively. Validation of the portable imaging tools as a potential biosensing device in the field was performed.
Collapse
Affiliation(s)
- Md Harun Or Roshid
- Department of Chemistry, University of Miami, Miami, FL 33146
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Michael Moraskie
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Gregory O’Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Leonidas G. Bachas
- Department of Chemistry, University of Miami, Miami, FL 33146
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
- The Miami Clinical and Translational Science Institute, University of Miami, Miami, FL 33146
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| |
Collapse
|
6
|
Miller MK, Ball ZT. Boronic Acid Reagents for Transition‐Metal‐Mediated Cross‐Coupling with Proteins and Peptides. Isr J Chem 2021. [DOI: 10.1002/ijch.202100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mary K. Miller
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
7
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Maiti BK, Govil N, Kundu T, Moura JJ. Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine. iScience 2020; 23:101792. [PMID: 33294799 PMCID: PMC7701195 DOI: 10.1016/j.isci.2020.101792] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The designed "ATCUN" motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-β toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.
Collapse
Affiliation(s)
- Biplab K. Maiti
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Nidhi Govil
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Taraknath Kundu
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - José J.G. Moura
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Miller MK, Wang H, Hanaya K, Zhang O, Berlaga A, Ball ZT. Copper-mediated peptide arylation selective for the N-terminus. Chem Sci 2020; 11:10501-10505. [PMID: 34094308 PMCID: PMC8162437 DOI: 10.1039/d0sc02933e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023] Open
Abstract
Polypeptides present remarkable selectivity challenges for chemical methods. Amino groups are ubiquitous in polypeptide structure, yet few paradigms exist for reactivity and selectivity in arylation of amine groups. This communication describes the utilization of boronic acid reagents bearing certain o-electron withdrawing groups for copper-mediated amine arylation of the N-terminus under mild conditions and primarily aqueous solvent. The method adds to the toolkit of boronic acid reagents for polypeptide modification under mild conditions in water that shows complete selectivity for the N-terminus in the presence of lysine side chains.
Collapse
Affiliation(s)
- Mary K Miller
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Haopei Wang
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Kengo Hanaya
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Olivia Zhang
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Alex Berlaga
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Zachary T Ball
- Department of Chemistry, Rice University Houston TX 77005 USA
| |
Collapse
|
10
|
Plaza-Garrido M, Salinas-García MC, Martínez JC, Cámara-Artigas A. The effect of an engineered ATCUN motif on the structure and biophysical properties of the SH3 domain of c-Src tyrosine kinase. J Biol Inorg Chem 2020; 25:621-634. [PMID: 32279137 DOI: 10.1007/s00775-020-01785-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Metal binding to sites engineered in proteins can provide an increase in their stability and facilitate new functions. Besides the sites introduced in purpose, sometimes they are present accidentally as a consequence of the expression system used to produce the protein. This happens with the copper- and nickel-binding (ATCUN) motif generated by the amino-terminal residues Gly-Ser-His. This ATCUN motif is fortuitously present in many proteins, but how it affects the structural and biophysical characterization of the proteins has not been studied. In this work, we have compared the structure and biophysical properties of a small modular domain, the SH3 domain of the c-Src tyrosine kinase, cloned with and without an ATCUN motif at the N terminus. At pH 7.0, the SH3 domain with the ATCUN motif binds nickel with a binding constant Ka = 28.0 ± 3.0 mM-1. The formation of the nickel complex increases the thermal and chemical stability of the SH3 domain. A comparison of the crystal structures of the SH3 domain with and without the ATCUN motif shows that the binding of nickel does not affect the overall structure of the SH3 domain. In all crystal structures analyzed, residues Gly-Ser-His in complex with Ni2+ show a square planar geometry. The CD visible spectrum of the nickel complex shows that this geometry is also present in the solution. Therefore, our results not only show that the ATCUN motif might influence the biophysical properties of the protein, but also points to an advantageous stabilization of the protein with potential biotechnological applications.
