1
|
Faheem A, Lawrence MC, Bushra GA, Meli MV, Blight BA. Metal-organic frameworks as anchors for giant unilamellar vesicle immobilization. J Mater Chem B 2025. [PMID: 39840848 DOI: 10.1039/d4tb02055c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Giant unilamellar vesicles (GUVs) are ideal for studying cellular mechanisms due to their cell-mimicking morphology and size. The formation, stability, and immobilization of these vesicles are crucial for drug delivery and bioimaging studies. Separately, metal-organic frameworks (MOFs) are actively researched owing to their unique and varied properties, yet little is known about the interaction between MOFs and phospholipids. This study investigates the influence of the metal-phosphate interface on the formation, size distribution, and stability of GUVs with different lipid compositions. GUVs were electroformed in the presence of a series of MOFs. The results show Al, Zn, Cu, Fe, Zr, and Ca metal centers of MOFs can coordinate to phospholipids on the surface of GUVs, leading to the formation of functional GUV@MOF constructs, with stablilities over 12 hours. Macroscopically, society has seen biology (people, plants, microbes) interacting with inorganic materials regularly. We now explore how microscopic biological models behave in the presence of inorganic constructs. This research opens new avenues for advanced biomedical applications interacting tailored frameworks with liposomes.
Collapse
Affiliation(s)
- Aroosha Faheem
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - Mason C Lawrence
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - Gazi A Bushra
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Barry A Blight
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| |
Collapse
|
2
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
3
|
Weakly HMJ, Keller SL. Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools. Biophys J 2024; 123:1329-1341. [PMID: 38160256 PMCID: PMC11163299 DOI: 10.1016/j.bpj.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.
Collapse
Affiliation(s)
- Heidi M J Weakly
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington.
| |
Collapse
|
4
|
Okada S, Shoji K. Microrail-assisted liposome trapping and aligning in microfluidic channels. RSC Adv 2024; 14:18003-18010. [PMID: 38841399 PMCID: PMC11152143 DOI: 10.1039/d4ra02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Liposome assemblies with a specific shape are potential cell tissue models for studying intercellular communication. Microfluidic channels that can trap liposomes have been constructed to achieve efficient and high-throughput manipulation and observation of liposomes. However, the trapping and alignment of multiple liposomes in a specific space are still challenging because the liposomes are soft and easily ruptured. In this study, we focused on a microrail-assisted technique for manipulating water-in-oil (w/o) emulsions. In this technique, w/o emulsions are trapped under the microrails through a surface energy gradient. First, we investigated whether the microrail channel can be applied for liposome trapping and alignment and found that the numerical simulations showed that drag forces in the direction of the microrail acted on the liposomes, thereby moving the liposomes from the main channel to the microrail. Next, we designed a microrail device based on the simulation results and trapped liposomes using the device. Resultantly, 24.7 ± 8.5 liposomes were aligned under the microrail within an hour, and the microrail was filled with liposomes for 3 hours. Finally, we prepared the microrail devices with y-shaped and ring-shaped microrails and demonstrated the construction of liposome assemblies with specific shapes, not only the straight shape. Our results indicate that the microrail-assisted technique is a valuable method for manipulating liposomes because it has the potential to provide various-shaped liposome assemblies. We believe the microrail channel will be a powerful tool for constructing liposome-based cell-cell interaction models.
