1
|
Wang X, Alajmi A, Wei Z, Alzanbaqi M, Wei N, Lambert C, Ismael A. Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66290-66300. [PMID: 39561287 PMCID: PMC11622190 DOI: 10.1021/acsami.4c15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
The inherent large HOMO-LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young's modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.
Collapse
Affiliation(s)
- Xintai Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 China
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Asma Alajmi
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zhangchenyu Wei
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Mohammed Alzanbaqi
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Physics Department,
College of Science and Arts in Rabigh, King
Abdulaziz University, 344 Rabigh, Saudi Arabia
| | - Naixu Wei
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Colin Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
2
|
Giblin-Burnham J, Javanmardi Y, Moeendarbary E, Hoogenboom BW. Finite element modelling of atomic force microscopy imaging on deformable surfaces. SOFT MATTER 2024. [PMID: 39569923 PMCID: PMC11580413 DOI: 10.1039/d4sm01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Atomic force microscopy (AFM) provides a three-dimensional topographic representation of a sample surface, at nanometre resolution. Computational simulations can aid the interpretation of such representations, but have mostly been limited to cases where both the AFM probe and the sample are hard and not compressible. In many applications, however, the sample is soft and therefore deformed due to the force exerted by the AFM tip. Here we use finite element modelling (FEM) to study how the measured AFM topography relates to the surface structures of soft and compressible materials. Consistent with previous analytical studies, the measured elastic modulus in AFM is generally found to deviate from the elastic modulus of the sample material. By the analysis of simple surface geometries, the FEM modelling shows how measured mechanical and topographic features in AFM images depend on a combination of tip-sample geometry and indentation of the tip into the sample. Importantly for the interpretation of AFM data, nanoparticles may appear larger or smaller by a factor of two depending on tip size and indentation force; and a higher spatial resolution in AFM images does not necessarily coincide with a more accurate representation of the sample surface. These observations on simple surface geometries also extend to molecular-resolution AFM, as illustrated by comparing FEM results with experimental data acquired on DNA. Taken together, the FEM results provide a framework that aids the interpretation of surface topography and local mechanics as measured by AFM.
Collapse
Affiliation(s)
- Joshua Giblin-Burnham
- Department of Engineering Science, University of Oxford, Wellington Square, Oxford OX1 2JD, UK.
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Gong C, Cui L, Xiong D, Ding Y. In vitro drug release and cartilage interface lubrication properties of biomimetic polymers. J Mech Behav Biomed Mater 2024; 152:106439. [PMID: 38325166 DOI: 10.1016/j.jmbbm.2024.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative disease that is widely found in the elderly population, with a trend towards a younger age group in recent years. In the early stages of arthritis, patients are treated with hyaluronic acid injections and anti-inflammatory drugs. However, it has been found that hyaluronic acid can only play a supportive role and does not have a lubricating effect, and due to the absence of blood vessels, nerves, and lymphatic vessels in the articular cartilage, the oral anti-inflammatory drugs cannot reach the interface of the inflammatory joints adequately, and the drug utilisation rate is low. Herein, we designed and prepared a brush-like bionic lubricant for joint lubrication and drug loading. The poly(2-methyl-2-oxazoline) branched chain was grafted onto the hyaluronic acid main chain by ring-opening polymerisation and graft polymerisation to form a brush-like bionic lubricin containing multiple hydrophilic groups, which was self-assembled to encapsulate the drug by using its multi-branched special structure for drug loading. The friction behaviour tests on the articular cartilage surface showed that the prepared bionic lubricin has excellent lubrication effect, with a minimum friction coefficient of 0.036 close to the lubrication effect of natural synovial fluid, which is mainly due to the hydrophilic groups on its molecular chain that can adsorb the water molecules and form a hydration layer at the cartilage interface, which plays the role of hydration lubrication. In addition, in vitro drug release studies showed that the synthesised drug-loading biomimetic lubricin had a certain drug release capacity, and the maximum drug release rate could reach 77.8 % at 72 h. The synthesis of this bionic lubricant with dual functions of lubrication and drug release provides a new idea for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chenyang Gong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210009, Jiangsu, PR China
| | - Lingling Cui
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210009, Jiangsu, PR China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210009, Jiangsu, PR China.
| | - Yan Ding
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210009, Jiangsu, PR China
| |
Collapse
|
4
|
Streltsov DR, Borisov KM, Kalinina AA, Muzafarov AM. Quantitative Elasticity Mapping of Submicron Silica Hollow Particles by PeakForce QNM AFM Mode. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1916. [PMID: 37446432 DOI: 10.3390/nano13131916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Silica hollow spheres with a diameter of 100-300 nm and a shell thickness of 8±2 nm were synthesized using a self-templating amphiphilic polymeric precursor, i.e., poly(ethylene glycol)-substituted hyperbranched polyethoxysiloxane. Their elastic properties were addressed with a high-frequency AFM indentation method based on the PeakForce QNM (quantitative nanomechanical mapping) mode enabling simultaneous visualization of the surface morphology and high-resolution mapping of the mechanical properties. The factors affecting the accuracy of the mechanical measurements such as a local slope of the particle surface, deformation of the silica hollow particles by a solid substrate, shell thickness variation, and applied force range were analysed. The Young's modulus of the shell material was evaluated as E=26±7 GPa independent of the applied force in the elastic regime of deformations. Beyond the elastic regime, the buckling instability was observed revealing a non-linear force-deformation response with a hysteresis between the loading and unloading force-distance curves and irreversible deformation of the shell at high applied forces. Thus, it was demonstrated that PeakForce QNM mode can be used for quantitative measurements of the elastic properties of submicon-sized silica hollow particles with nano-size shell thickness, as well as for estimation of the buckling behaviour beyond the elastic regime of shell deformations.
Collapse
Affiliation(s)
- Dmitry R Streltsov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 117393 Moscow, Russia
| | - Kirill M Borisov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 117393 Moscow, Russia
| | - Aleksandra A Kalinina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 117393 Moscow, Russia
| | - Aziz M Muzafarov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, 117393 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Berardi M, Gnanachandran K, Jiang J, Bielawski K, Visser CW, Lekka M, Akca BI. Dynamic mechanical analysis of suspended soft bodies via hydraulic force spectroscopy. SOFT MATTER 2023; 19:615-624. [PMID: 36445288 DOI: 10.1039/d2sm01173e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rheological characterization of soft suspended bodies, such as cells, organoids, or synthetic microstructures, is particularly challenging, even with state-of-the-art methods (e.g. atomic force microscopy, AFM). Providing well-defined boundary conditions for modeling typically requires fixating the sample on a substrate, which is a delicate and time-consuming procedure. Moreover, it needs to be tuned for each chemistry and geometry. Here, we validate a novel technique, called hydraulic force spectroscopy (HFS), against AFM dynamic indentation taken as the gold standard. Combining experimental data with finite element modeling, we show that HFS gives results comparable to AFM microrheology over multiple decades, while obviating any sample preparation requirements.
