1
|
Shu G, Zhang C, Wen Y, Pan J, Zhang X, Sun SK. Bismuth drug-inspired ultra-small dextran coated bismuth oxide nanoparticles for targeted computed tomography imaging of inflammatory bowel disease. Biomaterials 2024; 311:122658. [PMID: 38901130 DOI: 10.1016/j.biomaterials.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Bismuth (Bi)-based computed tomography (CT) imaging contrast agents (CAs) hold significant promise for diagnosing gastrointestinal diseases due to their cost-effectiveness, heightened sensitivity, and commendable biocompatibility. Nevertheless, substantial challenges persist in achieving an easy synthesis process, remarkable water solubility, and effective targeting ability for the potential clinical transformation of Bi-based CAs. Herein, we show Bi drug-inspired ultra-small dextran coated bismuth oxide nanoparticles (Bi2O3-Dex NPs) for targeted CT imaging of inflammatory bowel disease (IBD). Bi2O3-Dex NPs are synthesized through a simple alkaline precipitation reaction using bismuth salts and dextran as the template. The Bi2O3-Dex NPs exhibit ultra-small size (3.4 nm), exceptional water solubility (over 200 mg mL-1), high Bi content (19.75 %), excellent biocompatibility and demonstrate higher X-ray attenuation capacity compared to clinical iohexol. Bi2O3-Dex NPs not only enable clear visualization of the GI tract outline and intestinal loop structures in CT imaging but also specifically target and accumulate at the inflammatory site in colitis mice after oral administration, facilitating a precise diagnosis and enabling targeted CT imaging of IBD. Our study introduces a novel and clinically promising strategy for synthesizing high-performance Bi2O3-Dex NPs for diagnosing gastrointestinal diseases.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ya Wen
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
2
|
Mossburg KJ, Shepherd SJ, Barragan D, O NH, Berkow EK, Maidment PSN, Rosario Berrios DN, Hsu JC, Siedlik MJ, Yadavali S, Mitchell MJ, Issadore D, Cormode DP. Towards the clinical translation of a silver sulfide nanoparticle contrast agent: large scale production with a highly parallelized microfluidic chip. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06967-5. [PMID: 39528844 DOI: 10.1007/s00259-024-06967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Ultrasmall silver sulfide nanoparticles (Ag2S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag2S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods for inorganic nanoparticles are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent. METHODS We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag2S-NP. Ag2S-NP produced using this system were compared to bulk synthesis and a commercially available microfluidic device through characterization, contrast generation, in vivo imaging, and clearance profiles. RESULTS Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag2S-NP produced were of similar quality as measured by core size, concentration, UV-visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 5,100. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag2S-NP occurred within 24 h. CONCLUSIONS These studies have identified a promising method for the large-scale production of Ag2S-NP, paving the way for eventual clinical translation.
Collapse
Affiliation(s)
- Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph's University, Philadelphia, PA, USA
- Department of Physics, St. Joseph's University, Philadelphia, PA, USA
| | - Emily K Berkow
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Derick N Rosario Berrios
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica C Hsu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - David P Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kou H, Yang H. Molecular imaging nanoprobes and their applications in atherosclerosis diagnosis. Theranostics 2024; 14:4747-4772. [PMID: 39239513 PMCID: PMC11373619 DOI: 10.7150/thno.96037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular imaging has undergone significant development in recent years for its excellent ability to image and quantify biologic processes at cellular and molecular levels. Its application is of significance in cardiovascular diseases, particularly in diagnosing them at early stages. Atherosclerosis is a complex, chronic, and progressive disease that can lead to serious consequences such as heart strokes or infarctions. Attempts have been made to detect atherosclerosis with molecular imaging modalities. Not only do imaging modalities develop rapidly, but research of relevant nanomaterials as imaging probes has also been increasingly studied in recent years. This review focuses on the latest developments in the design and synthesis of probes that can be utilized in computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging and combined modalities. The challenges and future developments of nanomaterials for molecular imaging modalities are also discussed.
Collapse
Affiliation(s)
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
4
|
Kronfeld A, Rose P, Baumgart J, Brockmann C, Othman AE, Schweizer B, Brockmann MA. Quantitative multi-energy micro-CT: A simulation and phantom study for simultaneous imaging of four different contrast materials using an energy integrating detector. Heliyon 2024; 10:e23013. [PMID: 38148814 PMCID: PMC10750148 DOI: 10.1016/j.heliyon.2023.e23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
Emerging from the development of single-energy Computed Tomography (CT) and Dual-Energy Computed Tomography, Multi-Energy Computed Tomography (MECT) is a promising tool allowing advanced material and tissue decomposition and thereby enabling the use of multiple contrast materials in preclinical research. The scope of this work was to evaluate whether a usual preclinical micro-CT system is applicable for the decomposition of different materials using MECT together with a matrix-inversion method and how different changes of the measurement-environment affect the results. A matrix-inversion based algorithm to differentiate up to five materials (iodine, iron, barium, gadolinium, residual material) by applying four different acceleration voltages/energy levels was established. We carried out simulations using different ratios and concentrations (given in fractions of volume units, VU) of the four different materials (plus residual material) at different noise-levels for 30 keV, 40 keV, 50 keV, 60 keV, 80 keV and 100 keV (monochromatic). Our simulation results were then confirmed by using region of interest-based measurements in a phantom-study at corresponding acceleration voltages. Therefore, different mixtures of contrast materials were scanned using a micro-CT. Voxel wise evaluation of the phantom imaging data was conducted to confirm its usability for future imaging applications and to estimate the influence of varying noise-levels, scattering, artifacts and concentrations. The analysis of our simulations showed the smallest deviation of 0.01 (0.003-0.15) VU between given and calculated concentrations of the different contrast materials when using an energy-combination of 30 keV, 40 keV, 50 keV and 100 keV for MECT. Subsequent MECT phantom measurements, however, revealed a combination of acceleration voltages of 30 kV, 40 kV, 60 kV and 100 kV as most effective for performing material decomposition with a deviation of 0.28 (0-1.07) mg/ml. The feasibility of our voxelwise analyses using the proposed algorithm was then confirmed by the generation of phantom parameter-maps that matched the known contrast material concentrations. The results were mostly influenced by the noise-level and the concentrations used in the phantoms. MECT using a standard micro-CT combined with a matrix inversion method is feasible at four different imaging energies and allows the differentiation of mixtures of up to four contrast materials plus an additional residual material.