Collapse
Affiliation(s)
- Marina Plaza-Garrido
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - Mª Carmen Salinas-García
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - José C Martínez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain.
| |
Collapse
|
11
|
Zou W, Le K, Zastrow ML. Live‐Cell Copper‐Induced Fluorescence Quenching of the Flavin‐Binding Fluorescent Protein CreiLOV. Chembiochem 2020; 21:1356-1363. [DOI: 10.1002/cbic.201900669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Wenping Zou
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Khoa Le
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Melissa L. Zastrow
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| |
Collapse
|
12
|
Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS. Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. Int J Mol Sci 2019; 20:E4200. [PMID: 31461959 PMCID: PMC6747460 DOI: 10.3390/ijms20174200] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are a reliable tool for studying the various biological processes in living systems. The circular permutation of single FPs led to the development of an extensive class of biosensors that allow the monitoring of many intracellular events. In circularly permuted FPs (cpFPs), the original N- and C-termini are fused using a peptide linker, while new termini are formed near the chromophore. Such a structure imparts greater mobility to the FP than that of the native variant, allowing greater lability of the spectral characteristics. One of the common principles of creating genetically encoded biosensors is based on the integration of a cpFP into a flexible region of a sensory domain or between two interacting domains, which are selected according to certain characteristics. Conformational rearrangements of the sensory domain associated with ligand interaction or changes in the cellular parameter are transferred to the cpFP, changing the chromophore environment. In this review, we highlight the basic principles of such sensors, the history of their creation, and a complete classification of the available biosensors.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | | | - Daria A Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| |
Collapse
|
13
|
Hu S, Zhang J, Tang R, Fan J, Liu H, Kang W, Lei C, Nie Z, Huang Y, Yao S. Click-Type Protein-DNA Conjugation for Mn 2+ Imaging in Living Cells. Anal Chem 2019; 91:10180-10187. [PMID: 31271027 DOI: 10.1021/acs.analchem.9b02191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A click-type protein-DNA conjugation, named as MnDDC (Mn2+-activated DCV-DNA conjunction), is presented, where DCV (rep protein of duck circovirus) and its target DNA work as the modular blocks to rapidly and effectively generate Mn2+-dependent and site-specific protein-DNA linkage. On the basis of MnDCC, a fluorescent Mn2+ biosensor composed of DCV and a molecular beacon, was developed for rapid sensing of Mn2+ within 2 min with nanomolar sensitivity. Using the proposed biosensor, not only analysis of Mn2+ in real samples (e.g., serum and food), but also wash-free fluorescent imaging of Mn2+ in extracellular environment and cytoplasm have been achieved. Moreover, the MnDDC-based sensor was proved to be a powerful tool for visualization of Mn2+ during exploration of the associated cytotoxicity in living neural cells, which is helpful to reveal the cellular responses toward the disordered homeostasis of Mn2+ in both extracellular and intracellular microenvironments.
Collapse
Affiliation(s)
- Shanfang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Jinghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Huiqiong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
14
|
Cui Y, Zhang R, Yang L, Lv S. Self-carried AIE nanoparticles for in vitro non-invasive long-term imaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Grüter A, Hoffmann M, Müller R, Wohland T, Jung G. A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy. Anal Bioanal Chem 2019; 411:3229-3240. [PMID: 31025181 DOI: 10.1007/s00216-019-01798-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 10/26/2022]
Abstract
Copper is one of the most important transition metals in many organisms where it catalyzes a manifold of different processes. As a result of copper's redox activity, organisms have to avoid unbound ions, and a dysfunctional copper homeostasis may lead to multifarious pathological processes in cells with very severe ramifications for the affected organisms. In many neurodegenerative diseases, however, the exact role of copper ions is still not completely clarified. In this work, a high-affinity and highly selective copper probe molecule, based on the naturally occurring tetrapeptide DAHK is synthesized. The sensor (log KD = - 12.8 ± 0.1) is tagged with a fluorescent BODIPY dye whose fluorescence lifetime distinctly decreases from 5.8 ns ± 0.2 ns to 0.4 ns ± 0.1 ns on binding to copper(II) cations. It is shown by using fluorescence lifetime correlation spectroscopy that the concentration of both probe and probe-copper complex can be simultaneously measured even at nanomolar concentration levels. This work presents a possible starting point for a new type of probe and method for future in vivo studies to further reveal the exact role of copper ions in organisms. Graphical abstract.
