1
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Wang X, Seah HL, Zhang XL, Zhuang Z, Liu XW. Fluorescent Self-Assembled Complexes Based on Glyco-Functionalized G-Quadruplexes as a Targeted Delivery Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50229-50237. [PMID: 39264898 DOI: 10.1021/acsami.4c08079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Targeted delivery systems combined with the stimuli-responsive release of drug molecules hold noteworthy promise for precision medicine, enabling treatments with enhanced effectiveness and reduced adverse effects. An ideal drug delivery platform with versatile targeting moieties, the capability of combinational payloads, and simple preparation is highly desirable. Herein, we developed pH-sensitive fluorescent self-assembled complexes (SACs) of a galactose-functionalized G-quadruplex (G4) and a coumarin carboxamidine derivative as a targeted delivery platform through the nanoprecipitation method. These SACs selectively targeted hepatocellular carcinoma (HepG2) cells in fluorescence imaging after a short incubation and exerted specific anticancer effects in an appropriate dose range. Co-delivery of 1 μM prodrug floxuridine oligomers and 16 μg/mL SACs (minimal hemolytic effect) significantly reduced the cytotoxicity of the nucleoside anticancer drug on normal cells (NIH/3T3), kept up to 70% alive after 72-h incubation, and improved anticancer efficacy compared to SACs alone. This strategy can be extended to ratiometric multidrug delivery through self-assembly for targeted combinational therapy.
Collapse
Affiliation(s)
- Xian Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hui Ling Seah
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zeyan Zhuang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
3
|
Ma Y, Xie D, Chen Z, Shen X, Wu X, Ding F, Ding S, Pan Y, Li F, Lu A, Zhang G. Advancing targeted combination chemotherapy in triple negative breast cancer: nucleolin aptamer-mediated controlled drug release. J Transl Med 2024; 22:604. [PMID: 38951906 PMCID: PMC11218354 DOI: 10.1186/s12967-024-05429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a recurrent, heterogeneous, and invasive form of breast cancer. The treatment of TNBC patients with paclitaxel and fluorouracil in a sequential manner has shown promising outcomes. However, it is challenging to deliver these chemotherapeutic agents sequentially to TNBC tumors. We aim to explore a precision therapy strategy for TNBC through the sequential delivery of paclitaxel and fluorouracil. METHODS We developed a dual chemo-loaded aptamer with redox-sensitive caged paclitaxel for rapid release and non-cleavable caged fluorouracil for slow release. The binding affinity to the target protein was validated using Enzyme-linked oligonucleotide assays and Surface plasmon resonance assays. The targeting and internalization abilities into tumors were confirmed using Flow cytometry assays and Confocal microscopy assays. The inhibitory effects on TNBC progression were evaluated by pharmacological studies in vitro and in vivo. RESULTS Various redox-responsive aptamer-paclitaxel conjugates were synthesized. Among them, AS1411-paclitaxel conjugate with a thioether linker (ASP) exhibited high anti-proliferation ability against TNBC cells, and its targeting ability was further improved through fluorouracil modification. The fluorouracil modified AS1411-paclitaxel conjugate with a thioether linker (FASP) exhibited effective targeting of TNBC cells and significantly improved the inhibitory effects on TNBC progression in vitro and in vivo. CONCLUSIONS This study successfully developed fluorouracil-modified AS1411-paclitaxel conjugates with a thioether linker for targeted combination chemotherapy in TNBC. These conjugates demonstrated efficient recognition of TNBC cells, enabling targeted delivery and controlled release of paclitaxel and fluorouracil. This approach resulted in synergistic antitumor effects and reduced toxicity in vivo. However, challenges related to stability, immunogenicity, and scalability need to be further investigated for future translational applications.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China.
- Increasepharm & Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territoreis, Hong Kong SAR, 999077, China.
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
- Increasepharm & Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territoreis, Hong Kong SAR, 999077, China
| | - Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
| | - Feng Ding
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
| | - Shijian Ding
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
| | - Yufei Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China
- Increasepharm & Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territoreis, Hong Kong SAR, 999077, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong SAR, 999077, China.