Collapse
Affiliation(s)
- Andrea Kronfeld
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Patrick Rose
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
- RheinMain University of Applied Sciences, Faculty of Engineering, Am Brückweg 26, 65428, Rüsselsheim am Main, Germany
| | - Jan Baumgart
- University Medical Center of the Johannes Gutenberg University Mainz, Translational Animal Research Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Carolin Brockmann
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Ahmed E. Othman
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Bernd Schweizer
- RheinMain University of Applied Sciences, Faculty of Engineering, Am Brückweg 26, 65428, Rüsselsheim am Main, Germany
| | - Marc Alexander Brockmann
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| |
Collapse
|
5
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight S, Jonnalagadda P, Zlitni A, Grice E, Bollyky PL, Koo H, Cormode DP. Theranostic gold in a gold cage nanoparticle for photothermal ablation and photoacoustic imaging of skin and oral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539604. [PMID: 37214850 PMCID: PMC10197567 DOI: 10.1101/2023.05.05.539604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.
Collapse
|
6
|
Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design. ULTRASONICS SONOCHEMISTRY 2023; 95:106371. [PMID: 36934677 PMCID: PMC10034128 DOI: 10.1016/j.ultsonch.2023.106371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/27/2023]
Abstract
The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.
Collapse
Affiliation(s)
- Farhank Saber Braim
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Nik Noor Ashikin Nik Ab Razak
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Azlan Abdul Aziz
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Layla Qasim Ismael
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Bychkova AV, Yakunina MN, Lopukhova MV, Degtyarev YN, Motyakin MV, Pokrovsky VS, Kovarski AL, Gorobets MG, Retivov VM, Khachatryan DS. Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and Long-Term In Situ Imaging. Pharmaceutics 2022; 14:2771. [PMID: 36559265 PMCID: PMC9782891 DOI: 10.3390/pharmaceutics14122771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 μg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.
Collapse
Affiliation(s)
- Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Marina N. Yakunina
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
| | - Mariia V. Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Yevgeniy N. Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Mikhail V. Motyakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Vadim S. Pokrovsky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, RUDN University, 6, Miklukho-Maklaya Str., Moscow 117198, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1, Olympic Pr., Federal Territory Sirius, Krasnodarsky Kray, Sochi 354340, Russia
| | - Alexander L. Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Maria G. Gorobets
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Vasily M. Retivov
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| | - Derenik S. Khachatryan
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| |
Collapse
|
9
|
Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022; 12:214-245. [PMID: 35310380 PMCID: PMC8897217 DOI: 10.1016/j.bioactmat.2021.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 02/09/2023] Open
Abstract
Iron oxide nanoparticle (IONP) with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging (MRI) contrast agent (CA) for long time. However, a review which comprehensively summarizes the recent development of IONP as traditional T2 CA and its new application for different modality of MRI, such as T1 imaging, simultaneous T2/T1 or MRI/other imaging modality, and as environment responsive CA is rare. This review starts with an investigation of direction on the development of high-performance MRI CA in both T2 and T1 modal based on quantum mechanical outer sphere and Solomon–Bloembergen–Morgan (SBM) theory. Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters, including magnetization, size, effective radius, inhomogeneity of surrounding generated magnetic field, crystal phase, coordination number of water, electronic relaxation time, and surface modification are summarized. Besides the strategies to improve r2 or r1 values, strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects, those are introducing second imaging modality to increase the imaging accuracy, endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue, and optimizing the interface structure to improve the accumulation amount of IONP in lesion. This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs. It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis. T2 contrast capacity of iron oxide nanoparticles (IONPs) could be improved based on quantum mechanical outer sphere theory. IONPs could be expand to be used as effective T1 CAs by improving q value, extending τs, and optimizing interface structure. Environment responsive MRI CAs have been developed to improve the diagnosis accuracy. Introducing other imaging contrast moiety into IONPs could increase the contrast efficiency. Optimizing in vivo behavior of IONPs have been proved to enlarge the signal difference between normal tissue and lesion.
Collapse
|
11
|
Puzari M, Chetia P. Nanotechnology-based cancer drug delivery. ADVANCES IN NANOTECHNOLOGY-BASED DRUG DELIVERY SYSTEMS 2022:415-422. [DOI: 10.1016/b978-0-323-88450-1.00007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Xie J, Zhou Z, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Facile Fabrication of BiF 3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging. NANOSCALE RESEARCH LETTERS 2021; 16:131. [PMID: 34390420 PMCID: PMC8364619 DOI: 10.1186/s11671-021-03591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
X-ray computed tomography (CT) has been widely used in clinical practice, and contrast agents such as Iohexol are often used to enhance the contrast of CT imaging between normal and diseased tissue. However, such contrast agents can have some toxicity. Thus, new CT contrast agents are urgently needed. Owing to the high atomic number (Z = 83), low cost, good biological safety, and great X-ray attenuation property (5.74 cm2 kg-1 at 100 keV), bismuth has gained great interest from researchers in the field of nano-sized CT contrast agents. Here, we synthesized BiF3: Ln@PVP nanoparticles (NPs) with an average particle size of about 380 nm. After coating them with polyvinylpyrrolidone (PVP), the BiF3: Ln@PVP NPs possessed good stability and great biocompatibility. Meanwhile, compared with the clinical contrast agent Iohexol, BiF3: Ln@PVP NPs showed superior in vitro CT imaging contrast. Subsequently, after in situ injection with BiF3: Ln@PVP NPs, the CT value of the tumor site after the injection was significantly higher than that before the injection (the CT value of the pre-injection and post-injection was 48.9 HU and 194.58 HU, respectively). The morphology of the gastrointestinal (GI) tract can be clearly observed over time after oral administration of BiF3: Ln@PVP NPs. Finally, the BiF3: Ln@PVP NPs were completely discharged from the GI tract of mice within 48 h of oral administration with no obvious damage to the GI tract. In summary, our easily synthesized BiF3: Ln@PVP NPs can be used as a potential clinical contrast agent and may have broad application prospects in CT imaging.
