1
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
2
|
Xie S, Li Y, Cao W, Peng J, Huang K, Meng J, Li X. Dual-Responsive Nanogels with Cascaded Gentamicin Release and Lysosomal Escape to Combat Intracellular Small Colony Variants for Peritonitis and Sepsis Therapies. Adv Healthc Mater 2024; 13:e2303671. [PMID: 38416744 DOI: 10.1002/adhm.202303671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Intracellular bacteria are the major cause of serious infections including sepsis and peritonitis, but face great challenges in fighting against the stubborn intracellular small colony variants (SCVs). Herein, the authors have developed nanogels (NGs) to destroy both planktonic bacteria and SCVs and eliminate excessive inflammations for peritonitis and sepsis therapies. Free gentamicin (GEN) and hydroxyapatite nanoparticles (NPs) with GEN loading and mannose grafts (mHAG) are inoculated into ε-polylysine NGs to obtain NG@G1-mHAG2 through crosslinking with phenylboronic acid and tannic acid. The H2O2 consumption after reaction with phenylboronic esters and the elimination of free radicals by tannic acid alleviates the escalated inflammatory status to promote sepsis therapy. After mannose-mediated uptake into macrophages, the acid-triggered degradation of mHAG NPs generates Ca2+ to destabilize lysosomes and the efficient lysosomal escape leads to reversion of hypometabolic SCVs into normal phenotype and their sensitivity to GEN. In a peritonitis mouse model, NG@G1-mHAG2 treatment provides strong and persistent bactericidal effects against both extracellular bacteria and intracellular SCVs and extends survival of peritonitis mice without apparent hepatomegaly, splenomegaly, pulmonary edema, and inflammatory cell infiltration. Thus, this study demonstrates a concise and versatile strategy to eliminate SCVs and relieve inflammatory storms for peritonitis and sepsis therapies without infection recurrence.
Collapse
Affiliation(s)
- Shuang Xie
- School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yu Li
- School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jiawen Peng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Kun Huang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jie Meng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaohong Li
- School of Life Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
3
|
Lin FH, Hsu YC, Chang KC, Shyong YJ. Porous hydroxyapatite carrier enables localized and sustained delivery of honokiol for glioma treatment. Eur J Pharm Biopharm 2023:S0939-6411(23)00169-8. [PMID: 37391090 DOI: 10.1016/j.ejpb.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The objective of this study is to develop hydroxyapatite (HAp) particles for targeted delivery of honokiol to tumor sites after glioma surgical management. Honokiol is released from the HAp-honokiol particles inside cancer cells through endocytosis and subsequent acid lysosomal dissolution. HAp is synthesized using a co-precipitation method, and egg white is added to create porous structures. The HAp is then surface-modified with stearic acid to enhance its hydrophobicity and loaded with honokiol to form HAp-honokiol particles. The synthesized particles are of appropriate size and characteristics for cancer cell uptake. Honokiol remains attached on to the HAp particles in neutral environments due to its hydrophobic nature, but undergoes rapid burst release in acidic environments such as lysosomes. The HAp-honokiol treatment shows a delayed effect on cell viability and cytotoxicity, indicating sustained drug release without compromising drug efficacy. Flow cytometry analysis demonstrates the apoptosis pathway induced by HAp-honokiol in ALTS1C1 glioma cells. In an in vivo study using a mouse glioma model, MRI results showed a 40% reduction in tumor size after HAp-honokiol treatment. These findings suggest that HAp-honokiol particles have potential as an effective drug delivery system for the treatment of glioma.
Collapse
Affiliation(s)
- Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yan-Jye Shyong
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
4
|
Novel Black Seed Polysaccharide Extract-g-Poly (Acrylate) pH-Responsive Hydrogel Nanocomposites for Safe Oral Insulin Delivery: Development, In Vitro, In Vivo and Toxicological Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010062. [PMID: 36678691 PMCID: PMC9864008 DOI: 10.3390/pharmaceutics15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral delivery of insulin has always been a challenging task due to harsh gut environment involving variable pH and peptidase actions. Currently, no Food and Drug Administration (FDA) approved oral insulin formulation is commercially available, only intravenous (IV) or subcutaneous (SC) routes. Therefore, it is really cumbersome for diabetic patients to go through invasive approaches for insulin delivery on daily basis. In the present study, a novel pH-responsive hydrogel nanocomposite (NC) system was developed and optimized for safe oral delivery of insulin. Black seed polysaccharide extract-based hydrogel (BA hydrogel) was formulated by free radical polymerization and loaded with insulin. Blank BA hydrogel was also incorporated with insulin-loaded montmorillonite nanoclay (Ins-Mmt) to form an Ins-Mmt-BA hydrogel NC and compared with the insulin-loaded hydrogel. Swelling, sol-gel analysis and in vitro release studies proved that Ins-Mmt-BA6 hydrogel NC has the best formulation, with 96.17% maximum insulin released in 24 h. Kinetic modeling applied on insulin release data showed the Korsemeyer-Peppas model (R2 = 0.9637) as the best fit model with a super case II transport mechanism for insulin transport (n > 0.89). Energy Dispersive X-ray (EDX) Spectroscopy, Fourier Transformed Infrared (FTIR) spectroscopy and Powdered X-ray diffraction (PXRD) analysis results also confirmed successful development of a hydrogel NC with no significant denaturation of insulin. Toxicity results confirmed the safety profile and biocompatibility of the developed NC. In vivo studies showed a maximum decrease in blood glucose levels of 52.61% and percentage relative bioavailability (% RBA) of 26.3% for an Ins-Mmt-BA hydrogel NC as compared to BA hydrogels and insulin administered through the SC route.