| |
Collapse
|
4
|
Huang Y, Zhang F, Zhang Y, Chen R, Lü X. Combination of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion cytotoxicity and the underlying mechanism. Regen Biomater 2024; 11:rbae079. [PMID: 39022125 PMCID: PMC11254314 DOI: 10.1093/rb/rbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers have been applied for toxicity assessment of biomaterials due to their advantages. However, research on biomarkers for biomaterials is still in its early stages. There is a lack of integrated analysis in biomarker research based on multiomics studies. Herein, we report a new approach for combining of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion (Ni2+) cytotoxicity and the underlying mechanism. Firstly, differentially expressed genes and proteins were compared to screen gene/protein pairs exhibiting consistent differential expression within the same Ni2+-treated groups. Next, metabolic pathway analysis was carried out to reveal pathways in which gene/protein pairs and metabolites showed upstream and downstream relationships. Important networks composed of gene/protein pairs, metabolites and metabolic pathways and candidate biomarkers were subsequently identified. Through expression level and function validation, the gene/protein/metabolite biomarkers were confirmed, and the underlying mechanism was revealed: Ni2+ influenced the expression of the Rrm2 gene biomarker, which subsequently affected the expression of the RRM2 protein biomarker. These changes in turn impacted the levels of uric acid and uridine metabolite biomarkers, ultimately inhibiting DNA synthesis, suppressing cell proliferation, increasing intracellular ROS levels and reducing ATP content.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fudan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yajing Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Wang Q, Jin D, Liu C, Shi L, Li T. A Tumor-Specific Cascade-Activating Smart Prodrug System for Enhanced Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309482. [PMID: 38150668 DOI: 10.1002/smll.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Developing intelligently targeted drugs with low side effects is urgent for cancer treatment. Toward this goal, a tumor-specific cascade-activating smart prodrug system consisting of a G-quadruplex(G4)-modulated tumor-targeted DNA vehicle and a well-designed cellular stimuli-responsive ligand-drug conjugates (LDCs) is proposed. An original "donor-acceptor" binary fluorescent ligand, with ultrahigh affinity, brightness, and photostability, is engineered to tightly bind G4 structures and significantly improve the nuclease resistance of the DNA vehicle, which serves as a bridge contributing to the construction of the prodrug system, named ApG4/LDCs. Sodium nitroprusside and doxorubicin are loaded into ApG4/LDCs in one pot and generate nitric oxide and superoxide anion in response to cancer cellular environments, which in cascade generates peroxynitrite to cause DNA damage while promoting the self-monitored drug release to achieve enhanced targeted therapy. Such a cascade activation and self-reinforcement process is executed only when the prodrug system targets the tumor tissue followed by cell uptake, showing significant antitumor efficacy and greatly weakening the damage to normal tissues. Given the unique features, the innovative strategy for prodrug design may open a new door to precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Duo Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Jia Q, Zeng H, Li M, Tang J, Xiao N, Gao S, Li H, Zhang J, Zhang Z, Xie W. Binding asymmetry and conformational studies of the AtGSDA dimer. Comput Struct Biotechnol J 2023; 21:5515-5522. [PMID: 38022696 PMCID: PMC10663702 DOI: 10.1016/j.csbj.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Guanosine deaminase (GSDA) is an important deaminase that converts guanosine to xanthosine, a key intermediate in nitrogen recycling in plants. We previously solved complex structures of Arabidopsis thaliana GSDA bound by various ligands and examined its catalytic mechanism. Here, we report cocrystal structures of AtGSDA bound by inactive guanosine derivatives, which bind relatively weakly to the enzyme and mostly have poor binding geometries. The two protomers display unequal binding performances, and molecular dynamics simulation identified diverse conformations during the enzyme-ligand interactions. Moreover, intersubunit, tripartite salt bridges show conformational differences between the two protomers, possibly acting as "gating" systems for substrate binding and product release. Our structural and biochemical studies provide a comprehensive understanding of the enzymatic behavior of this intriguing enzyme.
Collapse
Affiliation(s)
- Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Hui Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Mingwei Li
- Division of Life Sciences and Medicine, and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jing Tang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangfang Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Huanxi Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jinbing Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhiyong Zhang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
7
|
Jo J, Bae S, Jeon J, Youn H, Lee G, Ban C. Bifunctional G-Quadruplex Aptamer Targeting Nucleolin and Topoisomerase 1: Antiproliferative Activity and Synergistic Effect of Conjugated Drugs. Bioconjug Chem 2023; 34:238-247. [PMID: 36516871 DOI: 10.1021/acs.bioconjchem.2c00540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a counterpart to antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) have been considered a promising strategy for targeted therapy due to the various benefits of aptamers. However, an aptamer merely serves as a targeting ligand in ApDCs, whereas the antibody enables the unexpected therapeutic efficacy of ADCs through antibody-dependent cellular cytotoxicity (ADCC). In this study, we developed a tumor-specific aptamer with an effector function and used it to confirm the feasibility of more potent ApDCs. First, we designed a nucleolin (NCL)-binding G-quadruplex (GQ) library based on the ability of NCL to bind to telomeric sequences. We then identified a bifunctional GQ aptamer (BGA) inhibiting the catalytic activity of topoisomerase 1 (TOP1) by forming an irreversible cleavage complex. Our BGA specifically targeted NCL-positive MCF-7 cells, exhibiting antiproliferative activity, and this suggested that tumor-specific therapeutic aptamers can be developed by using a biased library to screen aptamer candidates for functional targets. Finally, we utilized DM1, which has a synergistic interaction with TOP1 inhibitors, as a conjugated drug. BGA-DM1 exerted an anticancer effect 20-fold stronger than free DM1 and even 10-fold stronger than AS1411 (NCL aptamer)-DM1, highlighting our approach to develop synergistic ApDCs. Therefore, we anticipate that our library might be utilized for the identification of aptamers with effector functions. Furthermore, by employing such aptamers and appropriate drugs, synergistic ApDCs can be developed for targeted cancer therapy in a manner distinct from how ADCs exhibit additional therapeutic efficacy.