Collapse
Affiliation(s)
- Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
- Optics11, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Kajangi Gnanachandran
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Jieke Jiang
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Kevin Bielawski
- Optics11, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Claas W Visser
- Engineering Fluid Dynamics group, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - B Imran Akca
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Emiroglu DB, Bekcic A, Dranseikiene D, Zhang X, Zambelli T, deMello AJ, Tibbitt MW. Building block properties govern granular hydrogel mechanics through contact deformations. SCIENCE ADVANCES 2022; 8:eadd8570. [PMID: 36525484 PMCID: PMC9757745 DOI: 10.1126/sciadv.add8570] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Granular hydrogels have been increasingly exploited in biomedical applications, including wound healing and cardiac repair. Despite their utility, design guidelines for engineering their macroscale properties remain limited, as we do not understand how the properties of granular hydrogels emerge from collective interactions of their microgel building blocks. In this work, we related building block features (stiffness and size) to the macroscale properties of granular hydrogels using contact mechanics. We investigated the mechanics of the microgel packings through dynamic oscillatory rheology. In addition, we modeled the system as a collection of two-body interactions and applied the Zwanzig and Mountain formula to calculate the plateau modulus and viscosity of the granular hydrogels. The calculations agreed with the dynamic mechanical measurements and described how microgel properties and contact deformations define the rheology of granular hydrogels. These results support a rational design framework for improved engineering of this fascinating class of materials.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Aleksandar Bekcic
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofibers. Acta Biomater 2022; 146:235-247. [PMID: 35487425 DOI: 10.1016/j.actbio.2022.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Vertically aligned carbon nanofibers (VACNFs) are promising material candidates for neural biosensors due to their ability to detect neurotransmitters in physiological concentrations. However, the expected high rigidity of CNFs could induce mechanical mismatch with the brain tissue, eliciting formation of a glial scar around the electrode and thus loss of functionality. We have evaluated mechanical biocompatibility of VACNFs by growing nickel-catalyzed carbon nanofibers of different lengths and inter-fiber distances. Long nanofibers with large inter-fiber distance prevented maturation of focal adhesions, thus constraining cells from obtaining a highly spread morphology that is observed when astrocytes are being contacted with stiff materials commonly used in neural implants. A silicon nanopillar array with 500 nm inter-pillar distance was used to reveal that this inhibition of focal adhesion maturation occurs due to the surface nanoscale geometry, more precisely the inter-fiber distance. Live cell atomic force microscopy was used to confirm astrocytes being significantly softer on the long Ni-CNFs compared to other surfaces, including a soft gelatin hydrogel. We also observed hippocampal neurons to mature and form synaptic contacts when being cultured on both long and short carbon nanofibers, without having to use any adhesive proteins or a glial monoculture, indicating high cytocompatibility of the material also with neuronal population. In contrast, neurons cultured on a planar tetrahedral amorphous carbon sample showed immature neurites and indications of early-stage apoptosis. Our results demonstrate that mechanical biocompatibility of biomaterials is greatly affected by their nanoscale surface geometry, which provides means for controlling how the materials and their mechanical properties are perceived by the cells. STATEMENT OF SIGNIFICANCE: Our research article shows, how nanoscale surface geometry determines mechanical biocompatibility of apparently stiff materials. Specifically, astrocytes were prevented from obtaining highly spread morphology when their adhesion site maturation was inhibited, showing similar morphology on nominally stiff vertically aligned carbon fiber (VACNF) substrates as when being cultured on ultrasoft surfaces. Furthermore, hippocampal neurons matured well and formed synapses on these carbon nanofibers, indicating high biocompatibility of the materials. Interestingly, the same VACNF materials that were used in this study have earlier also been proven to be capable for electrophysiological recordings and sensing neurotransmitters at physiological concentrations with ultra-high sensitivity and selectivity, thus providing a platform for future neural probes or smart culturing surfaces with superior sensing performance and biocompatibility.
Collapse
|
8
|
Baumann J, Sachs L, Otto O, Schoen I, Nestler P, Zaninetti C, Kenny M, Kranz R, von Eysmondt H, Rodriguez J, Schäffer TE, Nagy Z, Greinacher A, Palankar R, Bender M. Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease. SCIENCE ADVANCES 2022; 8:eabn2627. [PMID: 35584211 PMCID: PMC9116608 DOI: 10.1126/sciadv.abn2627] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MYH9-related disease patients with mutations in the contractile protein nonmuscle myosin heavy chain IIA display, among others, macrothrombocytopenia and a mild-to-moderate bleeding tendency. In this study, we used three mouse lines, each with one point mutation in the Myh9 gene at positions 702, 1424, or 1841, to investigate mechanisms underlying the increased bleeding risk. Agonist-induced activation of Myh9 mutant platelets was comparable to controls. However, myosin light chain phosphorylation after activation was reduced in mutant platelets, which displayed altered biophysical characteristics and generated lower adhesion, interaction, and traction forces. Treatment with tranexamic acid restored clot retraction in the presence of tPA and reduced bleeding. We verified our findings from the mutant mice with platelets from patients with the respective mutation. These data suggest that reduced platelet forces lead to an increased bleeding tendency in patients with MYH9-related disease, and treatment with tranexamic acid can improve the hemostatic function.
Collapse
Affiliation(s)
- Juliane Baumann
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Laura Sachs
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Nestler
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
| | - Carlo Zaninetti
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- University of Pavia, Pavia, Italy
| | - Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ruth Kranz
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | | | - Johanna Rodriguez
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | | | - Zoltan Nagy
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Corresponding author. (M.B.); (R.P.)
| | - Markus Bender
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
- Corresponding author. (M.B.); (R.P.)
