1
|
Liu Z, Su R, Xiao X, Li G. Boronic acid ester-based hydrogel as surface-enhanced Raman scattering substrates for separation, enrichment, hydrolysis and detection of hydrogen peroxide residue in dairy product all-in-one. Talanta 2025; 281:126900. [PMID: 39305760 DOI: 10.1016/j.talanta.2024.126900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
Rapid and selective separation, enrichment and detection of trace residue all-in-one in complex samples is a major challenge. Hydrogels with molecular sieve properties can selectively separate and enrich target analytes, and the combination with high sensitivity detection of surface-enhanced Raman scattering (SERS) is expected to achieve the above all-in-one detection. Herein, the core-shell structured Au@poly(N-isopropylacrylamide)-phenylboronic acid hydrogel (Au@PNIP-VBA) with boronic acid ester groups was prepared by thermally initiated polymerization. The boronic acid ester groups in hydrogel are selectively hydrolyzed by hydrogen peroxide (H2O2) to hydroxyl structures, leading to a reduction in SERS signals. The Au@PNIP-VBA hydrogel has molecular sieve properties and high SERS activity, making it suitable for separation, enrichment, hydrolysis and detection of H2O2 all-in-one. A rapid SERS method was developed for analysis of H2O2 based on the Au@PNIP-VBA hydrogel with the linear range of 8.5 × 10-2-6.8 mg L-1 and the detection limit of 33 μg L-1. The method was successfully applied to the determination of H2O2 residue in fresh milk, pure milk, yogurt and camel milk, with the recoveries were in the range of 82.2%-109.3% and the relative standard deviations were 2.8%-8.3%. This efficient all-in-one strategy has the advantages of simple sample pre-treatment, rapid analysis (30 min) and high sensitivity, making it highly promising for food quality and safety analysis.
Collapse
Affiliation(s)
- Ziwang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Sun X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal Chim Acta 2022; 1206:339226. [PMID: 35473867 DOI: 10.1016/j.aca.2021.339226] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Glucose detection is of vital importance to diabetes diagnosis and treatment. Optical approaches in glucose sensing have received much attention in recent years due to the relatively low cost, portable, and mini-invasive or non-invasive potentials. Surface enhanced Raman spectroscopy (SERS) endows the benefits of extremely high sensitivity because of enhanced signals and specificity due to the fingerprint of molecules of interest. However, the direct detection of glucose through SERS was challenging because of poor adsorption of glucose on bare metals and low cross section of glucose. In order to address these challenges, several approaches were proposed and utilized for glucose detection through SERS. This review article mainly focuses on the development of surface enhanced Raman scattering based glucose sensors in recent 10 years. The sensing mechanisms, rational design and sensing properties to glucose are reviewed. Two strategies are summarized as intrinsic sensing and extrinsic sensing. Four general categories for glucose sensing through SERS are discussed including SERS active platform, partition layer functionalized surface, boronic acid based sensors, and enzymatic reaction based biosensors. Finally, the challenges and outlook for SERS based glucose sensors are also presented.
Collapse
Affiliation(s)
- Xiangcheng Sun
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States.
| |
Collapse
|
4
|
Fu C, Wang Y, Tian X, Wu Y, Cao H, Li Y, Jung YM. Horseradish peroxidase-repeat assay based on tyramine signal amplification for highly sensitive H 2O 2 detection by surface-enhanced Raman scattering. Analyst 2021; 146:7320-7326. [PMID: 34762076 DOI: 10.1039/d1an01705e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new and simple surface-enhanced Raman scattering (SERS) biosensor based on the tyramine signal amplification (TSA)-triggered formation of horseradish peroxidase (HRP) repeats on a gold sensing chip was designed for the highly sensitive detection of hydrogen peroxide (H2O2). Initially, gold wafers were functionalized with HRP as sensing chips. Then, the HRP immobilized on the chips triggers the TSA reaction to transform the tyramine-HRP conjugate into a tyramine-HRP repeat array. With the aid of the target H2O2, the HRP repeats catalyze the oxidation of o-phenylenediamine (OPD) and produce an enzyme catalytic product with a different chemical structure, thus altering the fingerprint of the SERS spectra from that of OPD. H2O2 can be quantitatively analyzed according to the change in SERS signal intensity. On the basis of the TSA strategy, the proposed method allows the detection of H2O2 with a limit of detection (LOD) of 0.8 × 10-8 M. The as-prepared SERS sensor can achieve high-sensitivity H2O2 detection with a small amount of sample for each analysis. Therefore, this sensor exhibits significant potential for application in bioanalysis.