Collapse
Affiliation(s)
- Jihoon Jo
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| | - Sangmin Bae
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| | - Jinseong Jeon
- POSTECH Biotech Center, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| | - Hyungjun Youn
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| | - Gyeongjin Lee
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeong-buk790-784, Republic of Korea
| |
Collapse
|
8
|
Kotkowiak W, Roxo C, Pasternak A. Physicochemical and antiproliferative characteristics of RNA and DNA sequence-related G-quadruplexes. ACS Med Chem Lett 2023; 14:35-40. [PMID: 36655120 PMCID: PMC9841586 DOI: 10.1021/acsmedchemlett.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
In this article the physicochemical and biological properties of sequence-related G-quadruplex forming oligonucleotides in RNA and DNA series are analyzed and compared. The intermolecular G-quadruplexes vary in loop length, number of G-tetrads and homogeneity of the core. Our studies show that even slight variations in sequence initiate certain changes of G-quadruplex properties. DNA G-quadruplexes are less thermally stable than their RNA counterparts, more topologically diversified and are better candidates as inhibitors of cancer cells proliferation. The most efficient antiproliferative activity within the studied group of molecules was observed for two DNA G-quadruplexes with unperturbed core and lower content of thymidine residues within the loops leading to reduction of cells viability up to 65% and 33% for HeLa and MCF-7 cell lines, respectively.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Carolina Roxo
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Properties and Potential Antiproliferative Activity of Thrombin-Binding Aptamer (TBA) Derivatives with One or Two Additional G-Tetrads. Int J Mol Sci 2022; 23:ijms232314921. [PMID: 36499249 PMCID: PMC9736779 DOI: 10.3390/ijms232314921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.
Collapse
|
10
|
Chen Y, Jiang P, Lei S, Chen X, Yao S, Jiang D, Lin D, Jia X, Hu J. Optical tweezers and Raman spectroscopy for single-cell classification of drug resistance in acute lymphoblastic leukemia. JOURNAL OF BIOPHOTONICS 2022; 15:e202200117. [PMID: 35642096 DOI: 10.1002/jbio.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Laser Tweezers Raman Spectroscopy (LTRS) is a combination of laser tweezers and Raman spectroscopy. It is a physical tool based on the mechanical effects of the laser, which can be used to study single living cells in suspension in a fast and non-destructive way. Our work aims to establish a methodology system based on LTRS to rapidly and non-destructively detect the resistance of acute lymphoblastic leukemia (ALL) cells and to provide a new idea for the evaluation of the resistance of ALL cells. Two specific adriamycin-resistant and parental ALL cells BALL-1 and Nalm6 were included in this study. Adriamycin resistant cells can induce the spectral differences, which can be detected by LTRS initially. To ensure the accuracy of the results, we use the principal components analysis (PCA) as well as the classification and regression trees (CRT) algorithms, which show that the specificity and sensitivity of LTRS are above 90%. In addition, to further clarify the chemoresistance status of ALL cells, we used the CRT models and receiver operating characteristic (ROC) curves which are based on the band data to look for some important bands and band intensity ratios that have strong pointing significance. Our work proves that LTRS analysis combined with multivariate statistical analyses have great potential to be a novel analytical strategy at the single-cell level for rapidly evaluating the chemoresistance status of ALL cells.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peifang Jiang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuyi Lei
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Xiaoli Chen
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Shuting Yao
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Dongmei Jiang
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Donghong Lin
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Xianggang Jia
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, the School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol 2022; 10:972933. [PMID: 36051580 PMCID: PMC9424825 DOI: 10.3389/fbioe.2022.972933] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The past decade has become an important strategy in precision medicine for the targeted therapy of many diseases, expecially various types of cancer. As a promising targeted element, nucleic acid aptamers are single-stranded functional oligonucleotides which have specific abilities to bind with various target molecules ranging from small molecules to entire organisms. They are often named ‘chemical antibody’ and have aroused extensive interest in diverse clinical studies on account of their advantages, such as considerable biostability, versatile chemical modification, low immunogenicity and quick tissue penetration. Thus, aptamer-embedded drug delivery systems offer an unprecedented opportunity in bioanalysis and biomedicine. In this short review, we endeavor to discuss the recent advances in aptamer-based targeted drug delivery platforms for cancer therapy. Some perspectives on the advantages, challenges and opportunities are also presented.
Collapse
Affiliation(s)
- Fei Gao
- Institude of Translation Medicine, Shanghai University, Shanghai, China
| | - Jianhui Yin
- Institude of Translation Medicine, Shanghai University, Shanghai, China
| | - Yan Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Changyong Guo
- Institude of Translation Medicine, Shanghai University, Shanghai, China
| | - Honggang Hu
- Institude of Translation Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su, ; Honggang Hu,
| | - Jiacan Su
- Institude of Translation Medicine, Shanghai University, Shanghai, China
- *Correspondence: Jiacan Su, ; Honggang Hu,
| |
Collapse
|
12
|
NupR Responding to Multiple Signals Is a Nucleoside Permease Regulator in Bacillus thuringiensis BMB171. Microbiol Spectr 2022; 10:e0154322. [PMID: 35862946 PMCID: PMC9430930 DOI: 10.1128/spectrum.01543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside transport is essential for maintaining intracellular nucleoside and nucleobase homeostasis for living cells. Here, we identified an uncharacterized GntR/HutC family transcriptional regulator, NagR2, renamed NupR (nucleoside permease regulator), that mainly controls nucleoside transport in the Bacillus thuringiensis BMB171 strain. The deletion or overexpression of nupR affected the bacteria's utilization of guanosine, adenosine, uridine, and cytidine rather than thymidine. We further demonstrated that zinc ion is an effector for the NupR, dissociating NupR from its target DNA. Moreover, the expression of nupR is inhibited by NupR, ComK, and PurR, while it is promoted by CcpA. Also, a purine riboswitch located in its 5′ noncoding region influences the expression of nupR. Guanine is the ligand of the riboswitch, reducing the expression of nupR by terminating the transcription of nupR in advance. Hence, our results reveal an exquisite regulation mechanism enabling NupR to respond to multiple signals, control genes involved in nucleoside transport, and contribute to nucleoside substance utilization. Overall, this study provides essential clues for future studies exploring the function of the NupR homolog in other bacteria, such as Bacillus cereus, Bacillus anthracis, Klebsiella pneumoniae, and Streptococcus pneumoniae. IMPORTANCE The transport of nucleosides and their homeostasis within the cell are essential for growth and proliferation. Here, we have identified a novel transcription factor, NupR, which, to our knowledge, is the first GntR family transcription factor primarily involved in the regulation of nucleoside transport. Moreover, responding to diverse intracellular signals, NupR regulates nucleoside transport. It is vital for utilizing extracellular nucleosides and maintaining intracellular nucleoside homeostasis. NupR may also be involved in other pathways such as pH homeostasis, molybdenum cofactor biosynthesis, nitrate metabolism, and transport. In addition, nucleosides have various applications, such as antiviral drugs. Thus, the elucidation of the transport mechanism of nucleosides could be helpful for the construction of engineered strains for nucleoside production.
