1
|
Greaves GE, Pinna A, Taylor JM, Porter AE, Phillips CC. In Depth Mapping of Mesoporous Silica Nanoparticles in Malignant Glioma Cells Using Scattering-Type Scanning Near-Field Optical Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:842-849. [PMID: 39735833 PMCID: PMC11672216 DOI: 10.1021/cbmi.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play. We demonstrate an alternative imaging technique for investigating the interactions between cells and nanostructures, scattering-type scanning near-field optical microscopy (s-SNOM). s-SNOM combines the chemical sensitivity of infrared spectroscopy with the nanoscale spatial resolving power of scanning probe microscopy. We use the technique to chemically map the uptake of MSNPs in whole human glioblastoma cells and show that the simultaneously acquired topographical information can provide the embedding status of the MSNPs. We focus our imaging efforts on the lamellipodia and filopodia structures at the peripheries of the cells due to their significance in cancer invasiveness.
Collapse
Affiliation(s)
- George E. Greaves
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
| | - Alessandra Pinna
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
- School
of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K.
- The
Francis Crick Institute, NW1 1AT London, U.K.
| | - Jonathan M. Taylor
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
| | - Alexandra E. Porter
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
| | - Chris C. Phillips
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
| |
Collapse
|
2
|
Shahbazi K, Akbari I, Baniasadi H. Electrosprayed curcumin‐zein@polycaprolactone‐mucilage capsules for an improved sustained release. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Kimia Shahbazi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Iman Akbari
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hossein Baniasadi
- Department of Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
3
|
Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Mehmood Y, Shahid H, Barkat K, Ibraheem M, Riaz H, Badshah SF, Chopra H, Sharma R, Nepovimova E, Kuca K, Valis M, Emran TB. Designing of SiO 2 mesoporous nanoparticles loaded with mometasone furoate for potential nasal drug delivery: Ex vivo evaluation and determination of pro-inflammatory interferon and interleukin mRNA expression. Front Cell Dev Biol 2023; 10:1026477. [PMID: 36684440 PMCID: PMC9853011 DOI: 10.3389/fcell.2022.1026477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The main objective of the current research work was to synthesize mesoporous silica nanoparticles for controlled delivery of mometasone furoate for potential nasal delivery. The optimized sol-gel method was used for the synthesis of mesoporous silica nanoparticles. Synthesized nanoparticles were processed through Zeta sizer, SEM, TEM, FTIR, TGA, DSC, XRD, and BET analysis for structural characterization. The in vitro dissolution test was performed for the inclusion compound, while the Franz diffusion experiment was performed for permeability of formulation. For the determination of expression levels of anti-inflammatory cytokines IL-4 and IL-5, RNA extraction, reverse transcription, and polymerase chain reaction (RT-PCR) were performed. The MTT assay was also performed to determine cell viability. Synthesized and functionalized mesoporous silica nanoparticles showed controlled release of drugs. FT-IR spectroscopy confirmed the presence of the corresponding functional groups of drugs within mesoporous silica nanoparticles. Zeta sizer and thermal analysis confirmed the delivery system was in nano size and thermally stable. Moreover, a highly porous system was observed during SEM and TEM evaluation, and further it was confirmed by BET analysis. Greater cellular uptake with improved permeability characteristics was also observed. As compared to the crystalline drug, a significant improvement in the dissolution rate was observed. It was concluded that stable mesoporous silica nanoparticles with significant porosity were synthesized, efficiently delivering the loaded drug without any toxic effect.