Collapse
Affiliation(s)
- Jun Xie
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zonglang Zhou
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China
| | - Sihan Ma
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Yuqiang Chen
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China.
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
13
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
14
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
15
|
Chouhan RS, Horvat M, Ahmed J, Alhokbany N, Alshehri SM, Gandhi S. Magnetic Nanoparticles-A Multifunctional Potential Agent for Diagnosis and Therapy. Cancers (Basel) 2021; 13:2213. [PMID: 34062991 PMCID: PMC8124749 DOI: 10.3390/cancers13092213] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Magnetic nanoparticles gained considerable attention in last few years due to their remarkable properties. Superparamaganetism, non-toxicity, biocompatibility, chemical inertness, and environmental friendliness are some of the properties that make iron oxide nanoparticles (IONPs) an ideal choice for biomedical applications. Along with being easily tuneable and a tailored surface for conjugation of IONPs, their physio-chemical and biological properties can also be varied by modifying the basic parameters for synthesis that enhances the additional possibilities for designing novel magnetic nanomaterial for theranostic applications. This review highlights the synthesis, surface modification, and different applications of IONPs for diagnosis, imaging, and therapy. Furthermore, it also represents the recent report on the application of IONPs as enzyme mimetic compounds and a contrasting agent, and its significance in the field as an anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| |
Collapse
|
16
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
17
|
Yu C, Bao H, Chen Z, Li X, Liu X, Wang W, Huang J, Zhang Z. Enhanced and long-term CT imaging tracking of transplanted stem cells labeled with temperature-responsive gold nanoparticles. J Mater Chem B 2021; 9:2854-2865. [PMID: 33711088 DOI: 10.1039/d0tb02997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively employed for computed tomography (CT) imaging in cell labeling and tracking because of their strong X-ray attenuation coefficient and excellent biocompatibility. However, the design and synthesis of stimuli-responsive AuNPs to modulate their endocytosis and exocytosis for optimal cell labeling and tracking are promising but challenging. Herein, we report an innovative labeling strategy based on temperature-responsive AuNPs (TRAuNPs) with high cell labeling efficiency and extended intracellular retention duration. We have manifested that the TRAuNP labeling imposes a negligible adverse effect on the function of human mesenchymal stem cells (hMSCs). Further experiment with idiopathic pulmonary fibrosis (IPF) model mice has demonstrated the feasibility of TRAuNP labeling for long time CT imaging tracking of transplanted hMSCs. What's more, the survival of transplanted hMSCs could also be monitored simultaneously using bioluminescence imaging after the expression of luciferase reporter genes. Therefore, we believe that this dual-modal labeling and tracking strategy enables visualization of the transplanted hMSCs in vivo, which may provide an important insight into the role of stem cells in the IPF therapy.
Collapse
Affiliation(s)
- Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of the present educational review on superparamagnetic iron oxide nanoparticles (SPIONs) is to inform and guide young scientists and students about the potential use and challenges associated with SPIONs. The present review discusses the basic concepts of magnetic resonance imaging (MRI), basic construct of SPIONs, cytotoxic challenges associated with SPIONs, shape and sizes of SPIONs, site-specific accumulation of SPIONs, various methodologies applied to reduce cytotoxicity including coatings with various materials, and application of SPIONs in targeted delivery of chemotherapeutics (Doxorubicin), biotherapeutics (DNA, siRNA), and positron emission tomography (PET) imaging applications.
Collapse
|
19
|
Huang Y, Liu Y, Shah S, Kim D, Simon-Soro A, Ito T, Hajfathalian M, Li Y, Hsu JC, Nieves LM, Alawi F, Naha PC, Cormode DP, Koo H. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials 2020; 268:120581. [PMID: 33302119 DOI: 10.1016/j.biomaterials.2020.120581] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Human dental caries is an intractable biofilm-associated disease caused by microbial interactions and dietary sugars on the host's teeth. Commensal bacteria help control opportunistic pathogens via bioactive products such as hydrogen peroxide (H2O2). However, high-sugar consumption disrupts homeostasis and promotes pathogen accumulation in acidic biofilms that cause tooth-decay. Here, we exploit the pathological (sugar-rich/acidic) conditions using a nanohybrid system to increase intrinsic H2O2 production and trigger pH-dependent reactive oxygen species (ROS) generation for efficient biofilm virulence targeting. The nanohybrid contains glucose-oxidase that catalyzes glucose present in biofilms to increase intrinsic H2O2, which is converted by iron oxide nanoparticles with peroxidase-like activity into ROS in acidic pH. Notably, it selectively kills Streptococcus mutans (pathogen) without affecting Streptococcus oralis (commensal) via preferential pathogen-binding and in situ ROS generation. Furthermore, nanohybrid treatments potently reduced dental caries in a rodent model. Compared to chlorhexidine (positive-control), which disrupted oral microbiota diversity, the nanohybrid had significant higher efficacy without affecting soft-tissues and the oral-gastrointestinal microbiomes, while modulating dental health-associated microbial activity in vivo. The data reveal therapeutic precision of a bi-functional hybrid nanozyme against a biofilm-related disease in a controlled-manner activated by pathological conditions.
Collapse
Affiliation(s)
- Yue Huang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Shrey Shah
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Preventive Dentistry, School of Dentistry, Jeonbuk National Universitys, Deokjin-gu, Jeonju, 54896, South Korea
| | - Aurea Simon-Soro
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tatsuro Ito
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Pediatric Dentistry, School of Dentistry at Matsudo, Nihon University, Matsudo, Chiba, 271-8587, Japan
| | - Maryam Hajfathalian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jessica C Hsu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Lenitza M Nieves
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19014, United States
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Cardiology, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
20
|
Bartoli M, Jagdale P, Tagliaferro A. A Short Review on Biomedical Applications of Nanostructured Bismuth Oxide and Related Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5234. [PMID: 33228140 PMCID: PMC7699380 DOI: 10.3390/ma13225234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
In this review, we reported the main achievements reached by using bismuth oxides and related materials for biological applications. We overviewed the complex chemical behavior of bismuth during the transformation of its compounds to oxide and bismuth oxide phase transitions. Afterward, we summarized the more relevant studies regrouped into three categories based on the use of bismuth species: (i) active drugs, (ii) diagnostic and (iii) theragnostic. We hope to provide a complete overview of the great potential of bismuth oxides in biological environments.