Collapse
|
13
|
Lopes-Nunes J, Oliveira PA, Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:671. [PMID: 34358097 PMCID: PMC8308530 DOI: 10.3390/ph14070671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are a class of nucleic acids (DNA and RNA) with single-stranded G-rich sequences. Owing to the selectivity of some G4s, they are emerging as targeting agents to overtake side effects of several potential anticancer drugs, and delivery systems of small molecules to malignant cells, through their high affinity or complementarity to specific targets. Moreover, different systems are being used to improve their potential, such as gold nano-particles or liposomes. Thus, the present review provides relevant data about the different studies with G4s as drug delivery systems and the challenges that must be overcome in the future research.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
14
|
Roxo C, Kotkowiak W, Pasternak A. G4 Matters-The Influence of G-Quadruplex Structural Elements on the Antiproliferative Properties of G-Rich Oligonucleotides. Int J Mol Sci 2021; 22:4941. [PMID: 34066551 PMCID: PMC8125755 DOI: 10.3390/ijms22094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical structures formed by guanine-rich sequences of DNA or RNA that have attracted increased attention as anticancer agents. This systematic study aimed to investigate the anticancer potential of five G4-forming, sequence-related DNA molecules in terms of their thermodynamic and structural properties, biostability and cellular uptake. The antiproliferative studies revealed that less thermodynamically stable G4s with three G-tetrads in the core and longer loops are more predisposed to effectively inhibit cancer cell growth. By contrast, highly structured G4s with an extended core containing four G-tetrads and longer loops are characterized by more efficient cellular uptake and improved biostability. Various analyses have indicated that the G4 structural elements are intrinsic to the biological activity of these molecules. Importantly, the structural requirements are different for efficient cancer cell line inhibition and favorable G4 cellular uptake. Thus, the ultimate antiproliferative potential of G4s is a net result of the specific balance among the structural features that are favorable for efficient uptake and those that increase the inhibitory activity of the studied molecules. Understanding the G4 structural features and their role in the biological activity of G-rich molecules might facilitate the development of novel, more potent G4-based therapeutics with unprecedented anticancer properties.
Collapse
Affiliation(s)
| | - Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| |
Collapse
|
15
|
Di Iorio P, Beggiato S, Ronci M, Nedel CB, Tasca CI, Zuccarini M. Unfolding New Roles for Guanine-Based Purines and Their Metabolizing Enzymes in Cancer and Aging Disorders. Front Pharmacol 2021; 12:653549. [PMID: 33935764 PMCID: PMC8085521 DOI: 10.3389/fphar.2021.653549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- P Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - S Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. D'Annunzio Chieti, Chieti, Italy
| | - C B Nedel
- Laboratório de Biologia Celular de Gliomas, Programa de Pós-Graduação Em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - C I Tasca
- Laboratório de Neuroquímica-4, Programa de Pós-Graduação Em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Virgilio A, Esposito V, Pecoraro A, Russo A, Vellecco V, Pepe A, Bucci M, Russo G, Galeone A. Structural properties and anticoagulant/cytotoxic activities of heterochiral enantiomeric thrombin binding aptamer (TBA) derivatives. Nucleic Acids Res 2021; 48:12556-12565. [PMID: 33270863 PMCID: PMC7736819 DOI: 10.1093/nar/gkaa1109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, ‘chair-like’ G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Antonietta Pepe
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
17
|
Ogloblina AM, Iaccarino N, Capasso D, Di Gaetano S, Garzarella EU, Dolinnaya NG, Yakubovskaya MG, Pagano B, Amato J, Randazzo A. Toward G-Quadruplex-Based Anticancer Agents: Biophysical and Biological Studies of Novel AS1411 Derivatives. Int J Mol Sci 2020; 21:E7781. [PMID: 33096752 PMCID: PMC7590035 DOI: 10.3390/ijms21207781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Certain G-quadruplex forming guanine-rich oligonucleotides (GROs), including AS1411, are endowed with cancer-selective antiproliferative activity. They are known to bind to nucleolin protein, resulting in the inhibition of nucleolin-mediated phenomena. However, multiple nucleolin-independent biological effects of GROs have also been reported, allowing them to be considered promising candidates for multi-targeted cancer therapy. Herein, with the aim of optimizing AS1411 structural features to find GROs with improved anticancer properties, we have studied a small library of AS1411 derivatives differing in the sequence length and base composition. The AS1411 derivatives were characterized by using circular dichroism and nuclear magnetic resonance spectroscopies and then investigated for their enzymatic resistance in serum and nuclear extract, as well as for their ability to bind nucleolin, inhibit topoisomerase I, and affect the viability of MCF-7 human breast adenocarcinoma cells. All derivatives showed higher thermal stability and inhibitory effect against topoisomerase I than AS1411. In addition, most of them showed an improved antiproliferative activity on MCF-7 cells compared to AS1411 despite a weaker binding to nucleolin. Our results support the hypothesis that the antiproliferative properties of GROs are due to multi-targeted effects.