Collapse
Affiliation(s)
- Shun Okada
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Kan Shoji
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
5
|
Toyota T, Zhang Y. Identifying and Manipulating Giant Vesicles: Review of Recent Approaches. MICROMACHINES 2022; 13:644. [PMID: 35630111 PMCID: PMC9144095 DOI: 10.3390/mi13050644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
Giant vesicles (GVs) are closed bilayer membranes that primarily comprise amphiphiles with diameters of more than 1 μm. Compared with regular vesicles (several tens of nanometers in size), GVs are of greater scientific interest as model cell membranes and protocells because of their structure and size, which are similar to those of biological systems. Biopolymers and nano-/microparticles can be encapsulated in GVs at high concentrations, and their application as artificial cell bodies has piqued interest. It is essential to develop methods for investigating and manipulating the properties of GVs toward engineering applications. In this review, we discuss current improvements in microscopy, micromanipulation, and microfabrication technologies for progress in GV identification and engineering tools. Combined with the advancement of GV preparation technologies, these technological advancements can aid the development of artificial cell systems such as alternative tissues and GV-based chemical signal processing systems.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| |
Collapse
|
6
|
Gu L, Wei T, Zhou M, Yang H, Zhou Y. Impact of Lipid Peroxidation on the Response of Cell Membranes to High-Speed Equibiaxial Stretching: A Computational Study. J Phys Chem B 2021; 125:10736-10747. [PMID: 34524826 DOI: 10.1021/acs.jpcb.1c05544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The difference between diseased and healthy cellular membranes in response to mechanical stresses is crucial for biology, as well as in the development of medical devices. However, the biomolecular mechanisms by which mechanical stresses interact with diseased cellular components remain largely unknown. In this work, we focus on the response of diseased cellular membranes with lipid peroxidation to high-speed tensile loadings. We find that the critical areal strain (ξc, when the pore forms) is highly sensitive to lipid peroxidation. For example, ξc of a fully oxidized bilayer is only 64 and 69% of the nonoxidized one at the stretching speed of 0.1 and 0.6 m/s, respectively. ξc decreases with the increase in the oxidized lipid ratio, regardless of the speeds. Also, the critical rupture tension of membranes exhibits a similar change. It is obvious that the oxidized membranes are more easily damaged than normal ones by high-speed stretching, which coincides with experimental findings. The reason is that peroxidation introduces a polar group to the tail of lipids, increases the hydrophilicity of tails, and warps the tails to the membrane-water interface, which causes loose accumulation and disorder of lipid tails. This can be deduced from the variation in the area per lipid and order parameter. In addition, the lowering stretching modulus and line tension of membranes (i.e., softening) after lipid peroxidation is also a significant factor. We reveal the difference between the peroxidized (diseased) and normal membrane in response to high-speed stretching, give the ξc value in the pore formation of membranes and analyze the influence of the stretching speed, peroxidation ratio, and molecular structure of phospholipids. We hope that the molecular-level information will be useful for the development of biological and medical devices in the future.
Collapse
Affiliation(s)
- Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China.,School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
7
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
8
|
Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Rep 2021; 31:107670. [PMID: 32460010 PMCID: PMC7262598 DOI: 10.1016/j.celrep.2020.107670] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
As three-dimensional cell culture formats gain in popularity, there emerges a need for tools that produce vast amounts of data on individual cells within the spheroids or organoids. Here, we present a microfluidic platform that provides access to such data by parallelizing the manipulation of individual spheroids within anchored droplets. Different conditions can be applied in a single device by triggering the merging of new droplets with the spheroid-containing drops. This allows cell-cell interactions to be initiated for building microtissues, studying stem cells’ self-organization, or observing antagonistic interactions. It also allows the spheroids’ physical or chemical environment to be modulated, as we show by applying a drug over a large range of concentrations in a single parallelized experiment. This convergence of microfluidics and image acquisition leads to a data-driven approach that allows the heterogeneity of 3D culture behavior to be addressed across the scales, bridging single-cell measurements with population measurements. Microfluidic droplet pairs sequentially trapped in capillary anchors before merging 1 spheroid/droplet, with microenvironment modulations driven by droplet merging A wide range of drug concentrations tested on hepatic-like spheroids in a single chip Data-driven approach unravels 3D tissue-level dynamic drug response
Collapse
|
9
|
Bhatia T, Robinson T, Dimova R. Membrane permeability to water measured by microfluidic trapping of giant vesicles. SOFT MATTER 2020; 16:7359-7369. [PMID: 32696791 DOI: 10.1039/d0sm00155d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use a microfluidic method to estimate the water permeability coefficient (p) of membranes. As model lipid membranes we employ giant unilamellar vesicles (GUVs) composed of palmitoyloleoyl phosphatidylcholine and cholesterol (10 mol%). We have developed a microfluidic device with multiple chambers to trap GUVs and allow controlled osmotic exchange. Each chamber has a ring-shaped pressure-controlled valve which upon closure allows isolation of the GUVs in a defined volume. Opening the valves leads to a rapid fluid exchange between the trapping region and the microchannel network outside, thus allowing precise control over solution concentration around the GUVs contrary to other experimental approaches for permeability measurements reported in the literature. The area and volume changes of individual vesicles are monitored with confocal microscopy. The solute concentration in the immediate vicinity of the GUVs, and thus the concentration gradient across the membrane, is independently assessed. The data are well fitted by a simple model for water permeability which assumes that the rate of change in volume of a GUV per unit area is linearly proportional to concentration difference with permeability as the proportionality constant. Experiments of GUV osmotic deflation with hypertonic solutions yield the permeability of POPC/cholesterol 9/1 membranes to be p = 15.7 ± 5.5 μm s-1. For comparison, we also show results using two other approaches, which either do not take into account local concentration changes and/or do not resolve the precise vesicle shape. We point out the errors associated with these limitations. Finally, we also demonstrate the applicability of the microfluidic device for studying the dynamics of vesicles under flow.