Collapse
Affiliation(s)
- Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yuqiu Wang
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xue Tian
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Haiyan Cao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yangyang Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
5
|
Cui Z, Lu L, Guan Y, Ramakrishna S, Hong M. Enhancing SERS detection on a biocompatible metallic substrate for diabetes diagnosing. OPTICS LETTERS 2021; 46:3801-3804. [PMID: 34329285 DOI: 10.1364/ol.430044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
A method to realize surface-enhanced Raman spectroscopy (SERS) at a titanium alloy substrate for glucose detection has been experimentally demonstrated. A silver-coated laser-induced periodic surface structure (LIPSS) was prepared via femtosecond laser micro-processing. The low detection limit of glucose is 10-7mol/L and, a good linear relationship between the glucose concentration and Raman intensity is found in the range between 1×10-7 and 1×10-3mol/L. Moreover, we investigate SERS detection for glucose sensing in human urine samples, while the results are in good agreement with clinical results. The Letter provides a facile method for producing a structure-controlled SERS substrate to realize glucose detection, which is promising for long-term in vivo diagnostics.
Collapse
|
6
|
Murugan E, Santhoshkumar S, Govindaraju S, Palanichamy M. Silver nanoparticles decorated g-C 3N 4: An efficient SERS substrate for monitoring catalytic reduction and selective Hg 2+ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119036. [PMID: 33070011 DOI: 10.1016/j.saa.2020.119036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride supported Ag NPs(AgNPs@g-C3N4) were synthesized by an in-situ chemical reduction using a green reducing agent, tannic acid. They were characterized by UV-Vis, FTIR, XPS, XRD, FESEM, EDAX and HRTEM. They were very much SERS sensitive, and capable of detecting methylene blue and 4-aminothiophenol at 1 × 10-12 M and 1 × 10-10 M, respectively with the corresponding SERS enhancement factor of 1.4 × 108 and 4.7 × 107. Apart from its high SERS sensitivity, it exhibited high catalytic activity for the reduction of MB with NaBH4. So, their SERS activity and catalytic activity were combined successfully to monitor catalytic reduction of MB by SERS technique. Further, the SERS activity towards MB was also employed for the detection/quantification of free Hg2+ ions in aqueous solution. The SERS intensity of MB drastically decreased in the presence of Hg2+ ions, and hence it provides novel route to detect and quantify the latter. Presence of Ca2+, Mg2+, Cu2+ and Cd2+ions showed zero interference for it. So, this study proves that Ag NPs@g-C3N4 as a unique substrate for multiple SERS applications.
Collapse
Affiliation(s)
- E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| | - S Santhoshkumar
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - S Govindaraju
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - M Palanichamy
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| |
Collapse
|
7
|
Dynamic monitoring and quantitative characterization of intracellular H2O2 content by using SERS based boric acid nanoprobe. Talanta 2020; 214:120863. [DOI: 10.1016/j.talanta.2020.120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/20/2022]
|
8
|
Li Y, Wang Y, Fu C, Wu Y, Cao H, Shi W, Jung YM. A simple enzyme-free SERS sensor for the rapid and sensitive detection of hydrogen peroxide in food. Analyst 2020; 145:607-612. [DOI: 10.1039/c9an01964b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple enzyme-free method based on surface-enhanced Raman scattering (SERS) was developed for the first time to detect H2O2 in food by etching a self-assembled film of silver nanoparticles (Ag NPs) on a glass substrate.
Collapse
Affiliation(s)
- Yangyang Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Yuqiu Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Haiyan Cao
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Young Mee Jung
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Gangwon 24341
- Korea
| |
Collapse
|
9
|
Porous SiO2-coated Au-Ag alloy nanoparticles for the alkyne-mediated ratiometric Raman imaging analysis of hydrogen peroxide in live cells. Anal Chim Acta 2019; 1057:1-10. [DOI: 10.1016/j.aca.2018.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 11/23/2022]
|
10
|
Alkyne-based surface-enhanced Raman scattering nanoprobe for ratiometric imaging analysis of caspase 3 in live cells and tissues. Anal Chim Acta 2018; 1043:115-122. [DOI: 10.1016/j.aca.2018.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
|
11
|
Du S, Yu C, Tang L, Lu L. Applications of SERS in the Detection of Stress-Related Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E757. [PMID: 30257510 PMCID: PMC6215319 DOI: 10.3390/nano8100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022]
Abstract
A wide variety of biotic and abiotic stresses continually attack plants and animals, which adversely affect their growth, development, reproduction, and yield realization. To survive under stress conditions, highly sophisticated and efficient tolerance mechanisms have been evolved to adapt to stresses, which consist of the variation of effector molecules playing vital roles in physiological regulation. The development of a sensitive, facile, and rapid analytical methods for stress factors and effector molecules detection is significant for gaining deeper insight into the tolerance mechanisms. As a nondestructive analysis technique, surface-enhanced Raman spectroscopy (SERS) has unique advantages regarding its biosensing applications. It not only provides specific fingerprint spectra of the target molecules, conformation, and structure, but also has universal capacity for simultaneous detection and imaging of targets owing to the narrow width of the Raman vibrational bands. Herein, recent progress on biotic and abiotic stresses, tolerance mechanisms and effector molecules is summarized. Moreover, the development and promising future trends of SERS detection for stress-related substances combined with nanomaterials as substrates and SERS tags are discussed. This comprehensive and critical review might shed light on a new perspective for SERS applications.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lin Tang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