Collapse
Affiliation(s)
- Anna M. Ogloblina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia; (A.M.O.); (M.G.Y.)
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Domenica Capasso
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via A. De Amicis 95, 80145 Naples, Italy;
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Emanuele U. Garzarella
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Marianna G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia; (A.M.O.); (M.G.Y.)
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (N.I.); (E.U.G.); (A.R.)
| |
Collapse
|
18
|
uL3 Mediated Nucleolar Stress Pathway as a New Mechanism of Action of Antiproliferative G-quadruplex TBA Derivatives in Colon Cancer Cells. Biomolecules 2020; 10:biom10040583. [PMID: 32290083 PMCID: PMC7226491 DOI: 10.3390/biom10040583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
The antiproliferative G-quadruplex aptamers are a promising and challenging subject in the framework of the anticancer therapeutic oligonucleotides research field. Although several antiproliferative G-quadruplex aptamers have been identified and proven to be effective on different cancer cell lines, their mechanism of action is still unexplored. We have recently described the antiproliferative activity of a heterochiral thrombin binding aptamer (TBA) derivative, namely, LQ1. Here, we investigate the molecular mechanisms of LQ1 activity and the structural and antiproliferative properties of two further TBA derivatives, differing from LQ1 only by the small loop base-compositions. We demonstrate that in p53 deleted colon cancer cells, LQ1 causes nucleolar stress, impairs ribosomal RNA processing, leading to the accumulation of pre-ribosomal RNAs, arrests cells in the G2/M phase and induces early apoptosis. Importantly, the depletion of uL3 abrogates all these effects, indicating that uL3 is a crucial player in the mechanism of action of LQ1. Taken together, our findings identify p53-independent and uL3-dependent nucleolar stress as a novel stress response pathway activated by a specific G-quadruplex TBA derivative. To the best of our knowledge, this investigation reveals, for the first time, the involvement of the nucleolar stress pathway in the mechanism of action of antiproliferative G-quadruplex aptamers.
Collapse
|
19
|
Luo C, Hu X, Peng R, Huang H, Liu Q, Tan W. Biomimetic Carriers Based on Giant Membrane Vesicles for Targeted Drug Delivery and Photodynamic/Photothermal Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43811-43819. [PMID: 31670932 DOI: 10.1021/acsami.9b11223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Membrane vesicles derived from live cells show great potential in biological applications due to their preserved cell membrane properties. Here, we demonstrate that cell-derived giant membrane vesicles can be used as vectors to deliver multiple therapeutic drugs and carry out combinational phototherapy for targeted cancer treatment. We show that therapeutic drugs can be efficiently encapsulated into giant membrane vesicles and delivered to target cells by membrane fusion, resulting in synergistic photodynamic/photothermal therapy under light irradiation. This study highlights biomimetic giant membrane vesicles for drug delivery with potential biomedical application in cancer therapeutics.
Collapse
Affiliation(s)
- Can Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , The Cancer Hospital of the University of Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China
| |
Collapse
|
20
|
Antipova O, Samoylenkova N, Savchenko E, Zavyalova E, Revishchin A, Pavlova G, Kopylov A. Bimodular Antiparallel G-Quadruplex Nanoconstruct with Antiproliferative Activity. Molecules 2019; 24:molecules24193625. [PMID: 31597343 PMCID: PMC6803823 DOI: 10.3390/molecules24193625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotides with an antiproliferative activity for human cancer cells have attracted attention over the past decades; many of them have a G-quadruplex structure (GQ), and a cryptic target. In particular, DNA oligonucleotide HD1, a minimal GQ, could inhibit proliferation of some cancer cell lines. The HD1 is a 15-nucleotide DNA oligonucleotide that folds into a minimal chair-like monomolecular antiparallel GQ structure. In this study, for eight human cancer cell lines, we have analyzed the antiproliferative activities of minimal bimodular DNA oligonucleotide, biHD1, which has two HD1 modules covalently linked via single T-nucleotide residue. Oligonucleotide biHD1 exhibits a dose-dependent antiproliferative activity for lung cancer cell line RL-67 and cell line of central nervous system cancer U87 by MTT-test and Ki-67 immunoassay. The study of derivatives of biHD1 for the RL-67 and U87 cell lines revealed a structure-activity correlation of GQ folding and antiproliferative activity. Therefore, a covalent joining of two putative GQ modules within biHD1 molecule provides the antiproliferative activity of initial HD1, opening a possibility to design further GQ multimodular nanoconstructs with antiproliferative activity—either as themselves or as carriers.
Collapse
Affiliation(s)
- Olga Antipova
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-40, 119991 Moscow, Russia.
| | - Nadezhda Samoylenkova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, 119334 Moscow, Russia.
| | - Ekaterina Savchenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, 119334 Moscow, Russia.
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-40, 119991 Moscow, Russia.
| | - Alexander Revishchin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, 119334 Moscow, Russia.
| | - Galina Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, 119334 Moscow, Russia.
- Federal State Autonomous Institution (N.N. Burdenko National Scientific and Practical Center for Neurosurgery) of the Ministry of Health of the Russian Federation, 1st Tverskaya-Yamskaya 13/5, 125047Moscow, Russia.