Collapse
|
5
|
Iontophoresis of basal insulin controlled delivery based on thermoplastic polyurethane. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
7
|
Li S, Liang N, Yan P, Kawashima Y, Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydr Polym 2021; 252:117202. [DOI: 10.1016/j.carbpol.2020.117202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
|
8
|
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020; 46:1238-1252. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic peptides are administered via parenteral route due to poor absorption in the gastrointestinal (GI) tract, instability in gastric acid, and GI enzymes. Polymeric drug delivery systems have achieved significant interest in pharmaceutical research due to its feasibility in protecting proteins, tissue targeting, and controlled drug release pattern. MATERIALS AND METHODS In this study, the size, polydispersity index, and zeta potential of insulin-loaded nanoparticles were characterized by dynamic light scattering and laser Doppler micro-electrophoresis. The main and interaction effects of chitosan concentration and Dz13Scr concentration on the physicochemical properties of the prepared insulin-loaded nanoparticles (size, polydispersity index, and zeta potential) were evaluated statistically using analysis of variance. A robust procedure of reversed-phase high-performance liquid chromatography was developed to quantify insulin release in simulated GI buffer. Results and discussion: We reported on the effect of two independent parameters, including polymer concentration and oligonucleotide concentration, on the physical characteristics of particles. Chitosan concentration was significant in predicting the size of insulin-loaded CS-Dz13Scr particles. In terms of zeta potential, both chitosan concentration and squared term of chitosan were significant factors that affect the surface charge of particles, which was attributed to the availability of positively-charged amino groups during interaction with negatively-charged Dz13Scr. The excipients used in this study could fabricate nanoparticles with negligible toxicity in GI cells and skeletal muscle cells. The developed formulation could conserve the physicochemical properties after being stored for 1 month at 4 °C. CONCLUSION The obtained results revealed satisfactory results for insulin-loaded CS-Dz13Scr nanoparticles (159.3 nm, pdi 0.331, -1.08 mV). No such similar study has been reported to date to identify the main and interactive significance of the above parameters for the characterization of insulin-loaded polymeric-oligonucleotide nanoparticles. This research is of importance for the understanding and development of protein-loaded nanoparticles for oral delivery.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
9
|
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 2019; 123:968-978. [DOI: 10.1016/j.ijbiomac.2018.11.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
10
|
Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces 2018; 171:391-397. [PMID: 30064087 DOI: 10.1016/j.colsurfb.2018.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are attractive potential carriers for drug delivery because of their natural function of transferring biomolecules among cells without eliciting immune responses. However, an obstacle to the application of exosomes for drug delivery is the difficulty in collecting sufficient numbers of these vesicles. In this study, we demonstrate treatment with calcium phosphate (CaP) particles could increase over two-fold the number of exosomes secreted from macrophage-like RAW264.7 cells and monocyte-like THP-1 cells. CaP particles were easily internalized into cells and dissolved in acidic late-endosomes or lysosomes, resulting in the rupture of their membranes followed by the release of Ca2+ into cytosol. Moreover, we found that exosomes secreted from cells treated with CaP particles are not contaminated by the Ca2+ released from CaP; the Ca2+ contents in exosomes secreted from CaP particle-treated cells were similar to that in exosomes from untreated control cells. This study highlights the potential for the efficient production of exosomes using CaP particles for drug delivery.
Collapse
Affiliation(s)
- Yan-Jye Shyong
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei, 10608, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| |
Collapse
|
11
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation. Food Funct 2018; 9:2902-2912. [DOI: 10.1039/c8fo00238j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of carboxymethyl short chain amylose with chitosan could be considered as a candidate for oral delivery of insulin.