Collapse
Affiliation(s)
- Yasir Mehmood
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad, Pakistan
- Saffron Pharmaceuticals (Pvt.) Ltd., Faisalabad, Pakistan
| | - Hira Shahid
- Saffron Pharmaceuticals (Pvt.) Ltd., Faisalabad, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Ibraheem
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad, Pakistan
| | - Humayun Riaz
- Rashid Latif College of Pharmacy, Rashid Latif Khan University, Lahore, Pakistan
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int J Pharm X 2022; 4:100116. [PMID: 35509288 PMCID: PMC9058968 DOI: 10.1016/j.ijpx.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Rapid progress in developing multifunctional nanocarriers for drug delivery has been observed in recent years. Inorganic mesoporous silica nanocarriers (MSNs), emerged as an ideal candidate for gene/drug delivery with distinctive morphological features. These ordered carriers of porous nature have gained unique attention due to their distinctive features. Moreover, transformation can be made to these nanocarriers in terms of pores size, pores volume, and particle size by altering specific parameters during synthesis. These ordered porous materials have earned special attention as a drug carrier for treating multiple diseases. Herein, we highlight the strategies employed in synthesizing and functionalizing these versatile nanocarriers. In addition, the various factors that influence their sizes and morphological features were also discussed. The article also summarizes the recent advancements and strategies for drug and gene delivery by rendering smarter MSNs by incorporating functional groups on their surfaces. Averting off-target effects through various capping strategies is a massive milestone for the induction of stimuli-responsive nanocarriers that brings out a great revolution in the biomedical field. MSNs serve as an ideal candidate for gene/drug delivery with unique and excellent attributes. MSNs surface can be functionalized using specific materials to impart unique structural features. Functionalization of MSNs with stimuli-responsive molecules can act as gatekeepers by responding to the desired stimulus after uncapping. These capping agents act as vital targeting agents in developing MSNs being employed in various biomedical applications.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
6
|
Mehmood Y, Shahid H, Rashid MA, Alhamhoom Y, Kazi M. Developing of SiO 2 Nanoshells Loaded with Fluticasone Propionate for Potential Nasal Drug Delivery: Determination of Pro-Inflammatory Cytokines through mRNA Expression. J Funct Biomater 2022; 13:jfb13040229. [PMID: 36412870 PMCID: PMC9680518 DOI: 10.3390/jfb13040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Mesoporous Silica Nanoparticles (MSN) are porous inorganic materials that have been extensively used for drug delivery due to their special qualities, such as biocompatibility, biodegradability, and non-toxicity. MSN is a promising drug delivery system to enhance the efficacy and safety of drug administration in nasal diseases like chronic rhinitis (CR). In this study, we used the sol-gel technique for MSN synthesis and incorporate fluticasone propionate (FP) for intranasal drug administration for the treatment of chronic rhinitis (CR). In order to confirm the particle size, shape, drug release, and compatibility, various instruments were used. MSN was effectively prepared with average sizes ranging between 400 ± 34 nm (mean ± SD) as measured by dynamic light scattering (DLS), while zeta potential verified in all cases their positive charged surface. To investigate MSN features, the Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), thermal analysis, X-ray diffraction (XRD), and nitrogen adsorption/desorption measurement were used. The loaded compound was submitted to in vitro dissolution tests, and a remarkable dissolution rate improvement was observed compared to the crystalline drug in both pH conditions (1.2 and 7.4 pH). By using an MTT assay cell viability was assessed. The expression levels of the anti-inflammatory cytokines IL-4 and IL-5 were also measured using mRNA extraction from rat blood. Other characterizations like acute toxicity and hemolytic activity were also performed to confirm loaded MSN safety. Loaded MSN was incorporated in nasal spray prepared by using innovator excipients including poloxamer. After this, its nasal spray's physical characteristics were also determined and compared with a commercial product (Ticovate).
