1
|
Jędrzejczak P, Parus A, Mildner M, Klapiszewska I, Balicki S, Kołodziejczak-Radzimska A, Siwińska-Ciesielczyk K, Fiala L, Wilk KA, Černý R, Klapiszewski Ł. The novel incorporation of lignin-based systems for the preparation of antimicrobial cement composites. Int J Biol Macromol 2024; 282:136721. [PMID: 39447793 DOI: 10.1016/j.ijbiomac.2024.136721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
This paper, for the first time, presents a potential application of titanium(IV) oxide and silicon(IV) oxide combined with lignin through a solvent-free mechanical process as admixtures for cement composites. The designed TiO2-SiO2 (1:1 wt./wt.) hybrid materials mixed with lignin were extensively characterized using Fourier transform infrared spectroscopy (FTIR), electrokinetic potential analysis, thermal analysis (TGA/DTG), and porous structure properties. In addition, particle size distributions and scanning electron microscopy (SEM) were conducted to evaluate morphological and microstructural properties. In the next step, the effect of the TiO2-SiO2/lignin hybrid admixture on the workability, hydration process, microstructure, porosity, mechanical, and antimicrobial properties of the cement composites was evaluated. It was observed that appropriately designed hybrid systems based on lignin contributed to better workability, with an improvement of 25 mm, and reduced porosity of cement composites, decreasing from 14.4 % to 13.3 % in the most favorable sample. Additionally, a higher microstructure density was observed, and with increasing amounts of hybrid material admixture, the mechanical parameters also improved. In addition, the TiO2-SiO2/lignin hybrid systems had significant potential due to their high microbial purity, suggesting their effectiveness in minimizing microbial accumulation on surfaces. The final stage of analysis involved employing response surface methodology (RSM) to ascertain the optimum composition of cement composites. The results obtained indicate that the TiO2-SiO2/lignin admixtures are a promising approach for the valorization of lignin waste flows in the design of cement composites.
Collapse
Affiliation(s)
- Patryk Jędrzejczak
- Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Building Engineering, Piotrowo 5, PL-60965 Poznan, Poland; Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Anna Parus
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Martin Mildner
- Czech Technical University in Prague, Faculty of Civil Engineering, Department of Materials Engineering and Chemistry, Thákurova 7, 166 29 Prague, Czech Republic
| | - Izabela Klapiszewska
- Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Building Engineering, Piotrowo 5, PL-60965 Poznan, Poland
| | - Sebastian Balicki
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, PL-50370 Wrocław, Poland
| | - Agnieszka Kołodziejczak-Radzimska
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Lukáš Fiala
- Czech Technical University in Prague, Faculty of Civil Engineering, Department of Materials Engineering and Chemistry, Thákurova 7, 166 29 Prague, Czech Republic
| | - Kazimiera A Wilk
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes, PL-50370 Wrocław, Poland
| | - Robert Černý
- Czech Technical University in Prague, Faculty of Civil Engineering, Department of Materials Engineering and Chemistry, Thákurova 7, 166 29 Prague, Czech Republic
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Diaz-Baca JA, Salaghi A, Fatehi P. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant. Biomacromolecules 2023; 24:1400-1416. [PMID: 36802502 DOI: 10.1021/acs.biomac.2c01437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Ayyoub Salaghi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| |
Collapse
|
3
|
Lignin-Based Admixtures: A Scientometric Analysis and Qualitative Discussion Applied to Cement-Based Composites. Polymers (Basel) 2023; 15:polym15051254. [PMID: 36904495 PMCID: PMC10006873 DOI: 10.3390/polym15051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The development of lignin-based admixtures (LBAs) for cement-based composites is an alternative to valorizing residual lignins generated in biorefineries and pulp and paper mills. Consequently, LBAs have become an emerging research domain in the past decade. This study examined the bibliographic data on LBAs through a scientometric analysis and in-depth qualitative discussion. For this purpose, 161 articles were selected for the scientometric approach. After analyzing the articles' abstracts, 37 papers on developing new LBAs were selected and critically reviewed. Significant publication sources, frequent keywords, influential scholars, and contributing countries in LBAs research were identified during the science mapping. The LBAs developed so far were classified as plasticizers, superplasticizers, set retarders, grinding aids, and air-entraining admixtures. The qualitative discussion revealed that most studies have focused on developing LBAs using Kraft lignins from pulp and paper mills. Thus, residual lignins from biorefineries need more attention since their valorization is a relevant strategy for emerging economies with high biomass availability. Most studies focused on production processes, chemical characterizations, and primary fresh-state analyses of LBA-containing cement-based composites. However, to better assess the feasibility of using different LBAs and encompass the multidisciplinarity of this subject, it is mandatory that future studies also evaluate hardened-sate properties. This holistic review offers a helpful reference point to early-stage researchers, industry professionals, and funding authorities on the research progress in LBAs. It also contributes to understanding the role of lignin in sustainable construction.