Collapse
Affiliation(s)
- Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| | - Pravin Jagdale
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| |
Collapse
|
21
|
Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Badrigilan S, Heydarpanahi F, Choupani J, Jaymand M, Samadian H, Hoseini-Ghahfarokhi M, Webster TJ, Tayebi L. A Review on the Biodistribution, Pharmacokinetics and Toxicity of Bismuth-Based Nanomaterials. Int J Nanomedicine 2020; 15:7079-7096. [PMID: 33061369 PMCID: PMC7526011 DOI: 10.2147/ijn.s250001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Here, bismuth-based nanomaterials (Bi-based NMs) are introduced as promising theranostic agents to enhance image contrast as well as for the therapeutic gain for numerous diseases. However, understanding the interaction of such novel developed nanoparticles (NPs) within a biological environment is a requisite for the translation of any promising agent from the lab bench to the clinic. This interaction delineates the fate of NPs after circulation in the body. In an ideal setting, a nano-based therapeutic agent should be eliminated via the renal clearance pathway, meanwhile it should have specific targeting to a diseased organ to reach an effective dose and also to overcome off-targeting. Due to their clearance pathway, biodistribution patterns and pharmacokinetics (PK), Bi-based NMs have been found to play a determinative role to pass clinical approval and they have been investigated extensively in vivo to date. In this review, we expansively discuss the possible toxicity induced by Bi-based NMs on cells or organs, as well as biodistribution profiles, PK and the clearance pathways in animal models. A low cytotoxicity of Bi-based NMs has been found in vitro and in vivo, and along with their long-term biodistribution and proper renal clearance in animal models, the translation of Bi-based NMs to the clinic as a useful novel theranostic agent is promising to improve numerous medical applications.
Collapse
Affiliation(s)
- Samireh Badrigilan
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Heydarpanahi
- Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jalal Choupani
- Department of Medical Genetics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
23
|
Gharehaghaji N, Divband B, Bakhtiari-Asl F. Utilization of Innovative Hydroxyapatite-Coated Gd2O3@Bi2O3 Nanocomposite as a Bifunctional Material for Magnetic Resonance Imaging and Computed Tomography. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00787-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Naha PC, Hsu JC, Kim J, Shah S, Bouché M, Si-Mohamed S, Rosario-Berrios DN, Douek P, Hajfathalian M, Yasini P, Singh S, Rosen MA, Morgan MA, Cormode DP. Dextran-Coated Cerium Oxide Nanoparticles: A Computed Tomography Contrast Agent for Imaging the Gastrointestinal Tract and Inflammatory Bowel Disease. ACS NANO 2020; 14:10187-10197. [PMID: 32692538 PMCID: PMC7484129 DOI: 10.1021/acsnano.0c03457] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Computed tomography (CT) is an X-ray-based medical imaging technique commonly used for noninvasive gastrointestinal tract (GIT) imaging. Iodine- and barium-based CT contrast agents are used in the clinic for GIT imaging; however, inflammatory bowel disease (IBD) imaging is challenging since iodinated and barium-based CT agents are not specific for sites of inflammation. Cerium oxide nanoparticles (CeNP) can produce strong X-ray attenuation due to cerium's k-edge at 40.4 keV but have not yet been explored for CT imaging. In addition, we hypothesized that the use of dextran as a coating material on cerium oxide nanoparticles would encourage accumulation in IBD inflammation sites in a similar fashion to other inflammatory diseases. In this study, therefore, we sought to develop a CT contrast agent, i.e., dextran-coated cerium oxide nanoparticles (Dex-CeNP) for GIT imaging with IBD. We synthesized Dex-CeNP, characterized them using various analytical tools, and examined their in vitro biocompatibility, CT contrast generation, and protective effect against oxidative stress. In vivo CT imaging was done with both healthy mice and a dextran sodium sulfate induced colitis mouse model. Dex-CeNP's CT contrast generation and accumulation in inflammation sites were compared with iopamidol, an FDA approved CT contrast agent. Dex-CeNP was found to be protective against oxidative damage. Dex-CeNP produced strong CT contrast and accumulated in the colitis area of large intestines. In addition, >97% of oral doses were cleared from the body within 24 h. Therefore, Dex-CeNP can be used as a potential CT contrast agent for imaging GIT with IBD while protecting against oxidative damage.