| |
Collapse
|
9
|
Kim E, Lee H. Mechanical characterization of soft microparticles prepared by droplet microfluidics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eunseo Kim
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - Hyomin Lee
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
10
|
Chen A, Wang S, Cai W, Mu Z, Chen Y. Tunable synthesis, characterization, and CMP performance of dendritic mesoporous silica nanospheres as functionalized abrasives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Abuhattum S, Mokbel D, Müller P, Soteriou D, Guck J, Aland S. An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves. iScience 2022; 25:104016. [PMID: 35310950 PMCID: PMC8931349 DOI: 10.1016/j.isci.2022.104016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Atomic force microscopy (AFM) is widely used for quantifying the mechanical properties of soft materials such as cells. AFM force-indentation curves are conventionally fitted with a Hertzian model to extract elastic properties. These properties solely are, however, insufficient to describe the mechanical properties of cells. Here, we expand the analysis capabilities to describe the viscoelastic behavior while using the same force-indentation curves. Our model gives an explicit relation of force and indentation and extracts physically meaningful mechanical parameters. We first validated the model on simulated force-indentation curves. Then, we applied the fitting model to the force-indentation curves of two hydrogels with different crosslinking mechanisms. Finally, we characterized HeLa cells in two cell cycle phases, interphase and mitosis, and showed that mitotic cells have a higher apparent elasticity and a lower apparent viscosity. Our study provides a simple method, which can be directly integrated into the standard AFM framework for extracting the viscoelastic properties of materials. Simple mechanical model to describe viscoelastic properties of soft matter A model fitted directly to force-indentation curves Capturing the distinct nature of hydrogels crosslinked in different mechanisms Comparing viscoelastic properties of cells in interphase and mitotic states
Collapse
Affiliation(s)
- Shada Abuhattum
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudstr. 2, 91058 Erlangen, Germany
- Technische Universität Dresden, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Tatzberg 47-51, 01307 Dresden, Germany
- Corresponding author
| | - Dominic Mokbel
- Fakultät Mathematik und Informatik, Technische Universität Freiberg, 09599 Freiberg, Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudstr. 2, 91058 Erlangen, Germany
- Technische Universität Dresden, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Tatzberg 47-51, 01307 Dresden, Germany
| | - Despina Soteriou
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudstr. 2, 91058 Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudstr. 2, 91058 Erlangen, Germany
- Technische Universität Dresden, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Tatzberg 47-51, 01307 Dresden, Germany
| | - Sebastian Aland
- Fakultät Mathematik und Informatik, Technische Universität Freiberg, 09599 Freiberg, Germany
- Fakultät Informatik/Mathematik, Hochschule für Technik und Wirtschaft Dresden, 01069 Dresden, Germany
- Corresponding author
| |
Collapse
|
12
|
Biomimetic estrogen sensor based on soft colloidal probes. Biosens Bioelectron 2021; 192:113506. [PMID: 34325320 DOI: 10.1016/j.bios.2021.113506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
An increasing number of reports substantiate the link between emerging estrogenic pollutants and a variety of adverse effects including developmental disorders, infertility, cancer and neurological disorders, threatening public health as well as environment. The detection of the diverse classes of estrogenic and antiestrogenic substances is still challenging due to analytics which needs to cover the whole range of compounds acting on estrogen receptors and the complex estrogen pathways. In this proof-of-concept study, we report a novel biomimetic detection scheme based on the specific recognition of estrogenic ligands by estrogen sulfotransferase 1E1 (SULT1E1), which acts as one of the key enzymes in estrogen homeostasis. SULT1E1 was site-specifically immobilized on transparent glass slides via a hexahistidine-tag in a multi-step procedure. Soft colloidal probes (SCPs) covalently functionalized with ligands of SULT1E1, namely estrone and estradiol 17-(β-D-glucuronide), served as adhesion probes. The various functionalization steps were analyzed and optimized using epifluorescence, confocal laser scanning as well as reflection interference contrast microscopy (RICM). A competitive SCP binding assay probing the elastic SCP deformation driven by the specific interaction between SCPs and the SULT1E1 decorated glass slides was employed in conjunction with an optical readout by RICM and automated image analysis to detect estrogenic compounds by their inhibition of SCP adhesion. This sensing concept has demonstrated exceptional specificity for estrogenic steroid compounds compared to structurally related substance classes and provides promising options for multiplexed assays and incorporation of other proteins of the endocrine system to fully capture the whole ensemble of hormonally active substances.
Collapse
|
13
|
Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. J Colloid Interface Sci 2021; 583:404-413. [DOI: 10.1016/j.jcis.2020.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
|
14
|
Ren J, Li Y, Hu S, Liu Y, Tsao SW, Lau D, Luo G, Tsang CM, Lam RHW. Nondestructive quantification of single-cell nuclear and cytoplasmic mechanical properties based on large whole-cell deformation. LAB ON A CHIP 2020; 20:4175-4185. [PMID: 33030494 DOI: 10.1039/d0lc00725k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanical properties of cell nuclei have been recognized to reflect and modulate important cell behaviors such as migration and cancer cell malignant tendency. However, these nuclear properties are difficult to characterize accurately using conventional measurement methods, which are often based on probing or deforming local sites over a nuclear region. The corresponding results are sensitive to the measurement position, and they are not decoupled from the cytoplasmic properties. Microfluidics is widely recognized as a promising technique for bioassay and phenotyping. In this report, we develop a simple and nondestructive approach for the single-cell quantification of nuclear elasticity based on microfluidics by considering different deformation levels of a live cell captured along a confining microchannel. We apply two inlet pressure levels to drive the flow of human nasopharyngeal epithelial cells (NP460) and human nasopharyngeal cancerous cells (NPC43) into the microchannels. A model considering the essential intracellular components (cytoplasm and nucleus) for describing the mechanics of a cell deforming along the confining microchannel is used to back-calculate the cytoplasmic and nuclear properties. On the other hand, we also apply a widely used chemical nucleus extraction technique to examine its possible effects (e.g., reduced nuclear modulus and reduced lamin A/C expression). To determine if the decoupled nuclear properties are representative of cancer-related attributes, we classify the NP460 and NPC43 cells using the decoupled physical properties as classification factors, resulting in an accuracy of 79.1% and a cell-type specificity exceeding 74%. It should be mentioned that the cells can be recollected at the device outlet after the nondestructive measurement. Hence, the reported cell elasticity measurement can be combined with downstream genetic and biochemical assays for general cell research and cancer diagnostic applications.
Collapse
Affiliation(s)
- Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yongshu Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.
| | - Shuhuan Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China. and BGI-Shenzhen, Shenzhen 518083, Guangdong, China and Guangdong High-Throughput Sequencing Research Center, Shenzhen, Guangdong, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Guannan Luo
- Department of Economics and Finance, City University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, China and Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Alsharif N, Eshaghi B, Reinhard BM, Brown KA. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. NANO LETTERS 2020; 20:7536-7542. [PMID: 32986433 PMCID: PMC7834348 DOI: 10.1021/acs.nanolett.0c03004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the extensive use of biodegradable polyester nanoparticles for drug delivery, and reports of the strong influence of nanoparticle mechanics on nano-bio interactions, there is a lack of systematic studies on the mechanics of these nanoparticles under physiologically relevant conditions. Here, we report indentation experiments on poly(lactic acid) and poly(lactide-co-glycolide) nanoparticles using atomic force microscopy. While dried nanoparticles were found to be rigid at room temperature, their elastic modulus was found to decrease by as much as 30 fold under simulated physiological conditions (i.e., in water at 37 °C). Differential scanning calorimetry confirms that this softening can be attributed to the glass transition of the nanoparticles. Using a combination of mechanical and thermoanalytical characterization, the plasticizing effects of miniaturization, molecular weight, and immersion in water were investigated. Collectively, these experiments provide insight for experimentalists exploring the relationship between polymer nanoparticle mechanics and in vivo behavior.
