1
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Liu G, Xia N, Tian L, Sun Z, Liu L. Progress in the Development of Biosensors Based on Peptide-Copper Coordination Interaction. BIOSENSORS 2022; 12:bios12100809. [PMID: 36290946 PMCID: PMC9599103 DOI: 10.3390/bios12100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/17/2023]
Abstract
Copper ions, as the active centers of natural enzymes, play an important role in many physiological processes. Copper ion-based catalysts which mimic the activity of enzymes have been widely used in the field of industrial catalysis and sensing devices. As an important class of small biological molecules, peptides have the advantages of easy synthesis, excellent biocompatibility, low toxicity, and good water solubility. The peptide-copper complexes exhibit the characteristics of low molecular weight, high tenability, and unique catalytic and photophysical properties. Biosensors with peptide-copper complexes as the signal probes have promising application prospects in environmental monitoring and biomedical analysis and diagnosis. In this review, we discussed the design and application of fluorescent, colorimetric and electrochemical biosensors based on the peptide-copper coordination interaction.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| | - Linxu Tian
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Zhifang Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- Correspondence: (N.X.); (L.L.)
| |
Collapse
|
3
|
Shellaiah M, Sun KW. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. BIOSENSORS 2022; 12:bios12070550. [PMID: 35884351 PMCID: PMC9313392 DOI: 10.3390/bios12070550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Aggregation-induced emission (AIE) is a unique research topic and property that can lead to a wide range of applications, including cellular imaging, theranostics, analyte quantitation and the specific detection of biologically important species. Towards the development of the AIE-active materials, many aromatic moieties composed of tetraphenylethylene, anthracene, pyrene, etc., have been developed. Among these aromatic moieties, pyrene is an aromatic hydrocarbon with a polycyclic flat structure containing four fused benzene rings to provide an unusual electron delocalization feature that is important in the AIE property. Numerous pyrene-based AIE-active materials have been reported with the AIE property towards sensing, imaging and theranostics applications. Most importantly, these AIE-active pyrene moieties exist as small molecules, Schiff bases, polymers, supramolecules, metal-organic frameworks, etc. This comprehensive review outlines utilizations of AIE-active pyrene-based materials on the imaging and theranostics studies. Moreover, the design and synthesis of these pyrene-based molecules are delivered with discussions on their future scopes.
Collapse
|
4
|
Mishra AK, Hwang JH, Min JH, Park J, Lee E. Metal scavenging resin tethered with catechol or gallol binders via reversible addition–fragmentation chain transfer polymerisation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
6
|
Pigliacelli C, Sánchez-Fernández R, García MD, Peinador C, Pazos E. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications. Chem Commun (Camb) 2020; 56:8000-8014. [PMID: 32495761 DOI: 10.1039/d0cc02914a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have become excellent platforms for the design of peptide-nanoparticle hybrid superstructures, owing to their self-assembly and binding/recognition capabilities. Morover, peptide sequences can be encoded and modified to finely tune the structure of the hybrid systems and pursue functionalities that hold promise in an array of high-end applications. This feature article summarizes the different methodologies that have been developed to obtain self-assembled peptide-inorganic nanoparticle hybrid architectures, and discusses how the proper encoding of the peptide sequences can be used for tailoring the architecture and/or functionality of the final systems. We also describe the applications of these hybrid superstructures in different fields, with a brief look at future possibilities towards the development of new functional hybrid materials.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain.
| | | | | | | | | |
Collapse
|
7
|
Sun Q, Zhu HY, Wang JF, Chen X, Wang KR, Li XL. Supramolecular nanofiber of pyrene-lactose conjugates and its two-photon fluorescence imaging. Bioorg Chem 2018; 79:126-130. [DOI: 10.1016/j.bioorg.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
|
8
|
Kim I, Bang WY, Kim S, Jin SM, Hyun JY, Han EH, Lee E. Peroxisome-targeted Supramolecular Nanoprobes Assembled with Pyrene-labelled Peptide Amphiphiles. Chem Asian J 2018; 13:3485-3490. [PMID: 29956888 DOI: 10.1002/asia.201800863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/09/2022]
Abstract
Despite the versatile metabolic functions of peroxisomes such as lipid synthesis and fatty acid oxidation and their relevance to genetically inherited diseases, namely, peroxisome biogenesis disorders and peroxisomal enzyme deficiency, there is not much research on peroxisome-targeting therapeutics. Herein we present supramolecular nanostructured probes based on the self-assembly of peptide amphiphiles (PAs) having peroxisome-targeting ability in mammalian cells. The PA was designed to include the peroxisome-targeting tripeptide (SKL) and a fluorescent dye (pyrene). It was revealed that the presence of the SKL-appended carboxyl terminal group of PA, the extent of α-helical nature of the peptide block, and the fibrillar morphology of nano-assemblies affected the targeting efficiency of PA supramolecular nanoprobe. The simple modification of PAs by the peroxisome-targeting strength prediction showed an enhanced peroxisome specificity, as expected. This work provides important insights into designing subcellular organelle-targeting nanoparticles for next-generation nanomedicines.
Collapse
Affiliation(s)
- Inhye Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sooyong Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seon-Mi Jin
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ju-Yong Hyun
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.,Department of Bio-Microsystem Technology, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
9
|
Kim I, Jin SM, Han EH, Ko E, Ahn M, Bang WY, Bang JK, Lee E. Structure-Dependent Antimicrobial Theranostic Functions of Self-Assembled Short Peptide Nanoagents. Biomacromolecules 2017; 18:3600-3610. [DOI: 10.1021/acs.biomac.7b00951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Inhye Kim
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon-Mi Jin
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Immunotherapy
Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Eunhee Ko
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - MiJa Ahn
- Anticancer
Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Woo-Young Bang
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Kyu Bang
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Eunji Lee
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
Pazos E, Sleep E, Rubert
Pérez C, Lee SS, Tantakitti F, Stupp SI. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties. J Am Chem Soc 2016; 138:5507-10. [PMID: 27103596 PMCID: PMC4859321 DOI: 10.1021/jacs.6b01570] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/23/2022]
Abstract
Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.
Collapse
Affiliation(s)
- Elena Pazos
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Eduard Sleep
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Charles
M. Rubert
Pérez
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Sungsoo S. Lee
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Department of Materials
Science and Engineering, Department of Medicine, and Department of
Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Faifan Tantakitti
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Department of Materials
Science and Engineering, Department of Medicine, and Department of
Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I. Stupp
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Department of Materials
Science and Engineering, Department of Medicine, and Department of
Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Kim I, Lee NE, Jeong YJ, Chung YH, Cho BK, Lee E. Micellar and vesicular nanoassemblies of triazole-based amphiphilic probes triggered by mercury(II) ions in a 100% aqueous medium. Chem Commun (Camb) 2015; 50:14006-9. [PMID: 25266767 DOI: 10.1039/c4cc06742h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABA-type amphiphiles bearing a triazole-based aromatic block were easily synthesized using click chemistry, which act as fluorescent turn-off Hg(2+)-chemoprobes in an aqueous solution. Interestingly, the metal-binding process of amphiphiles induced nanoassemblies even below the CMCs, and the binding stoichiometry affected the morphologies of the resultant nanostructures.
Collapse
Affiliation(s)
- Inhye Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | | | | | | | | | | |
Collapse
|