Collapse
Affiliation(s)
- Pratap C. Naha
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Shrey Shah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France, 69500
- Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France, 69621
| | - Derick N. Rosario-Berrios
- Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Philippe Douek
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France, 69500
- Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France, 69621
| | - Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Parisa Yasini
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA, 19122
| | - Sanjay Singh
- Division of Biological and Life Sciences School of Arts and Sciences Ahmedabad University, Ahmedabad, Gujarat, India, 380009
| | - Mark A. Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - Matthew A. Morgan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
- Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
- Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA, 19104
| |
Collapse
|
25
|
Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, Cormode DP. Nanoparticle contrast agents for X-ray imaging applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1642. [PMID: 32441050 DOI: 10.1002/wnan.1642] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
X-ray imaging is the most widely used diagnostic imaging method in modern medicine and several advanced forms of this technology have recently emerged. Iodinated molecules and barium sulfate suspensions are clinically approved X-ray contrast agents and are widely used. However, these existing contrast agents provide limited information, are suboptimal for new X-ray imaging techniques and are developing safety concerns. Thus, over the past 15 years, there has been a rapid growth in the development of nanoparticles as X-ray contrast agents. Nanoparticles have several desirable features such as high contrast payloads, the potential for long circulation times, and tunable physicochemical properties. Nanoparticles have also been used in a range of biomedical applications such as disease treatment, targeted imaging, and cell tracking. In this review, we discuss the principles behind X-ray contrast generation and introduce new types of X-ray imaging modalities, as well as potential elements and chemical compositions that are suitable for novel contrast agent development. We focus on the progress in nanoparticle X-ray contrast agents developed to be renally clearable, long circulating, theranostic, targeted, or for cell tracking. We feature agents that are used in conjunction with the newly developed multi-energy computed tomography and mammographic imaging technologies. Finally, we offer perspectives on current limitations and emerging research topics as well as expectations for the future development of the field. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA
| | - Lenitza M Nieves
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science of the University of Pennsylvania, Pennsylvania, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
27
|
Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020; 49:1253-1321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shakil MS, Hasan MA, Sarker SR. Iron Oxide Nanoparticles for Breast Cancer Theranostics. Curr Drug Metab 2020; 20:446-456. [PMID: 30465497 DOI: 10.2174/1389200220666181122105043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Breast cancer is the second leading cause of death in women worldwide. The extremely fast rate of metastasis and ability to develop resistance mechanism to all the conventional drugs make them very difficult to treat which are the causes of high morbidity and mortality of breast cancer patients. Scientists throughout the world have been focusing on the early detection of breast tumor so that treatment can be started at the very early stage. Moreover, conventional treatment processes such as chemotherapy, radiotherapy, and local surgery suffer from various limitations including toxicity, genetic mutation of normal cells, and spreading of cancer cells to healthy tissues. Therefore, new treatment regimens with minimum toxicity to normal cells need to be urgently developed. METHODS Iron oxide nanoparticles have been widely used for targeting hyperthermia and imaging of breast cancer cells. They can be conjugated with drugs, proteins, enzymes, antibodies or nucleotides to deliver them to target organs, tissues or tumors using external magnetic field. RESULTS Iron oxide nanoparticles have been successfully used as theranostic agents for breast cancer both in vitro and in vivo. Furthermore, their functionalization with drugs or functional biomolecules enhance their drug delivery efficiency and reduces the systemic toxicity of drugs. CONCLUSION This review mainly focuses on the versatile applications of superparamagnetic iron oxide nanoparticles on the diagnosis, treatment, and detecting progress of breast cancer treatment. Their wide application is because of their excellent superparamagnetic, biocompatible and biodegradable properties.
Collapse
Affiliation(s)
- Md Salman Shakil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
29
|
Hsu JC, Cruz ED, Lau KC, Bouché M, Kim J, Maidment ADA, Cormode DP. Renally Excretable and Size-Tunable Silver Sulfide Nanoparticles for Dual-Energy Mammography or Computed Tomography. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7845-7854. [PMID: 33005070 PMCID: PMC7523639 DOI: 10.1021/acs.chemmater.9b01750] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Significant effort has been focused on developing renally-clearable nanoparticle agents since efficient renal clearance is important for eventual clinical translation. Silver sulfide nanoparticles (Ag2S-NP) have recently been identified as contrast agents for dual energy mammography, computed tomography (CT) and fluorescence imaging and probes for drug delivery and photothermal therapy with good biocompatibility. However, most Ag2S-NP reported to date are not renally excretable and are observed in vivo to accumulate and remain in the reticuloendothelial system (RES) organs, i.e. liver and spleen, for a long time, which could negatively impact their likelihood for translation. Herein, we present renally-clearable, 3.1 nm Ag2S-NP with 85% of the injected dose (ID) being excreted within 24 hours of intravenous injection, which is amongst the best clearance of similarly sized nanoparticles reported thus far (mostly between 20-75% of ID). The urinary excretion and low RES accumulation of these nanoparticles in mice were indicated by in vivo CT imaging and biodistribution analysis. In summary, these ultrasmall Ag2S-NP can be effectively eliminated via urine and have high translational potential for various biomedical applications.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma D. Cruz
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Kristen C. Lau
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D. A. Maidment
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Labeling Stem Cells with a New Hybrid Bismuth/Carbon Nanotube Contrast Agent for X-Ray Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2183051. [PMID: 31281232 PMCID: PMC6594287 DOI: 10.1155/2019/2183051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023]
Abstract
The poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells in vivo can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs). Porcine MSCs were labeled without observed cytotoxicity. The CA consists of a hybrid material containing ultra-short single-walled carbon nanotubes (20-80 nm in length, US-tubes) and Bi(III) oxo-salicylate clusters which contain four Bi3+ ions per cluster (Bi4C). The CA is thus abbreviated as Bi4C@US-tubes.
Collapse
|
31
|
Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, Simon-Soro A, Kim D, Gao L, Koo H, Cormode DP. Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. ACS NANO 2019; 13:4960-4971. [PMID: 30642159 PMCID: PMC7059368 DOI: 10.1021/acsnano.8b08702] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biofilms are surface-attached bacterial communities embedded within an extracellular matrix that create localized and protected microenvironments. Acidogenic oral biofilms can demineralize the enamel-apatite on teeth, causing dental caries (tooth decay). Current antimicrobials have low efficacy and do not target the protective matrix and acidic pH within the biofilm. Recently, catalytic nanoparticles were shown to disrupt biofilms but lacked a stabilizing coating required for clinical applications. Here, we report dextran-coated iron oxide nanoparticles termed nanozymes (Dex-NZM) that display strong catalytic (peroxidase-like) activity at acidic pH values, target biofilms with high specificity, and prevent severe caries without impacting surrounding oral tissues in vivo. Nanoparticle formulations were synthesized with dextran coatings (molecular weights from 1.5 to 40 kDa were used), and their catalytic performance and bioactivity were assessed. We found that 10 kDa dextran coating provided maximal catalytic activity, biofilm uptake, and antibiofilm properties. Mechanistic studies indicated that iron oxide cores are the source of catalytic activity, whereas dextran on the nanoparticle surface provided stability without blocking catalysis. Dextran-coating facilitated NZM incorporation into exopolysaccharides (EPS) structure and binding within biofilms, which activated hydrogen peroxide (H2O2) for localized bacterial killing and EPS-matrix breakdown. Surprisingly, dextran coating enhanced selectivity toward biofilms while avoiding binding to gingival cells. Furthermore, Dex-NZM/H2O2 treatment significantly reduced the onset and severity of caries lesions (vs control or either Dex-NZM or H2O2 alone) without adverse effects on gingival tissues or oral microbiota diversity in vivo. Therefore, dextran-coated nanozymes have potential as an alternative treatment to control tooth decay and possibly other biofilm-associated diseases.