Collapse
Affiliation(s)
- Nourin Alsharif
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Behnaz Eshaghi
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Björn M. Reinhard
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Keith A. Brown
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Physics Department and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
16
|
Jaeschke A, Jacobi A, Lawrence M, Risbridger G, Frydenberg M, Williams E, Vela I, Hutmacher D, Bray L, Taubenberger A. Cancer-associated fibroblasts of the prostate promote a compliant and more invasive phenotype in benign prostate epithelial cells. Mater Today Bio 2020; 8:100073. [PMID: 32984808 PMCID: PMC7498830 DOI: 10.1016/j.mtbio.2020.100073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Reciprocal interactions between prostate epithelial cells and their adjacent stromal microenvironment not only are essential for tissue homeostasis but also play a key role in tumor development and progression. Malignant transformation is associated with the formation of a reactive stroma where cancer-associated fibroblasts (CAFs) induce matrix remodeling and thereby provide atypical biochemical and biomechanical signals to epithelial cells. Previous work has been focused on the cellular and molecular phenotype as well as on matrix stiffness and remodeling, providing potential targets for cancer therapeutics. So far, biomechanical changes in CAFs and adjacent epithelial cells of the prostate have not been explored. Here, we compared the mechanical properties of primary prostatic CAFs and patient-matched non-malignant prostate tissue fibroblasts (NPFs) using atomic force microscopy (AFM) and real-time deformability cytometry (RT-FDC). It was found that CAFs exhibit an increased apparent Young's modulus, coinciding with an altered architecture of the cytoskeleton compared with NPFs. In contrast, co-cultures of benign prostate epithelial (BPH-1) cells with CAFs resulted in a decreased stiffness of the epithelial cells, as well as an elongated morphological phenotype, when compared with co-cultures with NPFs. Moreover, the presence of CAFs increased proliferation and invasion of epithelial cells, features typically associated with tumor progression. Altogether, this study provides novel insights into the mechanical interactions between epithelial cells with the malignant prostate microenvironment, which could potentially be explored for new diagnostic approaches.
Collapse
Affiliation(s)
- A. Jaeschke
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - A. Jacobi
- Biotechnology Center, Technische Universität Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - M.G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - G.P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - M. Frydenberg
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Urology Associates, Melbourne, Victoria, Australia
- Department of Urology, Cabrini Health, Malvern, Victoria, Australia
| | - E.D. Williams
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Translational Research Institute, Woolloongabba, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - I. Vela
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology (QUT), Kelvin Grove, Australia
- Translational Research Institute, Woolloongabba, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, Australia
| | - D.W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - L.J. Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - A. Taubenberger
- Biotechnology Center, Technische Universität Dresden, Germany
| |
Collapse
|
17
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
18
|
Strzelczyk AK, Paul TJ, Schmidt S. Quantifying Thermoswitchable Carbohydrate‐Mediated Interactions via Soft Colloidal Probe Adhesion Studies. Macromol Biosci 2020; 20:e2000186. [DOI: 10.1002/mabi.202000186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| |
Collapse
|
19
|
Kosheleva NV, Efremov YM, Shavkuta BS, Zurina IM, Zhang D, Zhang Y, Minaev NV, Gorkun AA, Wei S, Shpichka AI, Saburina IN, Timashev PS. Cell spheroid fusion: beyond liquid drops model. Sci Rep 2020; 10:12614. [PMID: 32724115 PMCID: PMC7387529 DOI: 10.1038/s41598-020-69540-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Biological self-assembly is crucial in the processes of development, tissue regeneration, and maturation of bioprinted tissue-engineered constructions. The cell aggregates-spheroids-have become widely used model objects in the study of this phenomenon. Existing approaches describe the fusion of cell aggregates by analogy with the coalescence of liquid droplets and ignore the complex structural properties of spheroids. Here, we analyzed the fusion process in connection with structure and mechanical properties of the spheroids from human somatic cells of different phenotypes: mesenchymal stem cells from the limbal eye stroma and epithelial cells from retinal pigment epithelium. A nanoindentation protocol was applied for the mechanical measurements. We found a discrepancy with the liquid drop fusion model: the fusion was faster for spheroids from epithelial cells with lower apparent surface tension than for mesenchymal spheroids with higher surface tension. This discrepancy might be caused by biophysical processes such as extracellular matrix remodeling in the case of mesenchymal spheroids and different modes of cell migration. The obtained results will contribute to the development of more realistic models for spheroid fusion that would further provide a helpful tool for constructing cell aggregates with required properties both for fundamental studies and tissue reparation.
Collapse
Affiliation(s)
- Nastasia V Kosheleva
- FSBSI "Institute of General Pathology and Pathophysiology", 8, Baltiyskaya st., Moscow, 125315, Russia.
- FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 2/1, Barrikadnaya St., Moscow, 125993, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 12-1, Leninskie Gory, Moscow, 119234, Russia.
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
| | - Boris S Shavkuta
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics" RAS, 2, Pionerskaya st., Troitsk, Moscow, 142190, Russia
| | - Irina M Zurina
- FSBSI "Institute of General Pathology and Pathophysiology", 8, Baltiyskaya st., Moscow, 125315, Russia
- FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 2/1, Barrikadnaya St., Moscow, 125993, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Zhang
- Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Nikita V Minaev
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics" RAS, 2, Pionerskaya st., Troitsk, Moscow, 142190, Russia
| | - Anastasiya A Gorkun
- FSBSI "Institute of General Pathology and Pathophysiology", 8, Baltiyskaya st., Moscow, 125315, Russia
- FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 2/1, Barrikadnaya St., Moscow, 125993, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Anastasia I Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
| | - Irina N Saburina
- FSBSI "Institute of General Pathology and Pathophysiology", 8, Baltiyskaya st., Moscow, 125315, Russia
- FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 2/1, Barrikadnaya St., Moscow, 125993, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow, 119991, Russia
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics" RAS, 2, Pionerskaya st., Troitsk, Moscow, 142190, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 4, Kosygin st., Moscow, 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, 1‑3, Leninskiye Gory, Moscow, 119991, Russia
| |
Collapse
|
20
|
Berry JD, Biviano M, Dagastine RR. Poroelastic properties of hydrogel microparticles. SOFT MATTER 2020; 16:5314-5324. [PMID: 32469042 DOI: 10.1039/d0sm00191k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels can be formed in a number of different geometries depending upon desired function. However, due to the lack of appropriate models required to interpret experimental data, it remains unclear whether hydrogel microparticles have the same poroelastic properties as hydrogel films made with the same components. We perform numerical simulations to determine the universal force relaxation of a poroelastic hydrogel particle undergoing constant compression by a spherical probe, allowing analysis of experimental measurements of hydrogel particle material properties for the first time. In addition, we perform experimental measurements, using colloidal probe atomic force microscopy, of the force relaxation of polyacrylamide films and particles made with identical monomer and cross-linker concentrations. We fit our universal curve to the experimental data in order to extract material properties including shear modulus, Poisson's ratio and solvent diffusivity. Good agreement is found for the shear modulus and Poisson's ratio between the particles and the films. In contrast, the diffusivity of the polyacrylamide particles was found to be about half that of the films, suggesting that differences in the synthesis and homogeneity of the films and the particles play a role in determining transport and subsequent release of molecules in hydrogel particles.