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, B. Pyrogovskaya 2/6, 119992 Moscow, Russia.
| | - Alexey Kopylov
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-40, 119991 Moscow, Russia.
| |
Collapse
|
21
|
Wang J, Bing T, Zhang N, Shen L, He J, Liu X, Wang L, Shangguan D. The Mechanism of the Selective Antiproliferation Effect of Guanine-Based Biomolecules and Its Compensation. ACS Chem Biol 2019; 14:1164-1173. [PMID: 31083967 DOI: 10.1021/acschembio.9b00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As endogenous biomolecules, guanine, guanine-based nucleosides, and nucleotides are essential for cellular DNA/RNA synthesis, energy metabolism, and signal transduction. However, these biomolecules have been found to have a cell-specific antiproliferation effect at higher concentrations, and the mechanism is unclear. In this study, we demonstrate that guanine deaminase (GDA) is a major factor in determining the cell-type selectivity to the antiproliferation effect of guanine-based biomolecules. GDA catalyzes the deamination of guanine to xanthine, which is an essential part of the guanine degradation pathway. GDA deficient cells could not efficiently remove the excess guanine-based biomolecules. These excess molecules disturb the metabolism of adenine-, cytosine-, and thymine-based nucleotides; subsequently inhibit the DNA synthesis and cell growth; and eventually result in the apoptosis/death of GDA deficient cells. The inhibition of DNA synthesis could be relieved by simultaneous addition of adenine- and cytosine-based nucleosides, and the inhibited DNA synthesis could be restarted by post addition of them, which subsequently reduces the antiproliferation effect of guanine-based biomolecules or even totally restores the cell proliferation. These results provide important information for the development of guanine-based drugs or guanine-rich oligonucleotide drugs, as well as for the safety evaluation of food with a high level of guanine-based compounds.
Collapse
Affiliation(s)
- Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junqing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Ma Y, Li W, Zhou Z, Qin X, Wang D, Gao Y, Yu Z, Yin F, Li Z. Peptide-Aptamer Coassembly Nanocarrier for Cancer Therapy. Bioconjug Chem 2019; 30:536-540. [PMID: 30702869 DOI: 10.1021/acs.bioconjchem.8b00903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We reported methionine bis-alkylated nonapeptide Wpc as an efficient siRNA vehicle previously. Herein, we report an aptamer could also spontaneously coassemble with Wpc to form uniformed nanoparticles for efficient delivery. This unique peptide-based aptamer nanocarrier showed significantly improved cell penetration and antiproliferation effect with high biocompatibility toward various cancer cell lines.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Ziyuan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,Chemical Biology Laboratory for Infectious Diseases, State Key Discipline of Infectious Diseases , Shenzhen Third People's Hospital , Shenzhen 518020 , China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yubo Gao
- School of Information Engineering , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening , Southern Medical University , Guangzhou 510515 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
23
|
Tan BL, Norhaizan ME, Chan LC. An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G₀/G₁ Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics 2018; 10:pharmaceutics10040198. [PMID: 30360519 PMCID: PMC6321496 DOI: 10.3390/pharmaceutics10040198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/10/2023] Open
Abstract
Magnetic iron oxide nanoparticles are among the most useful metal nanoparticles in biomedical applications. A previous study had confirmed that phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) exhibited antiproliferative activity towards human colorectal cancer (HT-29) cells. Hence, in this work, we explored the in vitro cytotoxicity activity and mechanistic action of Phy-CS-MNP nanocomposite in modulating gene and protein expression profiles in HT-29 cell lines. Cell cycle arrest and apoptosis were evaluated by NovoCyte Flow Cytometer. The mRNA changes (cyclin-dependent kinase 4 (Cdk4), vascular endothelial growth factor A (VEGFA), c-Jun N-terminal kinase 1 (JNK1), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9)) and protein expression (nuclear factor-kappa B (NF-κB) and cytochrome c) were assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The data from our study demonstrated that treatment with Phy-CS-MNP nanocomposite triggered apoptosis and G0/G1 cell cycle arrest. The transcriptional activity of JNK1 and iNOS was upregulated after treatment with 90 μg/mL Phy-CS-MNP nanocomposite. Our results suggested that Phy-CS-MNP nanocomposite induced apoptosis and cell cycle arrest via an intrinsic mitochondrial pathway through modulation of Bax and Bcl-2 and the release of cytochrome c from the mitochondria into the cytosol.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Lee Chin Chan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
24
|
Wang L, Liu Y, Qi C, Shen L, Wang J, Liu X, Zhang N, Bing T, Shangguan D. Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells. Sci Rep 2018; 8:10384. [PMID: 29991686 PMCID: PMC6039494 DOI: 10.1038/s41598-018-28648-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Serum is a common supplement for cell culture due to it containing the essential active components for the growth and maintenance of cells. However, the knowledges of the active components in serum are incomplete. Apart from the direct influence of serum components on cultured cells, the reaction of serum components with tested drugs cannot be ignored, which usually results in the false conclusion on the activity of the tested drugs. Here we report the toxicity effect of polyamines (spermidine and spermine) on cultured cells, especially on drug-resistant cancer cell lines, which resulted from the oxidative degradation of polyamines by amine oxidases in serum supplement. Upon adding spermidine or spermine, high concentration of H2O2, an enzyme oxidation product of polyamines, was generated in culture media containing ruminant serum, such as fetal bovine serum (FBS), calf serum, bovine serum, goat serum or horse serum, but not in the media containing human serum. Drug-resistant cancer cell lines showed much higher sensitivity to the oxidation products of polyamines (H2O2 and acrolein) than their wild cell lines, which was due to their low antioxidative capacity.