Collapse
Affiliation(s)
- Pratap C. Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Geelsu Hwang
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yue Huang
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Gubara
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Venkata Jonnakuti
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Aurea Simon-Soro
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dongyeop Kim
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lizeng Gao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors Tel: 215-615-4656. Fax: 240-368-8096. ., .
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors Tel: 215-615-4656. Fax: 240-368-8096. ., .
| |
Collapse
|
32
|
Scharfetter H, Gösweiner C, Krassnig PJ, Sampl C, Thonhofer M, Fischer R, Spirk S, Kargl R, Stana-Kleinschek K, Umut E, Kruk D. Aspects of structural order in 209Bi-containing particles for potential MRI contrast agents based on quadrupole enhanced relaxation. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1511869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hermann Scharfetter
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Christian Gösweiner
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Paul Josef Krassnig
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Carina Sampl
- Institute of Paper, Pulp and Fiber Technology and Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria
| | - Martin Thonhofer
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Roland Fischer
- Institute of Inorganic Chemistry Graz University of Technology, Graz, Austria
| | - Stefan Spirk
- Institute of Paper, Pulp and Fiber Technology and Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria
| | - Rupert Kargl
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Karin Stana-Kleinschek
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Evrim Umut
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
33
|
Finamore TA, Curtis TE, Tedesco JV, Grandfield K, Roeder RK. Nondestructive, longitudinal measurement of collagen scaffold degradation using computed tomography and gold nanoparticles. NANOSCALE 2019; 11:4345-4354. [PMID: 30793721 DOI: 10.1039/c9nr00313d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.
Collapse
Affiliation(s)
- Tyler A Finamore
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA..
| | | | | | | | | |
Collapse
|
34
|
Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech 2019; 82:812-848. [PMID: 30786098 DOI: 10.1002/jemt.23225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 12/25/2022]
Abstract
X-ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X-ray tomography is widely used for diagnostic purposes whose three-dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X-ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule-based and nanoparticle-based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.
Collapse
Affiliation(s)
- Mümin Mehmet Koç
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom.,Department of Physics, Kirklareli University, Kirklareli, Turkey
| | - Naim Aslan
- Department of Metallurgical and Materials Engineering, Munzur University, Tunceli, Turkey
| | - Alexander P Kao
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Asa H Barber
- School of Engineering, London South Bank University, London, United Kingdom
| |
Collapse
|
35
|
Robison L, Zhang L, Drout RJ, Li P, Haney CR, Brikha A, Noh H, Mehdi BL, Browning ND, Dravid VP, Cui Q, Islamoglu T, Farha OK. A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS APPLIED BIO MATERIALS 2019; 2:1197-1203. [DOI: 10.1021/acsabm.8b00778] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lee Robison
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Lin Zhang
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Riki J. Drout
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Peng Li
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad R. Haney
- Center for Advanced Molecular Imaging, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Anlil Brikha
- Center for Advanced Molecular Imaging, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Hyunho Noh
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - B. Layla Mehdi
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Nigel D. Browning
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qun Cui
- College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
36
|
Wallyn J, Anton N, Mertz D, Begin-Colin S, Perton F, Serra CA, Franconi F, Lemaire L, Chiper M, Libouban H, Messaddeq N, Anton H, Vandamme TF. Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:403-416. [PMID: 30541280 DOI: 10.1021/acsami.8b19517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/ r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
Collapse
Affiliation(s)
- Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| | - Damien Mertz
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Francis Perton
- Université de Strasbourg, CNRS, IPCMS UMR 7504 , F-67000 Strasbourg , France
| | - Christophe A Serra
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg , France
| | - Florence Franconi
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Laurent Lemaire
- Université d'Angers, PRISM , F-49045 Angers , France
- Université d'Angers, MINT INSERM 1066/CNRS , F-49045 Angers , France
| | - Manuela Chiper
- Université de Strasbourg, CNRS, BSC UMR 7242 , F-67412 Strasbourg , France
| | - Hélène Libouban
- Université d'Angers, GEROM, SFR ICAT 42-08, IRIS-IBS , F-49045 Angers , France
| | - Nadia Messaddeq
- Université de Strasbourg, CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 694 , F-67400 Strasbourg , France
| | - Halina Anton
- Université de Strasbourg, CNRS, LPB UMR 7213 , F-67400 Strasbourg , France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg , France
| |
Collapse
|
37
|
Zhang G, Naha PC, Gautam P, Cormode DP, Chan JMW. Water-Dispersible Bismuth-Organic Materials with Computed Tomography Contrast Properties. ACS APPLIED BIO MATERIALS 2018; 1:1918-1926. [PMID: 31396587 PMCID: PMC6687070 DOI: 10.1021/acsabm.8b00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two bismuth-organic network polymers were synthesized by means of a one-step polycondensation reaction between an aromatic dithiol/trithiol and triphenylbismuth. The materials were characterized by solid-state UV-vis spectroscopy, Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, elemental microanalysis, and thermogravimetric analysis. Uniform dispersion of the hydrophobic and water-insoluble bismuth-containing polymers in aqueous media was achieved by the addition of 2 kDa poly(ethylene glycol) methyl ether thiol. This enabled quantitative phantom imaging experiments on a clinical computed tomography (CT) scanner, which showed that the coordination polymers possessed strong CT contrast properties. The observed X-ray attenuation properties of each coordination polymer were correlated with its bismuth payload. The X-ray opacity, thermal and chemical stabilities, and aqueous dispersibility of this novel class of bismuth-organic materials make them potentially useful as biomedical CT contrast agents and radiopaque materials.