Collapse
Affiliation(s)
- Tripta Bhatia
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| | - Tom Robinson
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| | - Rumiana Dimova
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| |
Collapse
|
10
|
Elias M, Dutoya A, Laborde A, Lecestre A, Montis C, Caselli L, Berti D, Lonetti B, Roux C, Joseph P. Microfluidic characterization of biomimetic membrane mechanics with an on-chip micropipette. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Jia H, Litschel T, Heymann M, Eto H, Franquelim HG, Schwille P. Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906259. [PMID: 32105403 DOI: 10.1002/smll.201906259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.
Collapse
Affiliation(s)
- Haiyang Jia
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|
12
|
Pereno V, Lei J, Carugo D, Stride E. Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6388-6398. [PMID: 32407094 DOI: 10.1021/acs.langmuir.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 μm/s, which increased to 8.5 ± 3.8 μm/s in the presence of microbubbles compared to 12 ± 0.12 μm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.
Collapse
Affiliation(s)
- Valerio Pereno
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences and Institute for Life Sciences, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
13
|
Yandrapalli N, Seemann T, Robinson T. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. MICROMACHINES 2020; 11:E285. [PMID: 32164221 PMCID: PMC7142477 DOI: 10.3390/mi11030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/25/2023]
Abstract
Liposomes and giant unilamellar vesicles (GUVs) in particular are excellent compartments for constructing artificial cells. Traditionally, their use requires bench-top vesicle growth, followed by experimentation under a microscope. Such steps are time-consuming and can lead to loss of vesicles when they are transferred to an observation chamber. To overcome these issues, we present an integrated microfluidic chip which combines GUV formation, trapping, and multiple separate experiments in the same device. First, we optimized the buffer conditions to maximize both the yield and the subsequent trapping of the vesicles in micro-posts. Captured GUVs were monodisperse with specific size of 18 ± 4 µm in diameter. Next, we introduce a two-layer design with integrated valves which allows fast solution exchange in less than 20 s and on separate sub-populations of the trapped vesicles. We demonstrate that multiple experiments can be performed in a single chip with both membrane transport and permeabilization assays. In conclusion, we have developed a versatile all-in-one microfluidic chip with capabilities to produce and perform multiple experiments on a single batch of vesicles using low sample volumes. We expect this device will be highly advantageous for bottom-up synthetic biology where rapid encapsulation and visualization is required for enzymatic reactions.