Collapse
Affiliation(s)
- Joseph D Berry
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Matthew Biviano
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Raymond R Dagastine
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
Nawaz AA, Urbanska M, Herbig M, Nötzel M, Kräter M, Rosendahl P, Herold C, Toepfner N, Kubánková M, Goswami R, Abuhattum S, Reichel F, Müller P, Taubenberger A, Girardo S, Jacobi A, Guck J. Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat Methods 2020; 17:595-599. [DOI: 10.1038/s41592-020-0831-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
|
22
|
Lytra A, Sboros V, Giannakopoulos A, Pelekasis N. Modeling atomic force microscopy and shell mechanical properties estimation of coated microbubbles. SOFT MATTER 2020; 16:4661-4681. [PMID: 32391535 DOI: 10.1039/d0sm00300j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an extensive comparison with experimental data of our theoretical/numerical model for the static response of coated microbubbles (MBs) subject to compression from an atomic force microscope (afm). The mechanics of the MB's coating is described in the context of elastic thin shell theory. The encapsulated fluid is treated as compressible/incompressible pertaining to a gas/liquid, while the thinning of the liquid film between the MB and the afm cantilever is modeled via introduction of an interaction potential and the resulting disjoining pressure. As the external force increases, the experimental force-deformation (f-d) curves of MBs covered with polymer have an initial linear response (Reissner regime), followed by a non-linear curved downwards response (Pogorelov regime) where buckling takes place. On the other hand, the f-d curve for MBs covered with lipid monolayers initially follows the Reissner regime, but buckling is bypassed to a curved upwards regime where internal gas pressure dominates. The elastic properties, namely Young's modulus and shell thickness, for MB's covered with polymer can be estimated by combining the buckling point and the slope of the Reissner regime or the slopes of Reissner and Pogorelov regimes. Comparison of the present model with afm f-d curves for polymer shows satisfactory agreement. The area dilatation and bending moduli are shown to be the appropriate independent elastic parameters of MBs covered with phospholipid monolayers and are estimated by combination of the transition from Reissner to pressure dominated regime. Simulations and experiments in this case are in excellent agreement.
Collapse
Affiliation(s)
- A Lytra
- Department of Mechanical Engineering, University of Thessaly, Volos, 38334, Greece.
| | - V Sboros
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - A Giannakopoulos
- School of Applied Mathematics, Physics and Mechanics, National Technical University of Athens, Athens, 15780, Greece
| | - N Pelekasis
- Department of Mechanical Engineering, University of Thessaly, Volos, 38334, Greece.
| |
Collapse
|
23
|
Matthews HK, Ganguli S, Plak K, Taubenberger AV, Win Z, Williamson M, Piel M, Guck J, Baum B. Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement. Dev Cell 2020; 52:563-573.e3. [PMID: 32032547 PMCID: PMC7063569 DOI: 10.1016/j.devcel.2020.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic RasV12 activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that RasV12-expressing cells are softer in interphase but stiffen more upon entry into mitosis. These RasV12-dependent changes allow cells to round up and divide faithfully when confined underneath a stiff hydrogel, conditions in which normal cells and cells with reduced levels of Ras-ERK signaling suffer multiple spindle assembly and chromosome segregation errors. Thus, by promoting cell rounding and stiffening in mitosis, oncogenic RasV12 enables cells to proliferate under conditions of mechanical confinement like those experienced by cells in crowded tumors.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Zaw Win
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Max Williamson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058 Erlangen, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Tian Y, Liang H, Dobrynin AV. Elastocapillarity and rolling dynamics of solid nanoparticles on soft elastic substrates. SOFT MATTER 2020; 16:2230-2237. [PMID: 31998920 DOI: 10.1039/c9sm02280e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The motion of nanoparticles on soft surfaces is the result of interplay between capillary, elastic and friction forces. To elucidate the importance of the different contributions controlling nanoparticle rolling dynamics on soft surfaces, we performed molecular dynamics simulations of solid nanoparticles in contact with soft elastic substrates. The nanoparticle motion is initiated by applying a constant force resulting in stationary, steady rolling, and accelerating states, depending on the nanoparticle-substrate work of adhesion, W, the magnitude of the net applied force, F, and the substrate shear modulus G. In the stationary state, the restoring torque produced in the contact area balances the torque due to the external force. The rolling force Fr, determining the crossover to the rolling state, is proportional to the product of the work of adhesion W and nanoparticle size Rp, Fr ∼ WRp. In the steady rolling state, F > Fr, the nanoparticle maintains a constant rolling velocity which is a manifestation of the balance between the rolling friction force and the applied force. The observed scaling relationships between the applied force and nanoparticle velocity reflect a viscoelastic nature of the substrate deformation dynamics. A nanoparticle begins to accelerate when the energy supplied to the nanoparticle exceeds the energy dissipated in the contact area due to viscoelastic substrate deformation. Using these simulation results, we have constructed a diagram of states in terms of the dimensionless parameters F/WRp and W/GRp.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, USA.
| | - Heyi Liang
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, USA.
| | - Andrey V Dobrynin
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
25
|
Wagner K, Girardo S, Goswami R, Rosso G, Ulbricht E, Müller P, Soteriou D, Träber N, Guck J. Colloidal crystals of compliant microgel beads to study cell migration and mechanosensitivity in 3D. SOFT MATTER 2019; 15:9776-9787. [PMID: 31742293 DOI: 10.1039/c9sm01226e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissues are defined not only by their biochemical composition, but also by their distinct mechanical properties. It is now widely accepted that cells sense their mechanical environment and respond to it. However, studying the effects of mechanics in in vitro 3D environments is challenging since current 3D hydrogel assays convolve mechanics with gel porosity and adhesion. Here, we present novel colloidal crystals as modular 3D scaffolds where these parameters are principally decoupled by using monodisperse, protein-coated PAAm microgel beads as building blocks, so that variable stiffness regions can be achieved within one 3D colloidal crystal. Characterization of the colloidal crystal and oxygen diffusion simulations suggested the suitability of the scaffold to support cell survival and growth. This was confirmed by live-cell imaging and fibroblast culture over a period of four days. Moreover, we demonstrate unambiguous durotactic fibroblast migration and mechanosensitive neurite outgrowth of dorsal root ganglion neurons in 3D. This modular approach of assembling 3D scaffolds from mechanically and biochemically well-defined building blocks allows the spatial patterning of stiffness decoupled from porosity and adhesion sites in principle and provides a platform to investigate mechanosensitivity in 3D environments approximating tissues in vitro.