Collapse
|
4
|
Zhang Q, Chen J, Zhu J, Yang Y, Zhou D, Wang T, Shu X, Qiao M. Advances in Organic Rheology-Modifiers (Chemical Admixtures) and Their Effects on the Rheological Properties of Cement-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8730. [PMID: 36556536 PMCID: PMC9784188 DOI: 10.3390/ma15248730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Organic rheology modifiers, especially superplasticizers and viscosity-modifying admixtures (VMAs), have become key components for the workability optimization of modern concrete. The development of these admixtures is crucial to the further performance improvement of modern concrete under different casting and service conditions. Many of the former reviews have summarized research advances in respect of these admixtures from chemical and material perspectives, focusing on the effects of structure and the performance. In this paper, from a rheological perspective, an overview is provided of the microscale behavior of polycarboxylate (PCE) superplasticizers and VMAs (e.g., adsorption, conformation, and bridging) in terms of the evolution of the microstructure of the paste, the effect of chemical structure on the yield stress, the apparent viscosity and thixotropy of cement-based materials, and the structure design of these admixtures. Most importantly, in addition to a general discussion with assumptions (monolayer adsorption of a "flat" conformation, with each molecule on a single particle; statistical polymer composition), special conditions (e.g., preferential adsorption, depletion effects, hydration modification effects, and the polydispersity of the polymer composition) are discussed. Newly developed admixtures, realized through regulation of the microscale behavior, and by the modification of adsorption, topological structure, and molecular frame, are introduced.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Jian Chen
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Jiang Zhu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Yong Yang
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Dongliang Zhou
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Tao Wang
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Xin Shu
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Min Qiao
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| |
Collapse
|
5
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
6
|
Gharehkhani S, Gao W, Fatehi P. In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers (Basel) 2020; 12:E2982. [PMID: 33327509 PMCID: PMC7764959 DOI: 10.3390/polym12122982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023] Open
Abstract
The chemistry of lignin polymerization was studied in the past. Insights into the rheological behavior of the lignin polymerization system would provide crucial information required for tailoring lignin polymers with desired properties. The in-situ rheological attributes of lignin polymerization with a cationic monomer, [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC), were studied in detail in this work. The influences of process conditions, e.g., temperature, component concentrations, and shear rates, on the viscosity variations of the reaction systems during the polymerization were studied in detail. Temperature, METAC/lignin molar ratio, and shear rate increases led to the enhanced viscosity of the reaction medium and lignin polymer with a higher degree of polymerization. The extended reaction time enhanced the viscosity attributing to the larger molecular weight of the lignin polymer. Additionally, the size of particles in the reaction system dropped as reaction time was extended. The lignin polymer with a larger molecular weight and Rg behaved mainly as a viscose (tan δ > 1 or G″ > G') material, while the lignin polymer generated with smaller molecular weight and shorter Rg demonstrated strong elastic characteristics with a tan (δ) lower than unity over the frequency range of 0.1-10 rad/s.
Collapse
Affiliation(s)
| | | | - Pedram Fatehi
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B5E1, Canada; (S.G.); (W.G.)
| |
Collapse
|
7
|
Rheological Properties and Flow Behaviour of Cement-Based Materials Modified by Carbon Nanotubes and Plasticising Admixtures. FLUIDS 2020. [DOI: 10.3390/fluids5040169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the rheological properties of cement paste modified by a suspension containing both multi-walled carbon nanotubes (MWCNT) and carboxymethyl cellulose (CMC) (MWCNT/CMC suspension) with different types of plasticising admixtures (Pl), such as lignosulphonate (LS), sulfonated naphthalene formaldehyde condensate (NF), and polycarboxylate ether (PCE) were evaluated. The increase in yield stress and plastic viscosity up to 20% was established in the case of the modification of cement-based mixtures by MWCNT in the dosage up to 0.24% by weight of cement (bwoc) without Pl and with LS and NF. The complex modification of cement paste by MWCNT and PCE increases the yield stress and plastic viscosity from the MWCNT dosage of 0.06% and 0.015% bwoc, respectively. The yield stress and plastic viscosity of cement paste with PCE enhanced by 265% and 107%, respectively, in a MWCNT dosage of 0.12% bwoc. MWCNT do not have a significant influence on the flow behaviour index of cement paste; however, in the case of usage of PCE, the shear thickening effect decreased from a MWCNT dosage of 0.03% bwoc. The significant reduction in the volume coefficient of water bleeding by 99, 100, and 83% was obtained with LS, NF, and PCE, respectively, with an increase in MWCNT dosage up to 0.24% bwoc.