Collapse
Affiliation(s)
| | | | - Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
14
|
Jia H, Schwille P. Bottom-up synthetic biology: reconstitution in space and time. Curr Opin Biotechnol 2019; 60:179-187. [DOI: 10.1016/j.copbio.2019.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/07/2019] [Indexed: 01/30/2023]
|
15
|
Katsuta S, Okano T, Koiwai K, Suzuki H. Ejection of Large Particulate Materials from Giant Unilamellar Vesicles Induced by Electropulsation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13196-13204. [PMID: 31498647 DOI: 10.1021/acs.langmuir.9b01617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electroporation or electropermealization is a technique to open pores in the lipid bilayer membrane of cells and vesicles transiently to increase its permeability to otherwise impermeable molecules. However, the upper size limit of the materials permeable through this operation has not been studied in the past. Here, we investigate the size of the material that can be released (ejected) from giant unilamellar vesicles (GUVs) upon electrical pulsation. We confirm that the volume of GUV shrinks in a stepwise manner upon periodical pulsation, in accordance with previous studies. When the same operation is applied to GUVs that encapsulate microbeads, we find that beads as large as 20 μm can be ejected across the membrane without rupturing the whole GUV structure. We also demonstrate that functional bioactive particulate materials, such as gel balls, vesicles, and cells can be encapsulated in and ejected from GUVs. We foresee that this phenomenon can be applied to precisely regulate the time and location of release of these particulate materials in the microenvironment.
Collapse
Affiliation(s)
- Shota Katsuta
- Dept. Precision Mechanics, Faculty of Science and Engineering , Chuo University , 1-13-27 Kasuga , Bunkyo-ku , Tokyo 112-8551 , Japan
| | - Taiji Okano
- Dept. Precision Mechanics, Faculty of Science and Engineering , Chuo University , 1-13-27 Kasuga , Bunkyo-ku , Tokyo 112-8551 , Japan
| | - Keiichiro Koiwai
- Dept. Precision Mechanics, Faculty of Science and Engineering , Chuo University , 1-13-27 Kasuga , Bunkyo-ku , Tokyo 112-8551 , Japan
- Japan Society for the Promotion of Science (JSPS) , 5-3-1 Kojimachi , Chiyoda-ku , Tokyo 102-0083 , Japan
| | - Hiroaki Suzuki
- Dept. Precision Mechanics, Faculty of Science and Engineering , Chuo University , 1-13-27 Kasuga , Bunkyo-ku , Tokyo 112-8551 , Japan
| |
Collapse
|
16
|
Eto H, Soga N, Franquelim HG, Glock P, Khmelinskaia A, Kai L, Heymann M, Noji H, Schwille P. Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21372-21380. [PMID: 31136146 PMCID: PMC6750829 DOI: 10.1021/acsami.9b05073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
In bottom-up synthetic biology, one of the major methodological challenges is to provide reaction spaces that mimic biological systems with regard to topology and surface functionality. Of particular interest are cell- or organelle-shaped membrane compartments, as many protein functions unfold at lipid interfaces. However, shaping artificial cell systems using materials with non-intrusive physicochemical properties, while maintaining flexible lipid interfaces relevant to the reconstituted protein systems, is not straightforward. Herein, we develop micropatterned chambers from CYTOP, a less commonly used polymer with good chemical resistance and a refractive index matching that of water. By forming a self-assembled lipid monolayer on the polymer surface, we dramatically increased the biocompatibility of CYTOP-fabricated systems. The phospholipid interface provides an excellent passivation layer to prevent protein adhesion to the hydrophobic surface, and we succeeded in cell-free protein synthesis inside the chambers. Importantly, the chambers could be sealed after loading by a lipid monolayer, providing a novel platform to study encapsulated systems. We successfully reconstituted pole-to-pole oscillations of the Escherichia coli MinDE system, which responds dramatically to compartment geometry. Furthermore, we present a simplified fabrication of our artificial cell compartments via replica molding, making it a readily accessible technique for standard cleanroom facilities.
Collapse
Affiliation(s)
- Hiromune Eto
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Naoki Soga
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Henri G. Franquelim
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Philipp Glock
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Alena Khmelinskaia
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
- Institute
for Protein Design, University of Washington, Seattle 98195, Washington, United States
| | - Lei Kai
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
- School
of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116 Xuzhou, P. R. China
| | - Michael Heymann
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Hiroyuki Noji
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Petra Schwille
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
17
|
Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep 2019; 9:7255. [PMID: 31076583 PMCID: PMC6510758 DOI: 10.1038/s41598-019-43561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
In vitro reconstitution and microscopic visualization of membrane processes is an indispensable source of information about a cellular function. Here we describe a conceptionally novel free-standing membrane template that facilitates such quantitative reconstitution of membrane remodelling at different scales. The Giant Suspended Bilayers (GSBs) spontaneously swell from lipid lamella reservoir deposited on microspheres. GSBs attached to the reservoir can be prepared from virtually any lipid composition following a fast procedure. Giant unilamellar vesicles can be further obtained by GSB detachment from the microspheres. The reservoir stabilizes GSB during deformations, mechanical micromanipulations, and fluorescence microscopy observations, while GSB-reservoir boundary enables the exchange of small solutes with GSB interior. These unique properties allow studying macro- and nano-scale membrane deformations, adding membrane-active compounds to both sides of GSB membrane and applying patch-clamp based approaches, thus making GSB a versatile tool for reconstitution and quantification of cellular membrane trafficking events.