Collapse
Affiliation(s)
- Andreas Grüter
- Department of Biophysical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany
| | - Michael Hoffmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.,Department of Biological Sciences, Center for Bio-Imaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Gregor Jung
- Department of Biophysical Chemistry, Saarland University, Campus B2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
16
|
Che W, Zhang L, Li Y, Zhu D, Xie Z, Li G, Zhang P, Su Z, Dou C, Tang BZ. Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission Nanoparticles. Anal Chem 2019; 91:3467-3474. [PMID: 30693764 DOI: 10.1021/acs.analchem.8b05024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Strongly red luminescent and water-soluble probes are very important for studying biological events and processes. Fluorescent nanoparticles (NPs) built from the aggregation-induced emission luminogen (AIEgen) and amphipathic polymeric matrixes have been considered as promising candidates for bioimaging. However, AIE NPs with long-wavelength absorption suitable for in vivo application are still scarce. In this work, three AIE-active red-emissive BODIPY derivatives with long-wavelength absorption were rationally designed and synthesized. Then three NPs based on these AIEgens exhibit bright red photoluminescence with high fluorescence quantum yield in aqueous media. These NPs uniformly dispersed in water and showed excellent stability and good biocompatibility. They can be readily internalized by HeLa cells, and the staining process is performed by simply shaking the culture with cells for just a few seconds at room temperature, which indicates an ultrafast and easy-to-operate staining protocol. More importantly, long-term tracing in living cells and mouse over 15 days is successfully achieved. The strong fluorescence signals, ultrafast staining procedure, and long-term tracing abilities indicate that these AIE NPs hold great potential for monitoring biological processes.
Collapse
Affiliation(s)
- Weilong Che
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun , Jilin Province 130024 , P. R. China
| | - Liping Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun , Jilin Province 130024 , P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun , Jilin Province 130024 , P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Guangfu Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun , Jilin Province 130024 , P. R. China
| | - Pengfei Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Zhongmin Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun , Jilin Province 130024 , P. R. China
- School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun , 130022 , P. R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|
17
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Gonzalez P, Bossak K, Stefaniak E, Hureau C, Raibauta L, Balc W, Faller P. N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications. Chemistry 2018; 24:8029-8041. [PMID: 29336493 PMCID: PMC6152890 DOI: 10.1002/chem.201705398] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/28/2022]
Abstract
Peptides and proteins with N-terminal amino acid sequences NH2 -Xxx-His (XH) and NH2 -Xxx-Zzz-His (XZH) form well-established high-affinity CuII -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity CuII -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of CuII in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong CuII binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Institut de Chimie, UMR 7177,CNRS-Université de Strasbourg 4 rue Blaise Pascal, 67000, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Karolina Bossak
- Institute of Biochemistry and Biophysics, dediPolish Academy of
Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, dediPolish Academy of
Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Christelle Hureau
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- CNRS; LCC (Laboratoire de Chimie de Coordination) 205, route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse, UPS, INPT ; LCC; F-31077 Toulouse, France
| | - Laurent Raibauta
- Institut de Chimie, UMR 7177,CNRS-Université de Strasbourg 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Wojciech Balc
- Institute of Biochemistry and Biophysics, dediPolish Academy of
Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Peter Faller
- Institut de Chimie, UMR 7177,CNRS-Université de Strasbourg 4 rue Blaise Pascal, 67000, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
19
|
Zhang H, Wei Z, Xia Y, Fang M, Zhu W, Yang X, Li F, Tian Y, Zhang X, Zhou H. Exploration research on synthesis and application of a new dye containing di-2-picolyamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:256-261. [PMID: 29454254 DOI: 10.1016/j.saa.2018.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
A newly designed fluorescence dye L based on di-2-picolyamine (DPA) moiety as a chelator was obtained under the protection of N2 at 120°C, and KI as catalyst with relatively better yield. More interestingly, L not only could selectively and sensitively detect Cu2+ ions in aqueous medium but also examine the Cu2+ ions of the actual water samples. Nevertheless, L could be visual in Hela cells with excellent cell permeability, viz, monitoring exogenous Cu2+ ions as well as realizing an "on-off-on" process.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Zeyue Wei
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Ying Xia
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Min Fang
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Weiju Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Xingyuan Yang
- Faculty of Health Science, Anhui University, Hefei 230601, PR China
| | - Fei Li
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China
| | - Xuanjun Zhang
- Faculty of Health Science, University of Macau, Taipa, Macau, SAR, PR China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, 230601 Hefei, PR China.