Collapse
Affiliation(s)
- Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
ROS-Mediated Mitochondrial Pathway is Required for Manilkara Zapota (L.) P. Royen Leaf Methanol Extract Inducing Apoptosis in the Modulation of Caspase Activation and EGFR/NF- κB Activities of HeLa Human Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6578648. [PMID: 29977314 PMCID: PMC6011101 DOI: 10.1155/2018/6578648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Manilkara zapota (L.) P. Royen (family: Sapotaceae) is commonly called sapodilla, or locally known as ciku. The detailed mechanisms underlying Manilkara zapota leaf methanol extract against HeLa human cervical cancer cells have yet to be investigated. Therefore, our present study is designed to investigate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf methanol extract inducing cytotoxicity in HeLa cells. The apoptotic cell death was assessed using Annexin V-propidium iodide staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential activities were measured using dichlorodihydrofluorescein diacetate and MitoLite Orange, respectively, by NovoCyte Flow Cytometer. Bax and Bcl-2 expression were evaluated using Enzyme-Linked Immunosorbent Assay. Caspase-3 activity was determined using a colorimetric assay. The associated biological interaction pathways were evaluated using quantitative real-time PCR. Our data showed that HeLa cells were relatively more sensitive to Manilkara zapota leaf methanol extract than other cancer cell lines studied. Overall analyses revealed that Manilkara zapota leaf methanol extract can inhibit the viability of HeLa cells, induce mitochondrial ROS generation, and inhibit nuclear factor-kappa B (NF-κB) and epidermal growth factor receptor (EGFR) transcriptional activities. Our results suggested that Manilkara zapota leaf methanol extract might represent a potential anticervical cancer agent.
Collapse
|
26
|
Critical review on establishment and availability of impurity and degradation product reference standards, challenges faced by the users, recent developments, and trends. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
O'Hagan MP, Mergny JL, Waller ZAE. G-quadruplexes in Prague: A Bohemian Rhapsody. Biochimie 2018; 147:170-180. [PMID: 29452278 DOI: 10.1016/j.biochi.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022]
Abstract
The Sixth International Meeting on Quadruplex Nucleic Acids was held at the Hotel Internationale in Prague, Czech Republic from 31 May - 3 June 2017. A vibrant interdisciplinary community of over 300 scientists gathered to share their newest results in this exciting field and exchange ideas for further investigations.
Collapse
Affiliation(s)
- Michael Paul O'Hagan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS1 1TS, UK.
| | - Jean-Louis Mergny
- Univ. Bordeaux, ARNA Laboratory, Inserm U1212, CNRS UMR 5320, IECB, F-33600, France; Institute of Biophysics, AS CR, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Zoë Ann Ella Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
28
|
ZHANG M, HAI H, ZHOU FY, ZHONG JC, LI JP. Electrochemical Luminescent DNA Sensor Based on Polymerase-assisted Signal Amplification. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61067-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
The "Janus face" of the thrombin binding aptamer: Investigating the anticoagulant and antiproliferative properties through straightforward chemical modifications. Bioorg Chem 2017; 76:202-209. [PMID: 29190476 DOI: 10.1016/j.bioorg.2017.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues. METHODS Four oligodeoxynucleotides (ODNs) based on the TBA sequence (5'-GGTTGGTGTGGTTGG-3') and containing 2'-deoxyuridine (U) or 5-bromo-2'-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2'-deoxyuridine (H) residues in the same positions, previously investigated. RESULTS The CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one. CONCLUSIONS All ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA. GENERAL SIGNIFICANCE The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.
Collapse
|
30
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
31
|
Do NQ, Chung WJ, Truong THA, Heddi B, Phan AT. G-quadruplex structure of an anti-proliferative DNA sequence. Nucleic Acids Res 2017; 45:7487-7493. [PMID: 28549181 PMCID: PMC5499593 DOI: 10.1093/nar/gkx274] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023] Open
Abstract
AGRO100 (also known as AS1411) is a G-rich oligonucleotide that has long been established as a potent anti-cancer aptamer. However, the structure of AGRO100 remained unresolved, due to the co-existence of multiple different G-quadruplex conformations. We identified a DNA sequence named AT11, derived from AGRO100, which formed a single major G-quadruplex conformation and exhibited a similar anti-proliferative activity as AGRO100. The solution structure of AT11 revealed a four-layer G-quadruplex comprising of two propeller-type parallel-stranded subunits connected through a central linker. The stacking between the two subunits occurs at the 3΄-end of the first block and the 5΄-end of the second block. The structure of the anti-proliferative DNA sequence AT11 will allow greater understanding on the G-quadruplex folding principles and aid in structural optimization of anti-proliferative oligonucleotides.