Collapse
|
8
|
Bertella S, Luterbacher JS. Lignin Functionalization for the Production of Novel Materials. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Wang Z, Ganewatta MS, Tang C. Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101197] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ganewatta MS, Lokupitiya HN, Tang C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers (Basel) 2019; 11:E1176. [PMID: 31336845 PMCID: PMC6680560 DOI: 10.3390/polym11071176] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Polymers made from natural biomass are gaining interest due to the rising environmental concerns and depletion of petrochemical resources. Lignin isolated from lignocellulosic biomass is the second most abundant natural polymer next to cellulose. The paper pulp process produces industrial lignin as a byproduct that is mostly used for energy and has less significant utility in materials applications. High abundance, rich chemical functionalities, CO2 neutrality, reinforcing properties, antioxidant and UV blocking abilities, as well as environmental friendliness, make lignin an interesting substrate for materials and chemical development. However, poor processability, low reactivity, and intrinsic structural heterogeneity limit lignins' polymeric applications in high-performance advanced materials. With the advent of controlled polymerization methods such as ATRP, RAFT, and ADMET, there has been a great interest in academia and industry to make value-added polymeric materials from lignin. This review focuses on recent investigations that utilize controlled polymerization methods to generate novel lignin-based polymeric materials. Polymers developed from lignin-based monomers, various polymer grafting technologies, copolymer properties, and their applications are discussed.
Collapse
Affiliation(s)
- Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
- Ingevity Corporation, 5255 Virginia Avenue, North Charleston, SC 29406, USA.
| | - Hasala N Lokupitiya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Huang B, Jiang J, Kang M, Liu P, Sun H, Li BG, Wang WJ. Synthesis of block cationic polyacrylamide precursors using an aqueous RAFT dispersion polymerization. RSC Adv 2019; 9:12370-12383. [PMID: 35515873 PMCID: PMC9063656 DOI: 10.1039/c9ra02716e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Synthesis of cationic polyacrylamides (CPAMs) by introducing cationic polymer precursors followed by chain extension of acrylamide (AM) homopolymer blocks via RAFT polymerization is a promising approach for engineering high-performance CPAMs. However, the aqueous solution polymerization of AM usually leads to high viscosity, thus limiting the solid content in the polymerization system. Herein a novel approach is introduced that uses a random copolymer of AM and methacryloxyethyltrimethyl ammonium chloride (DMC) as a macro RAFT chain transfer agent (mCTA) and stabilizer for aqueous RAFT dispersion polymerization of AM. The AM/DMC random copolymers synthesized by RAFT solution polymerization, having narrow dispersities (Đ s) at different molecular weights and cationic degrees (C s), could serve as the mCTA, which was confirmed by mCTA chain extension in aqueous solution polymerization of AM under different C s, solid contents, AM addition contents, extended PAM block lengths, and mCTA chain lengths. The block CPAMs had a Đ value of less than 1.2. A model was developed using the method of moments with consideration of the diffusion control effect, for further understanding the chain extension kinetics. Predicted polymerization kinetics provided an accurate fit of the experimental data. The AM/DMC random copolymers were further used for aqueous RAFT dispersion polymerization of AM under different polymerization temperatures, C s, and mCTA chain lengths. The resulting products had a milky appearance, and the block copolymers had Đ s of less than 1.3. Higher C s and longer chain lengths on mCTAs were beneficial for stabilizing the polymerization systems and produced smaller particle sizes and less particle aggregation. The products remained stable at room temperature storage for more than a month. The results indicate that aqueous RAFT dispersion polymerization using random copolymers of AM and DMC at moderate cationic degrees as a stabilizer and mCTA is a suitable approach for synthesizing CPAM block precursors at an elevated solid content.
Collapse
Affiliation(s)
- Bo Huang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Jie Jiang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Mutian Kang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Pingwei Liu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China .,Institute of Zhejiang University - Quzhou 78 Jiuhua Boulevard North Quzhou China 324000
| | - Hailong Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University 24 South Section 1, Yihuan Road Chengdu China 610064
| | - Bo-Geng Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China .,Institute of Zhejiang University - Quzhou 78 Jiuhua Boulevard North Quzhou China 324000
| |
Collapse
|
12
|
Wang K, Pang H, Huang H, Song L, Huang J, Zhao Y. Study on the dispersion, adsorption and early hydration behavior of cement pastes containing multi-armed polycarboxylate superplasticizers. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1571925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kun Wang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Pang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry Chinese Academy of Sciences, Guangzhou, China
| | - Hao Huang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linxia Song
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianheng Huang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry Chinese Academy of Sciences, Guangzhou, China
| | | |
Collapse
|
13
|
Affiliation(s)
- Hailing Liu
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida 32310
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida 32310
| |
Collapse
|
14
|
Wang C, Kelley SS, Venditti RA. Lignin-Based Thermoplastic Materials. CHEMSUSCHEM 2016; 9:770-83. [PMID: 27059111 DOI: 10.1002/cssc.201501531] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 05/22/2023]
Abstract
Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
- H.B. Fuller Company, 1200 Willow Lake Blvd, St. Paul, MN, 55110, USA
| | - Stephen S Kelley
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Richard A Venditti
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
Murray LR, Gupta C, Washburn NR, Erk KA. Lignopolymers as viscosity-reducing additives in magnesium oxide suspensions. J Colloid Interface Sci 2015; 459:107-114. [DOI: 10.1016/j.jcis.2015.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022]
|