Collapse
Affiliation(s)
- Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Pratap C. Naha
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prabhat Gautam
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Julian M. W. Chan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
38
|
Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: "Three-in-one" theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis Photodyn Ther 2018; 25:504-514. [PMID: 30385298 DOI: 10.1016/j.pdpdt.2018.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The all-in-one nanoprobes (NPs) have drawn biomedical attention in the cancer therapy field due to simultaneously combing the capabilities of therapeutic and diagnostic methods into a single nanoprobe. METHOD In this study, we developed a theranostic probe based on superparamagnetic iron oxide (SPIO) and bismuth oxide (Bi2O3) with graphene quantum dots (GQDs) coating to investigate the physical properties for in vitro CT/MR dual-modal biomedical imaging and cancer-specific photothermal therapy (PTT). RESULT The GQDs-Fe/Bi nanocomposites showed strong light absorbance profile with wide-band in the near-infrared region, without any sharp peak or decline. The highest photo-to-thermal conversion efficacy (η), was found to be 31.8% with the high photostability upon the irradiation of NIR 808-nm laser. The results of in vitro photothermal ablation of cancerous cells demonstrated that the cells significantly killed in the presence of NPs (∼53.4%) with a dose-dependent manner in comparison to only laser group (3.0%). In GQDs-Fe/Bi nanocomposites, Bi with a high atomic number (Z = 83) exhibited a superior X-ray attenuation capability (175%) than the clinical CT agent-used dotarem, also, SPIO with excellent magnetization property showed strong T2-relaxation shortening capability (r2 = 62.34 mM-1.s-1) as a contrast agent for CT/MR imaging. CONCLUSION Our results demonstrate that the developed NPs can incorporate dual-modality imaging capability into a photo absorber for CT/MR imaging-guided tumor PTT.
Collapse
Affiliation(s)
- Samireh Badrigilan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Shaabani
- Department of Inorganic Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| | - Nahideh Gharehaghaji
- Department of Radiology, Faculty of Paramedical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Özgür ME, Ulu A, Balcıoğlu S, Özcan İ, Köytepe S, Ateş B. The Toxicity Assessment of Iron Oxide (Fe₃O₄) Nanoparticles on Physical and Biochemical Quality of Rainbow Trout Spermatozoon. TOXICS 2018; 6:toxics6040062. [PMID: 30340322 PMCID: PMC6315697 DOI: 10.3390/toxics6040062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the in vitro effect of different doses (50, 100, 200, 400, and 800 mg/L) of Fe₃O₄ nanoparticles (NPs) at 4 °C for 24 h on the kinematics of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) spermatozoon. Firstly, Fe₃O₄ NPs were prepared at about 30 nm from Iron (III) chloride, Iron (II) chloride, and NH₃ via a co-precipitation synthesis technique. Then, the prepared Fe₃O₄ NPs were characterized by different instrumental techniques for their chemical structure, purity, morphology, surface properties, and thermal behavior. The size, microstructure, and morphology of the prepared Fe₃O₄ NPs were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The thermal properties of the Fe₃O₄ NPs were determined with thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimeter (DSC) analysis techniques. According to our results, there were statistically significant (p < 0.05) decreases in the velocities of spermatozoon after treatment with 400 mg/L Fe₃O₄ NPs. The superoxide dismutase (SOD) and catalase (CAT) activities were significant (p < 0.05) decrease after 100 mg/L in after exposure to Fe₃O₄ NPs in 24 h. As the doses of Fe₃O₄ NPs increases, the level of malondialdehyde (MDA) and total glutathione (tGSH) significantly (p < 0.05) increased at doses of 400 and 800 mg/L.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Faculty of Fishery, Malatya Turgut Özal University, Malatya 44280, Turkey.
| | - Ahmet Ulu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Sevgi Balcıoğlu
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - İmren Özcan
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Süleyman Köytepe
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| | - Burhan Ateş
- Department of Chemistry, Science Faculty, İnönü University, Malatya 44280, Turkey.
| |
Collapse
|
40
|
Cheng Y, Zhang H. Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy. Chemistry 2018; 24:17405-17418. [DOI: 10.1002/chem.201801588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Cheng
- Laboratory of Chemical Biology; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
41
|
Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A, Hua S. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front Pharmacol 2018; 9:802. [PMID: 30154715 PMCID: PMC6102329 DOI: 10.3389/fphar.2018.00802] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Nanomedicines are typically submicrometer-sized carrier materials (nanoparticles) encapsulating therapeutic and/or imaging compounds that are used for the prevention, diagnosis and treatment of diseases. They are increasingly being used to overcome biological barriers in the body to improve the way we deliver compounds to specific tissues and organs. Nanomedicine technology aims to improve the balance between the efficacy and the toxicity of therapeutic compounds. Nanoparticles, one of the key technologies of nanomedicine, can exhibit a combination of physical, chemical and biological characteristics that determine their in vivo behavior. A key component in the translational assessment of nanomedicines is determining the biodistribution of the nanoparticles following in vivo administration in animals and humans. There are a range of techniques available for evaluating nanoparticle biodistribution, including histology, electron microscopy, liquid scintillation counting (LSC), indirectly measuring drug concentrations, in vivo optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine imaging. Each technique has its own advantages and limitations, as well as capabilities for assessing real-time, whole-organ and cellular accumulation. This review will address the principles and methodology of each technique and their advantages and limitations for evaluating in vivo biodistribution of nanoparticles.
Collapse
Affiliation(s)
- Lauren Arms
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Doug W. Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jamie Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - William Palmer
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Antony Martin
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Ameha Woldu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Susan Hua
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
42
|
Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep 2018; 8:12119. [PMID: 30108247 PMCID: PMC6092324 DOI: 10.1038/s41598-018-30570-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Spectral photon-counting computed tomography (SPCCT) is a rapidly emerging imaging modality that provides energy-dependent information on individual x-ray photons, leading to accurate material decomposition and simultaneous quantification of multiple contrast generating materials. Development of SPCCT-specific contrast agents is needed to overcome the issues with currently used iodinated contrast agents, such as difficulty in differentiation from calcified structures, and yield SPCCT’s full promise. In this study, the contrast generation of different elements is investigated using a prototype SPCCT scanner based on a modified clinical CT system and suitable elements for novel contrast agent development for SPCCT imaging are identified. Furthermore, nanoparticles were synthesized from tantalum as a proof of concept spectral photon-counting CT agent and tested for their in vitro cytotoxicity and contrast generation to provide insight into the feasibility of nanoparticle contrast agent development from these elements. We found that gadolinium, ytterbium and tantalum generate high contrast in spectral photon-counting CT imaging and may be suitable elements for contrast agent development for this modality. Our proof of concept results with tantalum-based nanoparticles underscore this conclusion due to their detectability with spectral photon-counting CT, as well as their biocompatibility.