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Beurer A, Kirchhof M, Bruckner JR, Frey W, Baro A, Dyballa M, Giesselmann F, Laschat S, Traa Y. Efficient and Spatially Controlled Functionalization of SBA‐15 and Initial Results in Asymmetric Rh‐Catalyzed 1,2‐Additions under Confinement. ChemCatChem 2021. [DOI: 10.1002/cctc.202100229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ann‐Katrin Beurer
- Institute of Technical Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Manuel Kirchhof
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Johanna R. Bruckner
- Institute of Physical Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Angelika Baro
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Michael Dyballa
- Institute of Technical Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Frank Giesselmann
- Institute of Physical Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Yvonne Traa
- Institute of Technical Chemistry University of Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
8
|
Mai Z, Chen J, Cao Q, Hu Y, Dong X, Zhang H, Huang W, Zhou W. Rational design of hollow mesoporous titania nanoparticles loaded with curcumin for UV-controlled release and targeted drug delivery. NANOTECHNOLOGY 2021; 32:205604. [PMID: 33567415 DOI: 10.1088/1361-6528/abe4fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Curcumin (Cur), appeared to provide huge potential in biomedical application. However, its therapeutic efficacy was greatly limited as the result of poor solubility and instability. To address these limitations, we create a new type of hollow mesoporous titania nanoparticle (HMTN) to encapsulate Cur. HMTN was decorated with a layer of hydrophilic polyethylenimine (PEI), which controlled the release rate of Cur inside the pore due to its dendritic structure. Combined with the folic acid (FA) mediated targeting effect, the potential multifunctional Cur loaded titania nanoparticle (Cur-FA-PEI-HMTN) showed excellent biocompatibility and bioavailability, as well as the UV-responsive drug release properties. The operating parameters to prepare hollow structure were studied and the Cur-FA-PEI-HMTN nanosystem had been fully characterized by Brunauer-Emmet-Teller, Fourier transform infrared spectroscopy, transmission electron microscope, thermal gravity analysis, differential thermal analysis, x-ray diffraction, dynamic light scattering and zeta potential. In addition, the hemolytic test, as well as CCK8, flow cytometry, Hoechst 33342 staining experiment, were carried out to confirm the low cytotoxity and high biocompatibility. The confocal microscopy analysis results also revealed the increasing uptake of Cur@FA-PEI-HMTN by MCF-7 cells. The synthesized nanoparticles displayed great potential as drug nanovehicles with high biocompatibility.
Collapse
Affiliation(s)
- Zhuoxian Mai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jiali Chen
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Qingyun Cao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenhua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
9
|
Thakkar M, Islam MS, Railkar A, Mitra S. Antisolvent precipitative immobilization of micro and nanostructured griseofulvin on laboratory cultured diatom frustules for enhanced aqueous dissolution. Colloids Surf B Biointerfaces 2020; 196:111308. [PMID: 32784059 DOI: 10.1016/j.colsurfb.2020.111308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Abstract
We report for the first time an antisolvent synthesis of nanostructured hydrophobic drug formulation onto a natural diatom. The jewel of the sea, a marine diatom, which is enriched in silicon, was cultured and grown in the laboratory. Its frustules were isolated and purified. The polar functional group on its surface provided unique physical and chemical properties. Griseofulvin (GF), an antifungal drug was used as a model compound was precipitated onto and adsorbed onto hydrophilic diatom surface, while stabilizer hydroxypropyl methyl cellulose (HPMC) was used for restricting particle growth during the composite synthesis. This work demonstrates that the fine drug crystals incorporated onto the diatom silica surface. The structural and morphological properties of the drug was characterized by various techniques. The drug loading of the formulation was estimated to be 41 % by weight. The incorporation of micro/nano crystals on the diatom surface dramatically enhanced the dissolution rate, and lowered the time required for 50 % dissolution for pure drug from 240-58 min for the drug composite, and the time required for 80 % dissolution or T80 was found to be 180 min for the composite while the pure drug reached a maximum of 65 % in 300 min.