|
13
|
Gu X, Trujillo MJ, Olson JE, Camden JP. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:147-169. [PMID: 29547340 DOI: 10.1146/annurev-anchem-061417-125724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| |
Collapse
|
14
|
Pang J, Zhao Y, Liu HL, Wang K. A single nanoparticle-based real-time monitoring of biocatalytic progress and detection of hydrogen peroxide. Talanta 2018; 185:581-585. [PMID: 29759244 DOI: 10.1016/j.talanta.2018.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 11/19/2022]
Abstract
This paper reported a new method to observe the catalytic progress of the natural horseradish peroxidase (HRP) in-situ on single gold nanoparticles (GNPs) by the combination of dark field imaging and plasmonic resonance scattering spectra. The produced single HRP-GNP exhibited localized catalytic property toward H2O2-Diaminobenzidine (DAB), which could be used to detect the concentration of H2O2 in micro/nanospace. The linear range for H2O2 sensing was from 0.01 μM to 5 μM with a detection limit of 10 nM. The new design strategy could be applied for a broader bioanalysis situation by substituting the HRP with other specified biocatalyst.
Collapse
Affiliation(s)
- Jie Pang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yun Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Hai-Ling Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
15
|
Si Y, Bai Y, Qin X, Li J, Zhong W, Xiao Z, Li J, Yin Y. Alkyne–DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells. Anal Chem 2018; 90:3898-3905. [DOI: 10.1021/acs.analchem.7b04735] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanmei Si
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yaocai Bai
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Xiaojie Qin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jun Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Wenwan Zhong
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Zhijun Xiao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Yadong Yin
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
16
|
Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Anal Bioanal Chem 2016; 408:7513-20. [DOI: 10.1007/s00216-016-9849-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
|
17
|
Pan X, Dong J, Li Y, Sun X, Yuan C, Qian W. The strategy of two-scale interface enrichment for constructing ultrasensitive SERS substrates based on the coffee ring effect of AgNP@β-CD. RSC Adv 2016. [DOI: 10.1039/c6ra01101b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we introduced a Raman technique for the detection of aromatic compounds. The combination of the pre-concentration of β-CD and the SERS effect of the coffee-ring enhanced the detection ability of SERS to aromatic compounds.
Collapse
Affiliation(s)
- Xiaoyu Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Jian Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Yan Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xiang Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Chunwei Yuan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
18
|
Wallace GQ, Tabatabaei M, Zuin MS, Workentin MS, Lagugné-Labarthet F. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2015; 408:609-18. [PMID: 26521177 DOI: 10.1007/s00216-015-9142-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Abstract
A nanoaggregate-on-mirror (NAOM) structure has been developed for molecular and biomolecular detection using surface-enhanced Raman spectroscopy (SERS). The smooth surface of the gold mirror allows for simple and homogeneous functionalization, while the introduction of the nanoaggregates enhances the Raman signal of the molecule(s) in the vicinity of the aggregate-mirror junction. This is evidenced by functionalizing the gold mirror with 4-nitrothiophenol, and the further addition of gold nanoaggregates promotes local SERS activity only in the areas with the nanoaggregates. The application of the NAOM platform for biomolecular detection is highlighted using glucose and H2O2 as molecules of interest. In both cases, the gold mirror is functionalized with 4-mercaptophenylboronic acid (4-MPBA). Upon exposure to glucose, the boronic acid moiety of 4-MPBA forms a cyclic boronate ester. Once the nanoaggregates are added to the surface, detection of glucose is possible without the use of an enzyme. This method of indirect detection provides a limit of detection of 0.05 mM, along with a linear range of detection from 0.1 to 15 mM for glucose, encompassing the physiological range of blood glucose concentration. The detection of H2O2 is achieved with optical inspection and SERS. The H2O2 interferes with the coating of the gold mirror, enabling qualitative detection by visual inspection. Simultaneously, the H2O2 reacts with the boronic acid to form a phenol, a change that is detected by SERS.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mohammadali Tabatabaei
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mariachiara S Zuin
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mark S Workentin
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada. .,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
19
|
Qu LL, Liu YY, He SH, Chen JQ, Liang Y, Li HT. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens Bioelectron 2015; 77:292-8. [PMID: 26414026 DOI: 10.1016/j.bios.2015.09.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022]
Abstract
Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80 nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry.
Collapse
Affiliation(s)
- Lu-Lu Qu
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Ying-Ya Liu
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Sai-Huan He
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jia-Qing Chen
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuan Liang
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hai-Tao Li
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|