Collapse
|
43
|
Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, Jung HI, Ren Z, Li Y, Gubara S, Alawi F, Zero D, Hara AT, Cormode DP, Koo H. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 2018; 9:2920. [PMID: 30065293 PMCID: PMC6068184 DOI: 10.1038/s41467-018-05342-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023] Open
Abstract
Ferumoxytol is a nanoparticle formulation approved by the U.S. Food and Drug Administration for systemic use to treat iron deficiency. Here, we show that, in addition, ferumoxytol disrupts intractable oral biofilms and prevents tooth decay (dental caries) via intrinsic peroxidase-like activity. Ferumoxytol binds within the biofilm ultrastructure and generates free radicals from hydrogen peroxide (H2O2), causing in situ bacterial death via cell membrane disruption and extracellular polymeric substances matrix degradation. In combination with low concentrations of H2O2, ferumoxytol inhibits biofilm accumulation on natural teeth in a human-derived ex vivo biofilm model, and prevents acid damage of the mineralized tissue. Topical oral treatment with ferumoxytol and H2O2 suppresses the development of dental caries in vivo, preventing the onset of severe tooth decay (cavities) in a rodent model of the disease. Microbiome and histological analyses show no adverse effects on oral microbiota diversity, and gingival and mucosal tissues. Our results reveal a new biomedical application for ferumoxytol as topical treatment of a prevalent and costly biofilm-induced oral disease. Ferumoxytol is a nanoparticle formulation approved for systemic use to treat iron deficiency. Liu et al. show that topical use of ferumoxytol, in combination with low concentrations of H2O2, disrupts intractable oral biofilms and prevents tooth decay in vitro and in an animal model.
Collapse
Affiliation(s)
- Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yue Huang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aurea Simon-Soro
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hoi-In Jung
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhi Ren
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah Gubara
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Faizan Alawi
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Domenick Zero
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Anderson T Hara
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Son HY, Kim KR, Hong CA, Nam YS. Morphological Evolution of Gold Nanoparticles into Nanodendrites Using Catechol-Grafted Polymer Templates. ACS OMEGA 2018; 3:6683-6691. [PMID: 31458842 PMCID: PMC6644758 DOI: 10.1021/acsomega.8b00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/08/2018] [Indexed: 05/21/2023]
Abstract
Morphology, dimension, size, and surface chemistry of gold nanoparticles are critically important in determining their optical, catalytic, and photothermal properties. Although many techniques have been developed to synthesize various gold nanostructures, complicated and multistep procedures are required to generate three-dimensional, dendritic gold nanostructures. Here, we present a simple method to synthesize highly branched gold nanodendrites through the well-controlled reduction of gold ions complexed with a catechol-grafted polymer. Dextran grafted with catechols guides the morphological evolution as a polymeric ligand to generate dendritic gold structures through the interconnection of the spherical gold nanoparticles. The reduction kinetics, which is critical for morphological changes, is controllable using dimethylacetamide, which can decrease the metal-ligand dissociation and gold ion diffusivity. This study suggests that mussel-inspired polymer chemistry provides a simple one-pot synthetic route to colloidal gold nanodendrites that are potentially applicable to biosensing and catalysis.
Collapse
Affiliation(s)
- Ho Yeon Son
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeong Rak Kim
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol Am Hong
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: . Phone: +82-42-350-3311. Fax: +82-42-350-3310 (C.A.H.)
| | - Yoon Sung Nam
- Department
of Materials Science and Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: (Y.S.N.)
| |
Collapse
|
45
|
Vallabani NVS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018; 8:279. [PMID: 29881657 PMCID: PMC5984604 DOI: 10.1007/s13205-018-1286-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.
Collapse
Affiliation(s)
- N. V. Srikanth Vallabani
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University Central Campus, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University Central Campus, Navrangpura, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
46
|
Lasemi N, Bomatí Miguel O, Lahoz R, Lennikov VV, Pacher U, Rentenberger C, Kautek W. Laser‐Assisted Synthesis of Colloidal FeW
x
O
y
and Fe/Fe
x
O
y
Nanoparticles in Water and Ethanol. Chemphyschem 2018. [DOI: 10.1002/cphc.201701214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Niusha Lasemi
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| | - Oscar Bomatí Miguel
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
- Universidad de Cádiz Departamento de Física de la Materia Condesada, Ancha 16, E-11001 Cádiz (Spain)
| | - Ruth Lahoz
- University of Zaragoza – CSIC Centro de Química y Materiales de Aragón María de Luna 3 E-50018 Zaragoza Spain
| | - Vassili. V. Lennikov
- University of Zaragoza – CSIC Instituto de Ciencia de Materiales de Aragón María de Luna 3 E-50018 Zaragoza Spain
| | - Ulrich Pacher
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| | | | - Wolfgang Kautek
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| |
Collapse
|
47
|
Dadashi S, Poursalehi R, Delavari H. H. In situ PEGylation of Bi nanoparticles prepared via pulsed Nd:YAG laser ablation in low molecular weight PEG: a potential X-ray CT imaging contrast agent. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2018. [DOI: 10.1080/21681163.2018.1452634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S. Dadashi
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| | - R. Poursalehi
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| | - H. Delavari H.
- Department of Materials Engineering, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
48
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
49
|
Hajfathalian M, Bouché M, Cormode DP. Polyphosphazene-Based Nanoparticles as Contrast Agents. ACS SYMPOSIUM SERIES 2018:77-100. [DOI: 10.1021/bk-2018-1298.ch004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|