Collapse
Affiliation(s)
- Megha Thakkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Aditya Railkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
10
|
Mehmood Y, Khan IU, Shahzad Y, Khan RU, Iqbal MS, Khan HA, Khalid I, Yousaf AM, Khalid SH, Asghar S, Asif M, Hussain T, Shah SU. In-Vitro and In-Vivo Evaluation of Velpatasvir- Loaded Mesoporous Silica Scaffolds. A Prospective Carrier for Drug Bioavailability Enhancement. Pharmaceutics 2020; 12:E307. [PMID: 32231052 PMCID: PMC7238066 DOI: 10.3390/pharmaceutics12040307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
The limited aqueous solubility of many active pharmaceutical ingredients (APIs) is responsible for their poor performance and low drug levels in blood and at target sites. Various approaches have been adopted to tackle this issue. Most recently, mesoporous silica nanoparticles (MSN) have gained attention of pharmaceutical scientists for bio-imaging, bio-sensing, gene delivery, drug solubility enhancement, and controlled and targeted drug release. Here, we have successfully incorporated the poorly water soluble antiviral drug velpatasvir (VLP) in MSN. These spherical particles were 186 nm in diameter with polydispersity index of 0.244. Blank MSN have specific surface area and pore diameter of 602.5 ± 0.7 m2/g and 5.9 nm, respectively, which reduced after successful incorporation of drug. Drug was in amorphous form in synthesized VLP-loaded silica particles (VLP-MSN) with no significant interaction with carrier. Pure VLP showed poor dissolution with progressive increment in pH of dissolution media which could limit its availability in systemic circulation after oral administration. After VLP loading in silica carriers, drug released rapidly over a wide range of pH values, i.e., 1.2 to 6.8, thus indicating an improvement in the solubility profile of VLP. These particles were biocompatible, with an LD50 of 448 µg/mL, and in-vivo pharmacokinetic results demonstrated that VLP-MSN significantly enhanced the bioavailability as compared to pure drug. The above results clearly demonstrate satisfactory in-vitro performance, biocompatibility, non-toxicity and in-vivo bioavailability enhancement with VLP-MSN.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Rizwan Ullah Khan
- Department of Pathology, Prince Faisal Cancer Centre, Buraydah Al Qassim 51431, Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11492, Saudi Arabia
| | - Haseeb Ahmad Khan
- Department of Pathology, FMH College of Medicine and Dentistry, Lahore 54000, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| |
Collapse
|
11
|
Wang S, Zhang B, Su L, Nie W, Han D, Han G, Zhang H, Chong C, Tan J. Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. J Biomed Mater Res A 2019; 107:1988-1998. [PMID: 31067350 DOI: 10.1002/jbm.a.36711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/07/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
The impact of the surface modification on the subcellular distribution of nanoparticles in the brain remains elusive. The nanoparticles prepared by conjugating polyethylene glycol and maleic anhydride-coated superparamagnetic iron oxide nanoparticles (Mal-SPIONs) with bovine serum albumin (BSA/Mal-SPIONs) and with Arg-Gly-Asp peptide (RGD/Mal-SPIONs) were injected into the rat substantia nigra. Observation of transmission electron microscopy (TEM) samples obtained 24 h after perfusion showed that abundant RGD/Mal-SPIONs accumulated in the myelin sheath, dendrites, axon terminals and mitochondria, and on cell membranes in the brain tissue near the injection site. For rats injected with BSA/Mal-SPIONs, a few nanoparticles accumulated in the myelin sheath, axon terminals, endoplasmic reticulum, mitochondria, Golgi, and lysosomes of neurons and glial cells while least SPIONs in rats injected with Mal-SPIONs were found. TEM pictures showed some Mal-SPIONs were expelled out of the brain. RGD/Mal-SPIONs diffused extensively to the thalamus, frontal cortex, temporal lobe, olfactory bulb, and brain stem after injection. Only a few BSA/Mal-SPIONs diffused to the afore-mentioned brain areas. This work reveals different surface modifications on the iron oxide nanoparticles play crucial roles in their distribution and diffusion in the rat brains.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Baolin Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lichao Su