| |
Collapse
|
20
|
Zhang J, Xu B, Tian W, Xie Z. Tailoring the morphology of AIEgen fluorescent nanoparticles for optimal cellular uptake and imaging efficacy. Chem Sci 2018; 9:2620-2627. [PMID: 29675254 PMCID: PMC5892346 DOI: 10.1039/c7sc05130a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
The rational design of robust fluorescent organic materials for long-term cell tracing is still challenging, and aggregation-caused quenching of emission is a big limitation of this strategy. Organic dyes with aggregation-induced emission (AIE) can effectively address this problem. Herein, AIEgen-containing nanoparticles, with different morphologies and emission, were prepared by assembling amphiphilic copolymers with an AIEgen. We compared the physical and chemical properties of rod-like and spherical nanoparticles, particularly investigating the effects of the shape on internalization and the imaging effect. The formulated nanoparticles exhibit advantageous features, such as a large Stokes shift, robust stability in physiological conditions, strong fluorescent emission, and photobleaching resistance. Interestingly, the rod-like nanoparticles were internalized more efficiently than their spherical counterparts, and their strong green fluorescence can still be clearly observed even after 15 days in vitro and in vivo. This work demonstrates the great potential of regulating the morphology of nanoparticles to obtain an ideal biological function.
Collapse
Affiliation(s)
- Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun , 130012 Jilin , P. R. China .
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun , 130012 Jilin , P. R. China .
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 5625 Renmin Street , Changchun , Jilin 130022 , P. R. China .
| |
Collapse
|
21
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
22
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
23
|
Ge H, Riss PJ, Mirabello V, Calatayud DG, Flower SE, Arrowsmith RL, Fryer TD, Hong Y, Sawiak S, Jacobs RM, Botchway SW, Tyrrell RM, James TD, Fossey JS, Dilworth JR, Aigbirhio FI, Pascu SI. Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Engineering an FMN-based iLOV protein for the detection of arsenic ions. Anal Biochem 2017; 525:38-43. [PMID: 28245978 DOI: 10.1016/j.ab.2017.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/07/2017] [Accepted: 02/17/2017] [Indexed: 11/24/2022]
Abstract
Over the past few decades, genetically encoded fluorescent proteins have been widely used as efficient probes to explore and investigate the roles of metal ions in biological processes. The discovery of small FMN-based fluorescent proteins, such as iLOV and FbFP, has enabled researchers to exploit these fluorescent reporter proteins for metal-sensing applications. In this study, we report the inherent binding properties of iLOV towards arsenic ions. The fluorescence quenching of iLOV was linearly related to the concentration of arsenic ions, and engineered proteins showed better sensitivity than the wild-type protein. Engineering key residues around the chromophore converted the iLOV protein into a highly sensitive sensor for As3+ ions. iLOVN468S exhibited an improved binding affinity with a dissociation constant of 1.5 μM. Furthermore, the circular dichroism spectra indicated that the fluorescence quenching mechanism might be related to arsenic-protein complex formation. Thus, the reagentless sensing of arsenic can potentially be exploited to determine intracellular or environmental arsenic using a genetically encoded biosensing approach.
Collapse
|
25
|
Ohata J, Minus MB, Abernathy ME, Ball ZT. Histidine-Directed Arylation/Alkenylation of Backbone N–H Bonds Mediated by Copper(II). J Am Chem Soc 2016; 138:7472-5. [DOI: 10.1021/jacs.6b03390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Matthew B. Minus
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Morgan E. Abernathy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
26
|
Yang Y, Ibrahim AA, Hashemi P, Stockdill JL. Real-Time, Selective Detection of Copper(II) Using Ionophore-Grafted Carbon-Fiber Microelectrodes. Anal Chem 2016; 88:6962-6. [DOI: 10.1021/acs.analchem.6b00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanyuan Yang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ahmad A. Ibrahim
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Parastoo Hashemi
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jennifer L. Stockdill
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
27
|
Zhu D, Luo Y, Yan X, Xie W, Cai W, Zhong X. A reaction-based fluorescent turn-on probe for Cu2+ in complete aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra18669f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FP can detect Cu2+ in complete aqueous solution with a rapid response time, high sensitivity, and high selectivity.
Collapse
Affiliation(s)
- Dongjian Zhu
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Yanghe Luo
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Xiaowei Yan
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Wei Xie
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Wen Cai
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Xing Zhong
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| |
Collapse
|