Collapse
Affiliation(s)
- Ariana Velasco-Olmo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Julene Ormaetxea Gisasola
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Juan Manuel Martinez Galvez
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Javier Vera Lillo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Anna V Shnyrova
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
18
|
Robinson T. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review. ACTA ACUST UNITED AC 2019; 3:e1800318. [PMID: 32648705 DOI: 10.1002/adbi.201800318] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/22/2019] [Indexed: 01/04/2023]
Abstract
One of the goals of synthetic biology is the bottom-up construction of an artificial cell, the successful realization of which could shed light on how cellular life emerged and could also be a useful tool for studying the function of modern cells. Using liposomes as biomimetic containers is particularly promising because lipid membranes are biocompatible and much of the required machinery can be reconstituted within them. Giant lipid vesicles have been used extensively in other fields such as biophysics and drug discovery, but their use as artificial cells has only recently seen an increase. Despite the prevalence of giant vesicles, many experiments remain challenging or impossible due to their delicate nature compared to biological cells. This review aims to highlight the effectiveness of microfluidic technologies in handling and analyzing giant vesicles. The advantages and disadvantages of different microfluidic approaches and what new insights can be gained from various applications are introduced. Finally, future directions are discussed in which the unique combination of microfluidics and giant lipid vesicles can push forward the bottom-up construction of artificial cells.
Collapse
Affiliation(s)
- Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany
| |
Collapse
|
19
|
Xu Z, Yang Y, Zhu G, Chen P, Huang Z, Dai X, Hou C, Yan L. Simulating Transport of Soft Matter in Micro/Nano Channel Flows with Dissipative Particle Dynamics. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Ye Yang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Guolong Zhu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Pengyu Chen
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Zihan Huang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Xiaobin Dai
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Cuiling Hou
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Li‐Tang Yan
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
21
|
Rambach RW, Biswas P, Yadav A, Garstecki P, Franke T. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles. Analyst 2018; 143:843-849. [PMID: 29234760 DOI: 10.1039/c7an01100h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Microwave measurement of giant unilamellar vesicles in aqueous solution. Sci Rep 2018; 8:497. [PMID: 29323157 PMCID: PMC5764977 DOI: 10.1038/s41598-017-18806-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022] Open
Abstract
A microwave technique is demonstrated to measure floating giant unilamellar vesicle (GUV) membranes in a 25 μm wide and 18.8 μm high microfluidic channel. The measurement is conducted at 2.7 and 7.9 GHz, at which a split-ring resonator (SRR) operates at odd modes. A 500 nm wide and 100 μm long SRR split gap is used to scan GUVs that are slightly larger than 25 μm in diameter. The smaller fluidic channel induces flattened GUV membrane sections, which make close contact with the SRR gap surface. The used GUVs are synthesized with POPC (16:0–18:1 PC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), SM (16:0 Egg Sphingomyelin) and cholesterol at different molecular compositions. It is shown that SM and POPC bilayers have different dielectric permittivity values, which also change with measurement frequencies. The obtained membrane permittivity values, e.g. 73.64-j6.13 for POPC at 2.7 GHz, are more than 10 times larger than previously reported results. The discrepancy is likely due to the measurement of dielectric polarization parallel with, other than perpendicular to, the membrane surface. POPC and SM-rich GUV surface sections are also clearly identified. Further work is needed to verify the obtained large permittivity values and enable accurate analysis of membrane composition.