Collapse
Affiliation(s)
- Katrin Wagner
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Träber N, Uhlmann K, Girardo S, Kesavan G, Wagner K, Friedrichs J, Goswami R, Bai K, Brand M, Werner C, Balzani D, Guck J. Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. Sci Rep 2019; 9:17031. [PMID: 31745109 PMCID: PMC6864055 DOI: 10.1038/s41598-019-53425-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatio-temporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes.
Collapse
Affiliation(s)
- N Träber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - K Uhlmann
- Chair of Continuum Mechanics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - S Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058, Erlangen, Germany
| | - G Kesavan
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - K Wagner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - J Friedrichs
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany
| | - R Goswami
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058, Erlangen, Germany
| | - K Bai
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - M Brand
- Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - C Werner
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany
| | - D Balzani
- Chair of Continuum Mechanics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - J Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058, Erlangen, Germany.
| |
Collapse
|
27
|
Gangotra A, Biviano M, Dagastine RR, Berry JD, Willmott GR. Use of microaspiration to study the mechanical properties of polymer gel microparticles. SOFT MATTER 2019; 15:7286-7294. [PMID: 31498362 DOI: 10.1039/c9sm00862d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties. Ion current signatures for the poroelastic PA particles were qualitatively different from those of the viscoelastic PDMS particles. For PA particles the current gradually reduced during each aspiration event, whereas for PDMS particles the current trace resembled a negative top hat function. For PA particles it was found that the maximum change in current during aspiration (ΔIh) increased with particle size. By considering the initial elastic response, a mean effective shear modulus (G') of 6.6 ± 0.2 kPa was found for aspiration of 115 PA particles of ∼10-20 μm diameter. Using a viscoelastic model to describe flow into the pipette, a mean initial effective elastic modulus (E0') of 3.5 ± 1.7 MPa was found for aspiration of 17 PDMS particles of ∼ 9-11 μm diameter. These moduli are consistent with previously reported literature values, providing initial validation of the microaspiration method.
Collapse
Affiliation(s)
- Ankita Gangotra
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | | | | | | |
Collapse
|
28
|
Neubauer JW, Hauck N, Männel MJ, Seuss M, Fery A, Thiele J. Mechanoresponsive Hydrogel Particles as a Platform for Three-Dimensional Force Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26307-26313. [PMID: 31298522 DOI: 10.1021/acsami.9b04312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a novel concept for mechanosensitive hydrogel microparticles, which translate deformation into changes in fluorescence and can thus function as mechanical probes. The hydrogel particles with controlled polymer network are produced via droplet microfluidics from poly(ethylene glycol) (PEG) precursors. Förster resonance energy transfer donors and acceptors are coupled to the PEG hydrogel network for reporting local deformations as fluorescence shifts. We show that global network deformations, which occur upon drying/rehydration, can be detected via a characteristic fluorescence shift. Combined characterization with confocal laser scanning microscopy and atomic force microscopy (AFM) shows that also local deformation of the particles can be detected. Using AFM, the mechanical properties of the particles can be quantified, which allows linking strain with stress and thus force sensing in a three-dimensional environment. Microfluidic material design allows for precisely varying the size of our hydrogel microparticles as well as their mechanical properties and polymer network structure with regard to the choice of the macromolecular precursors and their functionalization with fluorophores. Thus, concomitant changes in mechanical properties and mechanosensitivity qualify these hydrogel microparticles as an adjustable material platform for force sensing in structural mechanics or cell culturing.
Collapse
Affiliation(s)
- Jens W Neubauer
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
| | - Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
| | - Maximilian Seuss
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
- Chair of Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany
| |
Collapse
|
29
|
Comparison of cell mechanical measurements provided by Atomic Force Microscopy (AFM) and Micropipette Aspiration (MPA). J Mech Behav Biomed Mater 2019; 95:103-115. [PMID: 30986755 DOI: 10.1016/j.jmbbm.2019.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
A comparative analysis of T-lymphocyte mechanical data obtained from Micropipette Aspiration (MPA) and Atomic Force Microscopy (AFM) is presented. Results obtained by fitting the experimental data to simple Hertz and Theret models led to non-Gaussian distributions and significantly different values of the elastic moduli obtained by both techniques. The use of more refined models, taking into account the finite size of cells (simplified double contact and Zhou models) reduces the differences in the values calculated for the elastic moduli. Several possible sources for the discrepancy between the techniques are considered. The analysis suggests that the local nature of AFM measurements compared with the more general character of MPA measurements probably contributed to the differences observed.
Collapse
|
30
|
High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells. Sci Rep 2019; 9:5742. [PMID: 30952895 PMCID: PMC6450875 DOI: 10.1038/s41598-019-42008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022] Open
Abstract
Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.
Collapse
|
31
|
Tourné-Péteilh C, Robin B, Lions M, Martinez J, Mehdi A, Subra G, Devoisselle JM. Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chem Commun (Camb) 2019; 55:13112-13115. [DOI: 10.1039/c9cc04963k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible encapsulation of proteins in hybrid microgels of a silylated hydrogel, focused on soft procedures and cross-linking conditions.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Mehdi
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- IBMM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | | |
Collapse
|
32
|
Girardo S, Träber N, Wagner K, Cojoc G, Herold C, Goswami R, Schlüßler R, Abuhattum S, Taubenberger A, Reichel F, Mokbel D, Herbig M, Schürmann M, Müller P, Heida T, Jacobi A, Ulbricht E, Thiele J, Werner C, Guck J. Standardized microgel beads as elastic cell mechanical probes. J Mater Chem B 2018; 6:6245-6261. [PMID: 32254615 DOI: 10.1039/c8tb01421c] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acrylamide (PAAm) microgel beads mimicking size and overall mechanics of biological cells. We produced mono-disperse beads at rates of 20-60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads' elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.