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Wan Nie
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dong Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guihua Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Hao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Chuangang Chong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Cao Y, Huang HY, Chen LQ, Du HH, Cui JH, Zhang LW, Lee BJ, Cao QR. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9763-9776. [PMID: 30776886 DOI: 10.1021/acsami.8b20810] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The combination of gene therapy and chemotherapy has recently received considerable attention for cancer treatment. However, low transfection efficiency and poor endosomal escape of genes from nanocarriers strongly limit the success of the clinical use of small interfering RNA (siRNA). In this study, a novel pH-responsive, surface-modified single-walled carbon nanotube (SWCNT) was designed for the codelivery of doxorubicin (DOX) and survivin siRNA. Polyethylenimine (PEI) was covalently conjugated with betaine, and the resulting PEI-betaine (PB) was further synthesized with the oxidized SWCNT to form SWCNT-PB (SPB), which exhibits an excellent pH-responsive lysosomal escape of siRNA. SPB was modified with the targeting and penetrating peptide BR2 (SPBB), thereby achieving considerably higher uptake of siRNA than SWCNT-PEI (SP) or SPB. Furthermore, SPBB-siRNA presented substantially lower survivin expression and higher apoptotic index than Lipofectamine 2000. DOX and survivin siRNA were adsorbed onto SPB to form DOX-SPBB-siRNA, and siRNA/DOX was released into the cytoplasm and nuclei of adenocarcinomic human alveolar basal epithelial (A549) cells without lysosomal retention. Compared with SPBB-siRNA or DOX-SPBB treatment alone, DOX-SPBB-siRNA significantly reduced tumor volume in A549 cell-bearing nude mice, demonstrating the synergistic effects of DOX and survivin siRNA. Pathological analysis also indicated the potential therapeutic effects of DOX-SPBB-siRNA on tumors without distinct damages to normal tissues. In conclusion, the novel functionalized SWCNT loaded with DOX and survivin siRNA was successfully synthesized, and the nanocomplex exhibited effective antitumor effects both in vitro and in vivo, thereby providing an alternative strategy for the codelivery of antitumor drugs and genes.
Collapse
Affiliation(s)
- Yue Cao
- Department of Pharmacy , Beijing Health Vocational College , Beijing 100053 , People's Republic of China
| | | | | | | | | | | | - Beom-Jin Lee
- College of Pharmacy , Ajou University , Suwon 16499 , Republic of Korea
| | | |
Collapse
|
13
|
Wang H, Liang Y, Gao W, Dong R, Wang C. Emulsion Hydrogel Soft Motor Actuated by Thermal Stimulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43211-43219. [PMID: 29164849 DOI: 10.1021/acsami.7b08661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An emulsion hydrogel motor (E-H motor), constituted by low-boiling-point oil fuel and a hydrogel matrix, is prepared through a simple yet versatile oil-in-water (O/W) emulsion template method. The E-H motor can be efficiently propelled by the bubbles generated under a thermal stimulus. As thermally induced explosion occurs inside the E-H motor (diameter ∼4.0 mm and length ∼6.0 mm), the gas bubbles resulting from thermotropic phase transition are violently ejected from one side, leading to a fast speed of 14.78 ± 4.82 mm s-1 in a 60 °C aqueous solution. Additionally, multiple water-insoluble organic solvents can serve as the fuel for self-propulsion, which demonstrates the favorable universality of the E-H motor. The magnetic navigation and near-infrared propulsion can be realized through incorporating hydrophilic iron oxide (Fe3O4) nanoparticles and graphene oxide (GO) into the aqueous phase. Moreover, the synchronous integration of GO and enrofloxacin bactericide can enable intelligent targeted cargo transportation and delivery. The attractive self-propulsion performance, precise locomotion control, and formidable integration ability of the emulsion hydrogel-based miniaturized soft motor hold great promise for numerous practical applications.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, China