Collapse
|
24
|
Franco-Gómez A, Thompson AB, Hazel AL, Juel A. Bubble propagation on a rail: a concept for sorting bubbles by size. SOFT MATTER 2017; 13:8684-8697. [PMID: 29125614 DOI: 10.1039/c7sm01478c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
Collapse
Affiliation(s)
- Andrés Franco-Gómez
- Manchester Centre for Nonlinear Dynamics & School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
25
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
26
|
Yamada A, Renault R, Chikina A, Venzac B, Pereiro I, Coscoy S, Verhulsel M, Parrini MC, Villard C, Viovy JL, Descroix S. Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip. LAB ON A CHIP 2016; 16:4691-4701. [PMID: 27797384 DOI: 10.1039/c6lc01143h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report here a simple yet robust transient compartmentalization system for microfluidic platforms. Cylindrical microfilaments made of commercially available fishing lines are embedded in a microfluidic chamber and employed as removable walls, dividing the chamber into several compartments. These partitions allow tight sealing for hours, and can be removed at any time by longitudinal sliding with minimal hydrodynamic perturbation. This allows the easy implementation of various functions, previously impossible or requiring more complex instrumentation. In this study, we demonstrate the applications of our strategy, firstly to trigger chemical diffusion, then to make surface co-coating or cell co-culture on a two-dimensional substrate, and finally to form multiple cell-laden hydrogel compartments for three-dimensional cell co-culture in a microfluidic device. This technology provides easy and low-cost solutions, without the use of pneumatic valves or external equipment, for constructing well-controlled microenvironments for biochemical and cellular assays.
Collapse
Affiliation(s)
- Ayako Yamada
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Renaud Renault
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Aleksandra Chikina
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Bastien Venzac
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Iago Pereiro
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Sylvie Coscoy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Marine Verhulsel
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, PSL Research University, 75005, Paris, France and ART group, Inserm U830, 75248 Paris, France
| | - Catherine Villard
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Jean-Louis Viovy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. and Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France and Institut Pierre-Gilles de Gennes, 75005, Paris, France
| |
Collapse
|
27
|
Jørgensen IL, Kemmer GC, Pomorski TG. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:103-119. [DOI: 10.1007/s00249-016-1155-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
|
28
|
Sturzenegger F, Robinson T, Hess D, Dittrich PS. Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device. SOFT MATTER 2016; 12:5072-5076. [PMID: 27241894 DOI: 10.1039/c6sm00049e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study we investigate the effect of shear force on lipid membranes induced by external fluid flow. We use giant unilamellar vesicles (GUVs) as simple cell models and chose a ternary lipid mixture that exhibits liquid-ordered and liquid-disordered domains. These domains are stained with different dyes to allow visualization of changes within the membrane after the application of flow. A microfluidic device served as a valuable platform to immobilize the vesicles and apply shear forces of a defined strength. Moreover, integration of valves allowed us to stop the flow instantaneously and visualize the relaxing domain patterns by means of high-resolution fluorescence microscopy. We observed the formation of transient, non-deterministic patterns of the formerly round domains during application of flow. When the flow is stopped, round domains are formed again on a time scale of ms to s. At longer time scales of several seconds to minutes, the domains fuse into larger domains until they reach equilibrium. These processes are accelerated with increasing temperature and vesicles with budding domains do not fuse unless the temperature is elevated. Our results show the strong effect of the flow on the lipid membrane and we believe that this phenomenon plays a crucial role in the processes of mechanotransduction in living cells.
Collapse
|
29
|
Kazayama Y, Teshima T, Osaki T, Takeuchi S, Toyota T. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles. Anal Chem 2015; 88:1111-6. [PMID: 26691855 DOI: 10.1021/acs.analchem.5b03772] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.
Collapse
Affiliation(s)
- Yuki Kazayama
- Graduate School of Arts and Sciences, The University of Tokyo , 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuhiko Teshima
- Institute of Industrial Science (IIS), The University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshihisa Osaki
- Institute of Industrial Science (IIS), The University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.,Kanagawa Academy of Science and Technology , 3-2-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science (IIS), The University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Taro Toyota
- Graduate School of Arts and Sciences, The University of Tokyo , 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|