Collapse
Affiliation(s)
- S Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jacobi F, Camaleño de la Calle A, Boden S, Grafmüller A, Hartmann L, Schmidt S. Multivalent Binding of Precision Glycooligomers on Soft Glycocalyx Mimicking Hydrogels. Biomacromolecules 2018; 19:3479-3488. [DOI: 10.1021/acs.biomac.8b00790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fawad Jacobi
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225 Dusseldorf, Germany
| | - Alberto Camaleño de la Calle
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225 Dusseldorf, Germany
| | - Sophia Boden
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225 Dusseldorf, Germany
| | - Andrea Grafmüller
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14478 Potsdam, Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225 Dusseldorf, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitatsstraße 1, 40225 Dusseldorf, Germany
| |
Collapse
|
34
|
Mettu S, Ye Q, Zhou M, Dagastine R, Ashokkumar M. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM-confocal laser scanning fluorescence microscopy. SOFT MATTER 2018; 14:3192-3201. [PMID: 29651482 DOI: 10.1039/c8sm00065d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
Collapse
Affiliation(s)
- Srinivas Mettu
- School of Chemistry, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
35
|
Et-Thakafy O, Delorme N, Guyomarc’h F, Lopez C. Mechanical properties of milk sphingomyelin bilayer membranes in the gel phase: Effects of naturally complex heterogeneity, saturation and acyl chain length investigated on liposomes using AFM. Chem Phys Lipids 2018; 210:47-59. [DOI: 10.1016/j.chemphyslip.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022]
|
36
|
Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, Müller P, Taubenberger A, Anastassiadis K, Guck J. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 2017; 144:4313-4321. [DOI: 10.1242/dev.155218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Collapse
Affiliation(s)
- Marta Urbanska
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Maria Winzi
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Katrin Neumann
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Shada Abuhattum
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
- JPK Instruments AG, Colditzstraße 34-36, Berlin 12099, Germany
| | - Philipp Rosendahl
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Paul Müller
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Anna Taubenberger
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Jochen Guck
- Cellular Machines, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| |
Collapse
|
37
|
Zhu L, Nguyen D, Davey T, Baker M, Such C, Hawkett BS, Neto C. Mechanical properties of Ropaque hollow nanoparticles. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Lherbette M, Dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 2017; 7:8116. [PMID: 28808261 PMCID: PMC5556037 DOI: 10.1038/s41598-017-08517-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,SmarAct GmbH, D26135, Oldenburg, Germany.
| |
Collapse
|
39
|
Hydrogel Microparticles as Sensors for Specific Adhesion: Case Studies on Antibody Detection and Soil Release Polymers. Gels 2017; 3:gels3030031. [PMID: 30920527 PMCID: PMC6318626 DOI: 10.3390/gels3030031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
Adhesive processes in aqueous media play a crucial role in nature and are important for many technological processes. However, direct quantification of adhesion still requires expensive instrumentation while their sample throughput is rather small. Here we present a fast, and easily applicable method on quantifying adhesion energy in water based on interferometric measurement of polymer microgel contact areas with functionalized glass slides and evaluation via the Johnson–Kendall–Roberts (JKR) model. The advantage of the method is that the microgel matrix can be easily adapted to reconstruct various biological or technological adhesion processes. Here we study the suitability of the new adhesion method with two relevant examples: (1) antibody detection and (2) soil release polymers. The measurement of adhesion energy provides direct insights on the presence of antibodies showing that the method can be generally used for biomolecule detection. As a relevant example of adhesion in technology, the antiadhesive properties of soil release polymers used in today’s laundry products are investigated. Here the measurement of adhesion energy provides direct insights into the relation between polymer composition and soil release activity. Overall, the work shows that polymer hydrogel particles can be used as versatile adhesion sensors to investigate a broad range of adhesion processes in aqueous media.
Collapse
|
40
|
Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. Int J Pharm 2017; 532:790-801. [PMID: 28755992 DOI: 10.1016/j.ijpharm.2017.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/22/2023]
Abstract
Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.
Collapse
|
41
|
Overbeck A, Günther S, Kampen I, Kwade A. Compression Testing and Modeling of Spherical Cells - Comparison of Yeast and Algae. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Achim Overbeck
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Steffi Günther
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Ingo Kampen
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| | - Arno Kwade
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| |
Collapse
|
42
|
Et-Thakafy O, Delorme N, Gaillard C, Mériadec C, Artzner F, Lopez C, Guyomarc'h F. Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5117-5126. [PMID: 28475345 DOI: 10.1021/acs.langmuir.7b00363] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In many liposome applications, the nanomechanical properties of the membrane envelope are essential to ensure, e.g., physical stability, protection, or penetration into tissues. Of all factors, the lipid composition and its phase behavior are susceptible to tune the mechanical properties of membranes. To investigate this, small unilamellar vesicles (SUV; diameter < 200 nm), referred to as liposomes, were produced using either unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in aqueous buffer at pH 6.7. The respective melting temperatures of these phospholipids were -20 and 41 °C. X-ray diffraction analysis confirmed that at 20 °C DOPC was in the fluid phase and DPPC was in the gel phase. After adsorption of the liposomes onto flat silicon substrates, atomic force microscopy (AFM) was used to image and probe the mechanical properties of the liposome membrane. The resulting force-distance curves were treated using an analytical model based on the shell theory to yield the Young's modulus (E) and the bending rigidity (kC) of the curved membranes. The mechanical investigation showed that DPPC membranes were much stiffer (E = 116 ± 45 MPa) than those of DOPC (E = 13 ± 9 MPa) at 20 °C. The study demonstrates that the employed methodology allows discrimination of the respective properties of gel- or fluid-phase membranes when in the shape of liposomes. It opens perspectives to map the mechanical properties of liposomes containing both fluid and gel phases or of biological systems.
Collapse
Affiliation(s)
| | - Nicolas Delorme
- UMR CNRS 6283 Institut des Molécules et Matériaux du Mans, Université du Maine, Université Bretagne-Loire, 72000 Le Mans, France
| | - Cédric Gaillard
- UR BIA 1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Cristelle Mériadec
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | - Franck Artzner
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | | | | |
Collapse
|
43
|
Berry JD, Mettu S, Dagastine RR. Precise measurements of capsule mechanical properties using indentation. SOFT MATTER 2017; 13:1943-1947. [PMID: 28203662 DOI: 10.1039/c6sm02841a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Application of elastic theory to experimental data of capsule and particle compression under-predicts the value of material properties such as the Young's modulus by up to 100% when the effect of the rigid substrate is neglected, as is commonly done in the literature. Results of numerical simulations, spanning the range from thin-shelled capsules to solid particles, are presented in terms of correction factors that account for the substrate. In addition, the scaling relationship between indentation force and displacement is characterised for arbitrary shell thicknesses and indenter radii.