| | - Yuling Liang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, China
| | - Wei Gao
- Department of Electrical Engineering & Computer Sciences, University of California , Berkeley, California 94720, United States
| | - Renfeng Dong
- School of Chemistry and Environment, South China Normal University , Guangzhou 510006, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
14
|
Mai Z, Chen J, Hu Y, Liu F, Fu B, Zhang H, Dong X, Huang W, Zhou W. Novel functional mesoporous silica nanoparticles loaded with Vitamin E acetate as smart platforms for pH responsive delivery with high bioactivity. J Colloid Interface Sci 2017; 508:184-195. [DOI: 10.1016/j.jcis.2017.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
|
15
|
Mai Z, Hu Y, Huang P, Zhang X, Dong X, Fang Y, Wu C, Cheng J, Zhou W. Outside-in stepwise bi-functionalization of magnetic mesoporous silica incorporated with Pt nanoparticles for effective removal of hexavalent chromium. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Fu Y, Liu H, Ren Z, Li X, Huang J, Best S, Han G. Luminescent CaTiO3:Yb,Er nanofibers co-conjugated with Rose Bengal and gold nanorods for potential synergistic photodynamic/photothermal therapy. J Mater Chem B 2017; 5:5128-5136. [DOI: 10.1039/c7tb01165b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CaTiO3:Yb,Er nanofibers, co-conjugated with Rose Bengal and gold nanorods, enable a synergistic photodynamic/photothermal phenomenon for superior cancer cell killing effect.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University, Hangzhou
- Zhejiang 310027
- P. R. China
| | - Heng Liu
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University, Hangzhou
- Zhejiang 310027
- P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University, Hangzhou
- Zhejiang 310027
- P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University, Hangzhou
- Zhejiang 310027
- P. R. China
| | - Jie Huang
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| | - Serena Best
- Department of Materials Science and Metallurgy
- University of Cambridge
- Cambridge CB3 0FS
- UK
| | - Gaorong Han
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University, Hangzhou
- Zhejiang 310027
- P. R. China
| |
Collapse
|
17
|
Mai Z, Chen J, He T, Hu Y, Dong X, Zhang H, Huang W, Ko F, Zhou W. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv 2017. [DOI: 10.1039/c6ra25314h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biodegradable microcapsules as novel drug delivery systems were successfully fabricated by one-step processing using an electrospray technique.
Collapse
Affiliation(s)
- Zhuoxian Mai
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Jiali Chen
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Ting He
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Yang Hu
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Xianming Dong
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| | - Hongwu Zhang
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Wenhua Huang
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Frank Ko
- Department of Materials Engineering
- The University of British Columbia
- Vancouver
- Canada V6T 1Z4
| | - Wuyi Zhou
- Institute of Biomaterial
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- China
| |
Collapse
|
18
|
Liao YT, Lee CH, Chen ST, Lai JY, Wu KCW. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B 2017; 5:7008-7013. [DOI: 10.1039/c7tb01217a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, pilocarpine-loaded gelatin-covered mesoporous silica nanoparticles (denoted as p/GM) were intracamerally administrated into the anterior chamber for the reduction of intraocular pressure (IOP).