Collapse
Affiliation(s)
- Ngoc Quang Do
- School of Physical and Mathematical Sciences.,School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
32
|
Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1414-1428. [PMID: 28007579 DOI: 10.1016/j.bbagen.2016.12.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA.
| | | | - Mohammad T Malik
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| | - Emily M Murphy
- Department of Biomedical Engineering, University of Louisville, USA
| | - Martin G O'Toole
- Department of Biomedical Engineering, University of Louisville, USA
| | - John O Trent
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| |
Collapse
|
33
|
The effect of l-thymidine, acyclic thymine and 8-bromoguanine on the stability of model G-quadruplex structures. Biochim Biophys Acta Gen Subj 2016; 1861:1205-1212. [PMID: 27705754 DOI: 10.1016/j.bbagen.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Guanine-rich oligonucleotides are capable of forming tetrahelical structures known as G-quadruplexes with interesting biological properties. We have investigated the effects of site-specific substitution in the loops and in the tetrads model G-quadruplexes using thymine glycol nucleic acid (GNA) units, l-thymidine and 8-Br-2'-deoxyguanosine. METHODS Modified oligonucleotides were chemically synthesized and spectroscopic techniques were used to determine the relative stability of the modified G-quadruplex. The double 8-BrdG-modified quadruplexes were further characterized by Nuclear Magnetic Resonance. Binding to thrombin of selected quadruplex was analyzed by gel electrophoresis retention assay. RESULTS The most interesting results were found with a 8-bromoG substitution that had the larger stabilization of the quadruplex. NMR studies indicate a tight relationship between the loops and the tetrads to accommodate 8-bromoG modifications within the TBA. CONCLUSIONS The substitutions of loop positions with GNA T affect the TBA stability except for single modification in T7 position. Single l-thymidine substitutions produced destabilization of TBA. Larger changes on quadruplex stability are observed with the use of 8-bromoG finding a single substitution with the highest thermal stabilization found in thrombin binding aptamers modified at the guanine residues and having good affinity for thrombin. Double 8-BrdG modification in anti positions of different tetrads produce a conformational flip from syn to anti conformation of 8-Br-dG to favor loop-tetrad interaction and preserve the overall TBA stability. GENERAL SIGNIFICANCE Modified guanine-rich oligonucleotides are valuable tools for the search for G-quadruplex structures with higher thermal stability and may provide compounds with interesting protein-nucleic acid binding properties. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
|
34
|
Esposito V, Russo A, Amato T, Varra M, Vellecco V, Bucci M, Russo G, Virgilio A, Galeone A. Backbone modified TBA analogues endowed with antiproliferative activity. Biochim Biophys Acta Gen Subj 2016; 1861:1213-1221. [PMID: 27663232 DOI: 10.1016/j.bbagen.2016.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. METHODS Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. RESULTS CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. CONCLUSIONS A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. GENERAL SIGNIFICANCE Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Teresa Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
35
|
Park JY, Lee TS, Song IH, Cho YL, Chae JR, Yun M, Kang H, Lee JH, Lim JH, Cho WG, Kang WJ. Hybridization-based aptamer labeling using complementary oligonucleotide platform for PET and optical imaging. Biomaterials 2016; 100:143-51. [PMID: 27258484 DOI: 10.1016/j.biomaterials.2016.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
Abstract
Aptamers are promising next-generation ligands used in molecular imaging and theragnosis. Aptamers are synthetic nucleic acids that can be held together with complementary sequences by base-pair hybridization. In this study, the complementary oligonucleotide (cODN) hybridization-based aptamer conjugation platform was developed to use aptamers as the molecular imaging agent. The cODN was pre-labeled with fluorescent dye or radioisotope and hybridized with a matched sequence containing aptamers in aqueous conditions. The cODN platform-hybridized aptamers exhibited good serum stability and specific binding affinity towards target cancer cells both in vitro and in vivo. These results suggest that the newly designed aptamer conjugation platform offers great potential for the versatile application of aptamers as molecular imaging agents.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea
| | - Tae Sup Lee
- Molecular Imaging Research Center, Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - In Ho Song
- Molecular Imaging Research Center, Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyungu Kang
- R&D Strategic Planning, Bundang CHA Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Jung Hwan Lee
- APGEN Inc, 220, Yeongsin-ro, Yeongdeungpo-gu, Seoul 07228, Republic of Korea
| | - Jong Hoon Lim
- APGEN Inc, 220, Yeongsin-ro, Yeongdeungpo-gu, Seoul 07228, Republic of Korea
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea.
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
36
|
Grijalvo S, Alagia A, Gargallo R, Eritja R. Cellular uptake studies of antisense oligonucleotides using G-quadruplex-nanostructures. The effect of cationic residue on the biophysical and biological properties. RSC Adv 2016. [DOI: 10.1039/c6ra15336d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular uptake studies of G-quadruplex constructs having the Tetrahymena telomeric repeat sequence d(TGGGGT) modified with amino and guanidinium residues at the 3′-termini and an antisense oligonucleotide at 5′-termini were studied.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| | - Adele Alagia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
| | - Raimundo Gargallo
- University of Barcelona
- Department of Chemical Engineering and Analytical Chemistry
- E-08028 Barcelona
- Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| |
Collapse
|
37
|
Russo Krauss I, Spiridonova V, Pica A, Napolitano V, Sica F. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Res 2015; 44:983-91. [PMID: 26673709 PMCID: PMC4737158 DOI: 10.1093/nar/gkv1384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrea Pica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| |
Collapse
|
38
|
Scuotto M, Rivieccio E, Varone A, Corda D, Bucci M, Vellecco V, Cirino G, Virgilio A, Esposito V, Galeone A, Borbone N, Varra M, Mayol L. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative. Nucleic Acids Res 2015; 43:7702-16. [PMID: 26250112 PMCID: PMC4652776 DOI: 10.1093/nar/gkv789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022] Open
Abstract
Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13.
Collapse
Affiliation(s)
- Maria Scuotto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Elisa Rivieccio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Alessia Varone
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| |
Collapse
|