Collapse
Affiliation(s)
- Na Ji
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Yan Hong
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhengbiao Gu
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Li Cheng
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Zhaofeng Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| | - Caiming Li
- The State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi-214122
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
12
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8866-8874. [PMID: 28925252 DOI: 10.1021/acs.jafc.7b03465] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present study was performed to investigate binary and tertiary nanocomposites between short-chain glucan (SCG) and proanthocyanidins (PAC) for the oral delivery of insulin. There was a large decrease in fluorescence intensity of insulin in the presence of SCG or the combination of SCG with PAC. Fourier transform infrared spectroscopy revealed that the binary and tertiary nanocomposites were synthesized due to the hydrogen bonding and hydrophobic interactions. The insulin entrapped in the nanocomposites was in an amorphous state confirmed by X-ray diffraction. The cell culture demonstrated that both the nanocomposites showed no detectable cytotoxicity with relative cell viability all above 85%. The pharmacological bioavailability after oral administration of insulin-SCG-PAC at a dose of 100 IU/kg was found to be 6.98 ± 1.20% in diabetic rats without any sharp fluctuations in 8 h.
Collapse
Affiliation(s)
- Na Ji
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| |
Collapse
|
13
|
Kondiah PPD, Choonara YE, Tomar LK, Tyagi C, Kumar P, du Toit LC, Marimuthu T, Modi G, Pillay V. Development of a Gastric Absorptive, Immediate Responsive, Oral Protein-Loaded Versatile Polymeric Delivery System. AAPS PharmSciTech 2017; 18:2479-2493. [PMID: 28205143 DOI: 10.1208/s12249-017-0725-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
A multifunctional platform to deliver three diverse proteins of insulin, interferon beta (INF-β) and erythropoietin (EPO), using a novel copolymeric microparticulate system of TMC-PEGDMA-MAA, was synthesised as an intelligent pH-responsive 2-fold gastric and intestinal absorptive system. Physiochemical and physicomechanical studies proved the degree of crystallinity that supported the controlled protein delivery of the microparticulate system. The copolymer was tableted before undertaking in vitro and in vivo analysis. After 2.5 h in simulated gastric fluid (SGF), insulin showed a fractional release of 3.2% in comparison to simulated intestinal fluid (SIF), in which a maximum of 83% of insulin was released. Similarly, INF-β and EPO released 3 and 9.7% in SGF and a maximum of 74 and 81.3% in SIF, respectively. In vivo studies demonstrated a significant decrease in blood glucose by 54.19% within 4 h post-dosing, and the comparator formulation provided 74.6% decrease in blood glucose within the same time period. INF-β peak bioavailable dose in serum was calculated to be 1.3% in comparison to an SC formulation having a peak concentration of 0.9%, demonstrating steady-state release for 24 h. EPO-loaded copolymeric microparticles had a 1.6% peak bioavailable concentration, in comparison to the 6.34% peak concentration after 8 h from the SC comparator formulation.
Collapse
|
14
|
Scudeller LA, Mavropoulos E, Tanaka MN, Costa AM, Braga CA, López EO, Mello A, Rossi AM. Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Farahani BV, Ghasemzadeh H, Afraz S. Thermodynamic Studies of Insulin Loading into a Glucose Responsive Hydrogel Based on Chitosan-polyacrylamide-polyethylene Glycol. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Farahani BV, Ghasemzaheh H, Afraz S. Intelligent semi-IPN chitosan–PEG–PAAm hydrogel for closed-loop insulin delivery and kinetic modeling. RSC Adv 2016. [DOI: 10.1039/c5ra28188a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Design of an intelligent semi-IPN chitosan–PEG–PAAm hydrogel using glucose oxidase (GOx) and catalase (CAT) to improve closed-loop insulin delivery systems.
Collapse
Affiliation(s)
| | - Hossein Ghasemzaheh
- Imam Khomeini International University
- Faculty of Science
- Department of Chemistry
- Qazvin 34149
- I. R. Iran
| | - Shiravan Afraz
- Imam Khomeini International University
- Faculty of Science
- Department of Chemistry
- Qazvin 34149
- I. R. Iran
| |
Collapse
|
17
|
Anu Priya B, Senthilguru K, Agarwal T, Gautham Hari Narayana SN, Giri S, Pramanik K, Pal K, Banerjee I. Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra09560c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biomaterial induced activation of vascular endothelial growth factor (VEGF) pathway for angiogenesis is now gaining recognition as an effective option for tissue engineering.
Collapse
Affiliation(s)
- B. Anu Priya
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Senthilguru
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - T. Agarwal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | | | - S. Giri
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Pramanik
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - K. Pal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - I. Banerjee
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| |
Collapse
|
18
|
Zhao P, Liu Y, Xiao L, Deng H, Du Y, Shi X. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J Mater Chem B 2015; 3:7577-7584. [DOI: 10.1039/c5tb01056j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A single electrodeposition process to fabricate multilayered chitosan/layered double hydroxides (LDHs) hybrid hydrogel for stimuli responsive protein release.
Collapse
Affiliation(s)
- Pengkun Zhao
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Youyu Liu
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Ling Xiao
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Hongbing Deng
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Yumin Du
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| | - Xiaowen Shi
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory
- Wuhan University
- Wuhan 430079
- China
| |
Collapse
|