Collapse
Affiliation(s)
- Yu-Te Liao
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chih-Hung Lee
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Si-Tan Chen
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
- Department of Materials Engineering
| | - Kevin C.-W. Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Division of Medical Engineering Research
| |
Collapse
|
19
|
An N, Lin H, Yang C, Zhang T, Tong R, Chen Y, Qu F. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:292-300. [DOI: 10.1016/j.msec.2016.06.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/26/2016] [Accepted: 06/26/2016] [Indexed: 12/14/2022]
|
20
|
Wang Y, Sun Y, Wang J, Yang Y, Li Y, Yuan Y, Liu C. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17166-17175. [PMID: 27314423 DOI: 10.1021/acsami.6b05370] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Yifeng Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yi Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Jine Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| |
Collapse
|
21
|
Shen YF, Ho CC, Shie MY, Wang K, Fang HY. Hinokitiol-Loaded Mesoporous Calcium Silicate Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 in Lung Adenocarcinoma Cells. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E306. [PMID: 28773431 PMCID: PMC5503060 DOI: 10.3390/ma9050306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Hinokitiol is a tropolone-related compound found in heartwood cupressaceous plants. Hinokitiol slows the growth of a variety of cancers through inhibition of cell proliferation. The low water solubility of hinokitiol leads to less bioavailability. This has been highlighted as a major limiting factor. In this study, mesoporous calcium silicate (MCS) nanoparticles, both pure and hinokitiol-loaded, were synthesized and their effects on A549 cells were analyzed. The results indicate that Hino-MCS nanoparticles induce apoptosis in higher concentration loads (>12.5 μg/mL) for A549 cells. Hino-MCS nanoparticles suppress gene and protein expression levels of multiple drug resistance protein 1 (MDR1). In addition, both the activity and the expression levels of caspase-3/-9 were measured in Hino-MCS nanoparticle-treated A549 cells. The Hino-MCS nanoparticles-triggered apoptosis was blocked by inhibitors of pan-caspase, caspase-3/-9, and antioxidant agents (N-acetylcysteine; NAC). The Hino-MCS nanoparticles enhance reactive oxygen species production and the protein expression levels of caspase-3/-9. Our data suggest that Hino-MCS nanoparticles trigger an intrinsic apoptotic pathway through regulating the function of MDR1 and the production of reactive oxygen species in A549 cells. Therefore, we believe that Hino-MCS nanoparticles may be efficacious in the treatment of drug-resistant human lung cancer in the future.
Collapse
Affiliation(s)
- Yu-Fang Shen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Chia-Che Ho
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Kan Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Hsin-Yuan Fang
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
- Department of Thoracic Surgery, China Medical University Hospital, Taichung City 40447, Taiwan.
- School of Medicine, China Medical University, Taichung City 40447, Taiwan.
| |
Collapse
|
22
|
Huang P, Zeng B, Mai Z, Deng J, Fang Y, Huang W, Zhang H, Yuan J, Wei Y, Zhou W. Novel drug delivery nanosystems based on out-inside bifunctionalized mesoporous silica yolk–shell magnetic nanostars used as nanocarriers for curcumin. J Mater Chem B 2016; 4:46-56. [DOI: 10.1039/c5tb02184g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctionalized yolk–shell magnetic mesoporous silica is used as a curcumin nanocarrier with magnetic response and increased cellular uptake.
Collapse
|
23
|
Fu Y, Li X, Sun C, Ren Z, Weng W, Mao C, Han G. pH-Triggered SrTiO3:Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25514-25521. [PMID: 26544158 DOI: 10.1021/acsami.5b08953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of multifunctional localized drug delivery systems (LDDSs) has been endeavored in the past decades worldwide. The matrix material of LDDSs is known as a crucial factor for the success of its transformation from the laboratory to clinical practices. Herein, a biocompatible ceramic, strontium titanate (SrTiO3, STO), was utilized as the matrix. A variety of fine Er doped SrTiO3 (STO:Er) nanofibers were fabricated via electrospinning. After the surface functionalization with amino groups, the drug loading capacity of STO:Er nanofibers is dramatically increased. The nanofibers present a rather sustained drug releasing behavior in the media with pH of 7.4, and the release kinetics is significantly accelerated with the decreased pH value from 7.4 to 4.7. Furthermore, the intensity of the spectrum emitted from the STO:Er nanofibers corresponds well with the drug releasing progress under the excitation of near-infrared spectrum (∼980 nm). Fast drug release behavior (in an acid environment) induces a rapid intensity enhancing effect of photoluminescence emission and vice versa. The main mechanism is attributed to the quenching effect induced by the C-Hx groups of IBU molecules with vibration frequencies from 2850 to 3000 cm(-1). Such new STO:Er nanofibers with pH-triggered and optically monitored drug delivery functionalities have therefore been considered as another new localized drug delivery platform for modern tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | - Chuanbin Sun
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| | - Chuanbin Mao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|