Collapse
Affiliation(s)
- Joseph D Berry
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia. and Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Srinivas Mettu
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia. and Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Raymond R Dagastine
- Department of Chemical & Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia. and Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Heida T, Neubauer JW, Seuss M, Hauck N, Thiele J, Fery A. Mechanically Defined Microgels by Droplet Microfluidics. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Jens W. Neubauer
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Maximilian Seuss
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Department of Physical Chemistry of Polymeric Materials; Technische Universität Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
45
|
Martin S, Wang H, Rathke T, Anderegg U, Möller S, Schnabelrauch M, Pompe T, Schmidt S. Polymer hydrogel particles as biocompatible AFM probes to study CD44/hyaluronic acid interactions on cells. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Dallavalle M, Lugli F, Rapino S, Zerbetto F. "Active" drops as phantom models for living cells: a mesoscopic particle-based approach. SOFT MATTER 2016; 12:3538-3544. [PMID: 26890581 DOI: 10.1039/c5sm02686e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.
Collapse
Affiliation(s)
- Marco Dallavalle
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126, Bologna, Italia.
| | - Francesca Lugli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126, Bologna, Italia.
| | - Stefania Rapino
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126, Bologna, Italia.
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126, Bologna, Italia.
| |
Collapse
|
47
|
Mechanics of Bacterial Cells and Initial Surface Colonisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:245-60. [DOI: 10.1007/978-3-319-32189-9_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Cao Z, Dobrynin AV. Contact Mechanics of Nanoparticles: Pulling Rigid Nanoparticles from Soft, Polymeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12520-12529. [PMID: 26509998 DOI: 10.1021/acs.langmuir.5b03222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Detachment of rigid nanoparticles from soft, gel-like polymeric surfaces is studied by using a combination of the molecular dynamics simulations and theoretical calculations. Simulations show that detachment of nanoparticles from soft surfaces proceeds through a neck formation. Analysis of the simulation results demonstrates that the magnitude of the detachment force f* depends on the nanoparticle radius R(p), shear modulus of substrate G(s), surface tension of substrate γ(s), and work of adhesion W. It is controlled by the balance of the elastic energy, surface energy of the neck, and nanoparticle adhesion energy to a substrate and depends on the dimensionless parameter δ ∝ γ(s)(G(s)R(p))(-1/3)W(-2/3). In the case of small values of the parameter δ ≪ 1, the critical detachment force approaches a critical detachment force calculated by Johnson, Kendall, and Roberts for adhesive contact, f* = 1.5πWR(p). However, in the opposite limit, corresponding to soft substrates, for which δ ≫ 1, the critical detachment force f* ∝ γ(s)(3/2)R(p)(1/2)G(s)(-1/2). All simulation data can be described by a scaling function f* ∝ γ(s)(3/2)R(p)(1/2)G(s)(-1/2)δ(-1.89).
Collapse
Affiliation(s)
- Zhen Cao
- Department of Polymer Science, University of Akron , Akron, Ohio 44325-3909, United States
| | - Andrey V Dobrynin
- Department of Polymer Science, University of Akron , Akron, Ohio 44325-3909, United States
| |
Collapse
|
49
|
Berthold T, Glaubitz M, Muschter S, Groß S, Palankar R, Reil A, Helm CA, Bakchoul T, Schwertz H, Bux J, Greinacher A, Delcea M. Human neutrophil antigen-3a antibodies induce neutrophil stiffening and conformational activation of CD11b without shedding of L-selectin. Transfusion 2015; 55:2939-48. [DOI: 10.1111/trf.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 06/29/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Tom Berthold
- Institute for Immunology and Transfusion Medicine; Universitätsmedizin Greifswald; Greifswald Germany
| | - Michael Glaubitz
- Nanostructure Group, ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Stefan Muschter
- Institute for Immunology and Transfusion Medicine; Universitätsmedizin Greifswald; Greifswald Germany
| | - Stefan Groß
- Department of Cardiology; Universitätsmedizin Greifswald; Greifswald Germany
- DZHK-German Centre for Cardiovascular Research; Greifswald Germany
| | - Raghavendra Palankar
- Nanostructure Group, ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | | | | | - Tamam Bakchoul
- Institute for Immunology and Transfusion Medicine; Universitätsmedizin Greifswald; Greifswald Germany
| | - Hansjörg Schwertz
- Institute for Immunology and Transfusion Medicine; Universitätsmedizin Greifswald; Greifswald Germany
- Lichtenberg-Professor for Experimental Hemostasis; Universitätsmedizin Greifswald
- Program in Molecular Medicine; University of Utah; Salt Lake City Utah
- Department of Surgery; University of Utah; Salt Lake City Utah
| | | | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine; Universitätsmedizin Greifswald; Greifswald Germany
| | - Mihaela Delcea
- Nanostructure Group, ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| |
Collapse
|
50
|
Schmidt S, Wang H, Pussak D, Mosca S, Hartmann L. Probing multivalency in ligand–receptor-mediated adhesion of soft, biomimetic interfaces. Beilstein J Org Chem 2015; 11:720-9. [PMID: 26124875 PMCID: PMC4464160 DOI: 10.3762/bjoc.11.82] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 12/15/2022] Open
Abstract
Many biological functions at cell level are mediated by the glycocalyx, a dense carbohydrate-presenting layer. In this layer specific interactions between carbohydrate ligands and protein receptors are formed to control cell–cell recognition, cell adhesion and related processes. The aim of this work is to shed light on the principles of complex formation between surface anchored carbohydrates and receptor surfaces by measuring the specific adhesion between surface bound mannose on a concanavalin A (ConA) layer via poly(ethylene glycol)-(PEG)-based soft colloidal probes (SCPs). Special emphasis is on the dependence of multivalent presentation and density of carbohydrate units on specific adhesion. Consequently, we first present a synthetic strategy that allows for controlled density variation of functional groups on the PEG scaffold using unsaturated carboxylic acids (crotonic acid, acrylic acid, methacrylic acid) as grafting units for mannose conjugation. We showed by a range of analytic techniques (ATR–FTIR, Raman microscopy, zeta potential and titration) that this synthetic strategy allows for straightforward variation in grafting density and grafting length enabling the controlled presentation of mannose units on the PEG network. Finally we determined the specific adhesion of PEG-network-conjugated mannose units on ConA surfaces as a function of density and grafting type. Remarkably, the results indicated the absence of a molecular-level enhancement of mannose/ConA interaction due to chelate- or subsite-binding. The results seem to support the fact that weak carbohydrate interactions at mechanically flexible interfaces hardly undergo multivalent binding but are simply mediated by the high number of ligand–receptor interactions.
Collapse
Affiliation(s)
- Stephan Schmidt
- Universität Leipzig, Institut für Biochemie, Johannisalle 21–23, D-04103 Leipzig, Germany
| | - Hanqing Wang
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
- Heinrich-Heine-Universität Düsseldorf, Institut für Organische und Makromolekulare Chemie, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Daniel Pussak
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Simone Mosca
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Laura Hartmann
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
- Heinrich-Heine-Universität Düsseldorf, Institut für Organische und Makromolekulare Chemie, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|